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Abstract

This master’s thesis looks into the problems concerning travel times of fire engines.
First, we start with the problem of finding a distribution of the travel times of fire engines,
conditioned on the distance. Here, we fully describe and clarify a previously proposed
model, and apply it to GPS-data of the fire department in the area of Amsterdam,
the Netherlands. Second, we look at decision processes. We start with considering non-
concurrent incidents, where we look at the minimum of different travel time distributions,
to decide which two out of three fire engines we should send to an incident. We find
that it is optimal to send fire engines with independent travel times. We then use this
information when we consider concurrent incidents. In this case we use a discounted
rewards infinite horizon Markov Decision Process to model how many fire engines should
be sent to an incident when sending more fire engines is better for the current incident,
since it reduces the expected travel time, but fire engines take time to return, so at the
next incident, there will be less fire engines available. We prove that it is optimal to
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1. Introduction

1.1. Background

A central issue in emergency services, such as medical, fire, and police, is to be at
the location of an incident fast. In case of life threatening emergencies, every minute
counts. For a city like Amsterdam, the Netherlands, the fire department needs to be at
the location of the fire within 6 to 10 minutes after a call has been placed, depending
on the type of building (fireproof or not) and the function of the building (e.g. store
versus dwelling house). The travel time of a fire engine is the largest component of the
response time, and an accurate prediction of this travel time could make improvements
possible.

Different kinds of improvements are possible. One could, for example, think of finding
faster routes from the fire station to the fire. Also, relocating the fire stations, so that
the area is better covered, can lead to an improvement (Van den Berg, 2016). And,
when considering to send more than one fire engine to a fire, knowing how to optimally
dispatch the fire engines could be an improvement. It is clear that for all of these
improvements to be made possible, it is necessary to know as much as possible about
the travel times of the fire engines.

1.2. Literature

Much research is done about analyzing travel times and dispachting vehicles in emer-
gency services. The New York City RAND fire project, lasting from 1968 to 1975, was a
successful research project, which made use of analytical and statistical modelling, which
led to key changes at the New York City Fire Department (Larson, 1972; Archibald et al.,
1979; Kolesar, 2012). A part of this research project was about the travel times of the
fire engines. Kolesar et al. (1975) divide the travel time into an acceleration phase, a
cruising speed phase, and a deceleration phase. They use these different phases to model
the travel time depending on the distance, and they take the mean of the travel times as
the expectation of the travel time. A similar research project on ambulance planning,
is the Dutch REPRO project. This project, lasting from 2012 to 2016, considers new
and efficient planning methods for ambulance services, and advanced decision models
for relocating ambulances (Jagtenberg et al., 2015; Van Barneveld et al., 2015, 2016).

Budge et al. (2010) improve the model of Kolesar et al. (1975), by taking the median
rather than the mean as the expectation of the travel time. Budge et al. (2010) argue
that since travel times are non-negative, the distribution of the travel times is probably
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skewed to the right, and that therefore it is better to take the median rather than the
mean as the expectation of the travel time.

Later, Westgate et al. (2013) introduce a different model in which they look at the
different street segments separately, and take differences in travel speed into account
instead of looking at the total route as one stochastic variable. They use a Bayesian
method to estimate the travel time distribution, and they compare that model to the
model of Budge et al. (2010). They conclude that the Bayesian method seems to give
more realistic results than the method of Budge et al. (2010), since the method of Budge
et al. (2010) does not take into account the different speeds of different roads. For their
case study, Westgate et al. (2013) use GPS-data and apply Markov Chain Monte Carlo
simulation to find the true route, since their GPS-data is not accurate enough.

One could, of course, refine this model by not only looking at different roads sepa-
rately, but also taking the transitions of one road to another into account. Jenelius and
Koutsopoulos (2013), for example, see a trip as a combination of running travel times
along links, and delays at intersections and traffic signals. They treat this delay as a
deterministic penalty. They do not consider emergency services in particular, but give
a model for general services.

In all the above studies, travel times are considered stochastic. Often, researchers
assume travel times to be deterministic (Church and Davis, 1974; Ingolfsson et al., 2003;
Maxwell et al., 2009). In this case, fire engines are either always on time or always too
late, which is not realistic, since there is always some variability, because of weather,
the time of day (heavy traffic), etcetera. A big part of the variability in travel times is
hard or even impossible to parameterize completely, so stochastic travel times are the
better choice. Ingolfsson et al. (2008) show that, by considering ambulance travel times
between a particular station and demand point pair, for a total of 352 trips, stochastic
travel times lead to a more realistic model.

Besides analyzing and modelling the travel times, a lot of research is done investigating
the optimal dispatching of emergency vehicles. Swersey (1982) looks at the problem
of how many fire companies need to be dispatched, in order to make sure that there
are just enough fire engines sent to a fire, not too few and not too many. He gives
a Markovian decision model to solve this problem. Ignall et al. (1982) give an initial
dispatch algorithm, that deals with the uncertainty about the true nature of the incident
when the dispatch decision is made, as well as the possible competition between different
incidents for the same companies that come with rising alarm rates. It considers both
losses at incidents and the costs of needless company responses.

1.3. Overview thesis

In this master’s thesis, we will first look at the distribution of travel times of a specific
kind of fire engine: the water tender. In Chapter 2, we look at GPS-data of the fire
department in the area of Amsterdam, the Netherlands. We use an already existing
model, which we explain in detail, to obtain a stochastic distribution which fits our
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data well. In Chapter 3, we look at minima of different random variables. Using these
minima, we show that it is always optimal to send two water tenders whose travel times
are independent rather than dependent, when the expectation of the individual travel
times are the same in the dependent case and in the independent case. We also show
that in some situations it is smarter to send a water tender with a larger expected travel
time, than one with a shorter expected travel time if it yields independence. In Chapter
4, we combine the results of Chapters 2 and 3 by modelling a discounted rewards infinite
horizon Markov Decision Process. In this chapter, we look at a dispatching problem. We
have N water tenders, and we want to know how many we should send to a fire, knowing
that sending more water tenders at this moment is better for the current incident, but
results in having fewer water tenders for future incidents. We conclude this chapter with
proving that the more water tenders we have, the more we should send to a fire.
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2. Stochastic travel times at BWAA

In this chapter, we take a closer look at the travel times of emergency travel to a serious
incident. We will look at some GPS-data, and apply it to the model Budge et al. (2010)
which fits a distribution to the travel time data conditioned on the distance. We choose
this model, because it is very clear and insightful. We will describe this model in detail,
since in the original paper by Budge et al. (2010) much detail in the derivation of the
model is missing, making it difficult to assess the correctness of the model. We conclude
this chapter with comparing our results to the results of Budge et al. (2010).

2.1. Data Description

The fire department in the area of Amsterdam, ‘Brandweer Amsterdam-Amstelland’
(BWAA), provided a large dataset of GPS-data of fire engines from November 4, 2015
until February 24, 2016. This dataset contains the following information: Licence plate;
Date and time; Description event; Mileage; Speed; Latitude; Longitude; Street; Adress;
Zip code; Town. BWAA has a variety of types of cars, and of every type there are
multiple cars. Examples of these different types are water tenders, turntable ladders,
and service cars. The licence plate is necessary to know the type of the car. ‘Discription
event’ could say the following things: Start driving; Driving; End driving; Start flashing
lights; End flashing lights; Sirens. Date and time is measured every time there is a
different event, and when the description is ‘driving’, it gives the date and time every 10
or every 30 seconds (this differs per car). So, we only get a data point when the motor of
a car is actually running. We could thus see this data set as a list of different locations,
each belonging to a specific car with at a specific time doing something specific at that
time (driving, turning sirens or flashing lights on or off).

BWAA distinguishes three levels of emergency:

Level 1. This is a fire to which there has to sent be a fire engine as soon as possible;

Level 2. This is a small fire which doesn’t spread out, like a trash can in the street,
such that there has to be sent a fire engine, but not with a great hurry;

Level 3. This is a small incident for which there is not a great hurry, like a cat in
a tree.

We hope that we can find a model, which gives us the expected travel time based on the
distance of the ride. We are interested in the travel times of fire engines to incidents,
at which a fire engine has priority to all the other traffic. So, we only want rides of
emergency level 1. These rides need to start at the fire station, and end at the incident.
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2.2. Data Analysis

We start with GPS-data of fire engines from November 4, 2015 until February 24,
2016. We will analyze the rides to fires. As sketched above, the data contains a great
deal of information which is not of interest to us, so we throw away much of the data
and only keep what we need:

• Water tenders. The dataset contains travel data of all different cars from the fire
department. We are only interested in the rides to fires, so that means that we only
want the water tenders, since water tenders drive to incidents of emergency level
1. We discard the travel data of the other cars of the fire department. Turntable
ladders could of course also drive to fires, but they would also drive to a cat in a
tree, and since we are not interested in that kind of emergency, we do not consider
these cars.

• Flashing lights. Since water tenders can also ride when there is no emergency (to
tank gas or to go to a grocery store), we only keep those rides where the flashing
lights were on.

• Rides. Since the dataset is basically a list of coordinates of the different cars, we
do not have the rides. So we cut the list of coordinates in shorter lists, which start
at ‘start driving’, and end at ‘end driving’.

• Actual rides. Every water tender is tested every morning. When a water tender
is tested, the engine starts running, and the sirens will go on and off for a short
period. Sometimes the water tenders even make a short test ride through the
immediate neighbourhood. We find that one water tender (located at Osdorp)
gets tested every day, every two hours. We delete all these test rides from our data
set.

• One way rides. Often, a water tender does not turn of the engine when he arrives
at a fire. Sometimes the water tender will stand at the location of the fire for a
couple minutes, sometimes hours, before turning of the engine. And sometimes the
engine turns of when the water tender is already back at the fire station, creating
a round trip. We thus have to shorten a great deal of the rides, such that we
only consider the part starting at the fire station until arriving at the fire. We
also have rides where the water tender was called back before arriving at the fire.
Since these water tenders never arrived at the fires, we delete these rides from
our dataset. To do all this, we actually have to plot all the rides, since staying
at the same location for a couple minutes could also mean that the water tender
was stuck in traffic. We plot the rides in QGIS (QGIS Development Team, 2009),
which is an Open Source Geographic Information System (GIS) licensed under the
GNU General Public License. An example of a one way ride and a round trip are
shown in Figure 2.1. Note that every dot represents a data point, and that a data
point is generated every 10 or 30 seconds, or, when some event has happened, like
turning on the flashing lights or sirens. So, a lot of dots close to each other indicate
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here the fast ride from a fire station to a fire, and not the slower ride from the fire
returning to the fire station.

(a) One way ride from fire station Amstelveen
at 13/11/2015.

(b) Round trip from fire station Hendrik at
15/01/2015.

Figure 2.1.: Different rides from different fire stations plotted in QGIS.

• Abnormalities. Among the remaining rides are some abnormalities. Examples of
such abnormalities are a ride from one fire station to another fire station, a ride
to a gas station, a ride where the starting point is far away from the second point,
while the time spent between these to points is only a few seconds, and a collection
of points which looks nowhere near a ride. We delete all these abnormalities from
our dataset.

It takes much time to clean the data, so we are not able to adjust all the data we got
from BWAA. Instead, we only adjust the data of the November 2015 and eight days of
January 2016. We are left with a dataset of 426 rides.

For the initial analysis, we consider a subset of our data: GPS data of fire engines
from January 11, 2016 until January 18, 2016. This subset contains 105 rides. Figure
2.2 shows a plot of the travel times against the distances together with the logarithm
of the travel times against the distances. We see that there seems to be a positive
correlation between the distance and the travel times: the longer the distance, the
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Figure 2.2.: Scatterplots of travel times against the distances and the loga-
rithm of the travel times against the distances.

longer the travel times. Most of the distances and travel times are short, which is to be
expected, since there are 19 stations in a region of 282 km2. There seems to be much
variation, but we do not know whether or not this is to be expected. We will now look
at the logarithm of the travel times. We do this because of the following. We know that,
because of the Central Limit Theorem, averages of random variables, independently
drawn from independent distributions, converge to a normal distribution. When these
random variables are all positive, it is likely that they do not converge to a normal, but
to a log-normal distribution, since it is likely that they are skewed. So, if we look at the
travel time as a random variable Td, dependent on distance d, Td would be log-normally
distributed, and therefore log(Td) would be normally distributed. We also know that a
small random sample from a normal distribution is Student’s t distributed - only when
the sample size is sufficiently large, it will still follow a normal distribution. Now we look
again at our data. We call our set of travel times T̃d, where we let them be dependent
on the distance. Since |T̃d| is not large, but only 105, we assume that log(T̃d) follows a
Student’s t distribution, rather than a normal distribution. In R (RStudio Team, 2015)
we fit a normal distribution and a Student’s t distribution to the logarithm of our travel
times T̃d. For the normal distribution it gives fitN(log(T̃d)) ∼ N(µ, σ) = N(1.59, 0.62)
and for the Student’s t distribution it gives fitt(log(T̃d)) ∼ t(µ, σ, τ) = t(1.54, 0.49, 4.77).
A picture of the fit of these distributions to the empirical distribution function of log(T̃d)
is shown in Figure 2.3. We use the Kolmogorov-Smirnov test to evaluate the fit of these
distributions. The results are shown in the table below.

Distribution D/W-statistic p-value
N(1.59, 0.62) 0.96203 0.0042
t(1.54, 0.49, 4.77) 0.06651 0.7417

We conclude that we reject the hypothesis that log(T̃d) follows a normal distribution,
and we do not reject the hypothesis that log(T̃d) follows a Student’s t distribution.
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Figure 2.3.: Empirical distribution function of log(T̃d) with the fitted normal
distribution and the fitted Student’s t distribution.

2.3. Theory

In our upcoming theoretic analysis, we follow the paper of Budge et al. (2010) which
is an example of a study on the distribution of travel times of emergency vehicles. The
reason that we choose this model out of all the different models mentioned in Chapter
1, is that this model is very clear and insightful. Budge et al. (2010) also assume that
the travel times follow a Student’s t distribution, and that these travel times depend
on the distances travelled. Since the mathematics used in the model of Budge et al.
(2010) is not that clear - they skip a lot of steps we think are necessary to understand
what is done - we will compute every calculation in detail. Budge et al. (2010) use
data from the Emergency Medical Service (EMS) system in Calgary, Alberta. This data
consists, after removing outliers, of 6,886 travel time observations. They found that a
shifted and scaled Student’s t distribution provides a good fit to the log of the travel
time distributions. They propose a regression model in which the log of the travel time
Td, where Td is a random variable, follows a Student’s t distribution that is shifted by
log(md) and scaled by cd:

log(Td) = log(md) + cdε,

where md and cd are unknown parameters depending on the distance, and ε follows a
centered Student’s t distribution with τ degrees of freedom, so E[ε] = 0, and var[ε] =
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τ/(τ − 2), where we assume τ > 2. This gives us

E[log(Td)] = E[log(md) + cdε]

= E[log(md)] + E[cdε]

= log(md) + cdE[ε]

= log(md),

and

var[log(Td)] = E[log(Td)
2]− E[log(Td)]

2

= E[(log(md) + cdε)
2]− log(md)

2

= E[(log(md)
2 + 2 log(md)cdε+ c(di)

2ε2]− log(md)
2

= E[(log(md)
2] + E[2 log(md)cdε] + E[c2dε

2]− log(md)
2

= log(md)
2 + c2dE[ε2]− log(md)

2

= c2dτ/(τ − 2),

since τ/(τ − 2) = var[ε] = E[ε2]− (E[ε])2 = E[ε2]. If we reverse the log transformation,
we obtain

Td = exp(log(md) + cdε)

= exp(log(md) exp(cdε)

= md exp(cdε).

Now we want to find the median of Td, i.e. we want to find the x for which P(Td ≤ x) ≥ 1
2

and P(Td ≥ x) ≥ 1
2
:

P(Td ≤ x) ≥ 1

2
⇐⇒ P(md exp(cdε) ≤ x) ≥ 1

2

⇐⇒ P
(

exp(cdε) ≤
x

md

)
≥ 1

2

⇐⇒ P(cdε ≤ log(x)− log(md)) ≥
1

2

⇐⇒ log(x)− log(md)

cd
= 0

⇐⇒ x = md,
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where in the second-last step we use that the median of a centered Student’s t distribution
is zero. And

P(Td ≥ x) ≥ 1

2
⇐⇒ P(md exp(cdε) ≥ x) ≥ 1

2

⇐⇒ P
(

exp(cdε) ≥
x

md

)
≥ 1

2

⇐⇒ P(cdε ≥ log(x)− log(md)) ≥
1

2

⇐⇒ log(x)− log(md)

cd
= 0

⇐⇒ x = md,

So, md is the median of Td. Hence, md is both is the median and the expected value of
Td. Finding the coefficient of variation of Td, CVTd , is more work. According to Rigby
and Stasinopoulos (2006) we have, for Td Student’s t distributed,

CVTd =
3(F−1Td

(0.75)− F−1Td
(0.25))

4md

,

where FTd is the cumulative distribution function for Td. Furthermore,

F−1Td
(α) = md exp(cdtτ,α),

where tτ,α is the 100α centile of a t distribution with τ degrees of freedom. We as-
sume cdtτ,α to be small enough, such that the Taylor expansion of exp(cdtτ,α) can be
approximated by 1 + cdtτ,α + 1

2
(cdtτ,α)2 This gives us

F−1Td
(0.75)− F−1Td

(0.25) = md(exp(cdtτ,0.75)− exp(cdtτ,0.25))

= md

(
1 + cdtτ,0.75 + 1

2
(cdtτ,0.75)

2

− 1− cdtτ,0.25 − 1
2
(cdtτ,0.25)

2
)

≈ md

(
cdtτ,0.75 + 1

2
(cdtτ,0.75)

2

− cdtτ,0.25 − 1
2
(cdtτ,0.25)

2
)
.

According to Johnson et al. (1994) we have

tτ,α ≈ Φ−1(α) + Φ−1(α)
(
Φ−1(α)2 + 1

)
/(4τ),

so

tτ,0.75 ≈ 0.674 + 0.674
(
(0.674)2 + 1

)
/(4τ) = 0.674 + 0.245/τ,

tτ,0.25 ≈ −0.674− 0.674
(
(−0.674)2 + 1

)
/(4τ) = −0.674− 0.245/τ.
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Hence,

cdtτ,0.75 = 0.674 + 0.245/τ

= −cdtτ,0.25,

and

(cdtτ,0.75)
2 = (0.674 + 0.245/τ)2

= (−0.674− 0.245/τ)2

= (cdtτ,0.25)
2.

Thus

F−1Td
(0.75)− F−1Td

(0.25) ≈ 2mdcd(0.674 + 0.245/τ).

This gives us

CVTd =
3(F−1Td

(0.75)− F−1Td
(0.25))

4md

≈ 3 · 2mdcd(0.674 + 0.245/τ)

4md

= 3
2
cd(0.674 + 0.245/τ)

= cd(1.012 + 0.368/τ).

So, we have that cd is approximately equal to a coefficient of variation of Td.
Concluding, we have seen that when log(Td) is Student’s t distributed, we can write

Td as Td = md exp(cdε), where md is the median of Td, cd is approximately equal to the
coefficient of variation of Td, and ε is a Student’s t distributed error with τ degrees of
freedom.

To find the functions md and cd, Budge et al. (2010) uses two different approaches: a
parametric and a nonparametric approach.

2.3.1. Nonparametric approach

In the nonparametric approach, Budge et al. (2010) use the regression model

ti = mdi exp(cdiεi), i = 1, . . . , n,

where n is the number of observations, ti and di are the travel time and distance for
observation i respectively, and εi follows a Student’s t distribution with τ degrees of
freedom. They assume that the functions m and c are twice continuously differentiable,
but otherwise arbitrary. m should be seen as a function for which we have m(d) = md.
They estimate the functions m and c by maximizing the penalized log likelihood function,

lp = l − 1

2

(
λm

∫ ∞
−∞

m′′(u)2du+ λc

∫ ∞
−∞

(log c)′′(u)2du

)
,

where m′′ and (log c)′′ are the second derivatives of m and log c respectively, l =
∑n

i=1 li
is the log likelihood for the data, and li is the log likelihood for observation i.

16



2.3.2. Parametric approach

For the parametric approach, Budge et al. (2010) take the model of Kolesar et al.
(1975) as a basis. Kolesar et al. (1975) assume that a fire engine accelerates from the
origin at a rate a, until it reaches cruising velocity vc. Then, the vehicle starts to
decelerate with rate a coming to a stop at the destination. The cruising velocity is
reached at distance dc = v2c/(2a) and time tc = vc/a. The median of the travel time T ,
as a function of the distance d, is

median[Td] ≡ md =

{
2
√
d/a d ≤ 2dc,

vc/a+ d/vc d > 2dc.

Kolesar et al. (1975) use this relationship to model the mean travel time, Budge et al.
(2010) use this relationship to model the median travel time, because of the skewness of
the data. This model thus assumes that for short trips, the travel time increases with
the square root of the distance, and for long trips, the travel time increases linearly with
the distance. Budge et al. (2010) correspond the acceleration and deceleration phases
to travel on residential or arterial roads, and the cruising speed phase to highway travel.
They parametrize cd as follows:

cd =

√
b0(b2 + 1) + b1(b2 + 1)md + b2m2

d

md

,

where b0 represents the variability at the beginning and end of a trip, which is indepen-
dent of the distance of the trip, b1 represents short-term variation in speed within a trip,
and b2 represents a measure of variability due to factors that are not included in the
model, such as weather or traffic conditions. For a motivation of this exact parametriza-
tion of cd, we refer to Budge et al. (2010). They then fit this parametric model by
maximizing the log likelihood l =

∑n
i=1 li. Rigby and Stasinopoulos (2006) obtained

this log likelihood for observation i as follows. The log likelihood for observation i is
defined as log(fTdi (ti)), where fTdi is the probability density function of Tdi . We can
derive fTdi from the probability density function of εi, since Tdi = mdi exp(cdiεi). So we
have

fεi(x) =

∣∣∣∣dtidx
∣∣∣∣ fTdi (ti), (2.1)

where

fεi(x) =
Γ((τ + 1)/2)

Γ(τ/2)
√
τπ

(
1 +

x2

τ

)−(τ+1)/2
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by definition, since εi follows a centered Student’s t distribution with τ degrees of free-
dom. When we work out (2.1) we obtain

fεi(x) =

∣∣∣∣dtidx
∣∣∣∣ fTdi (ti)

= mdicdi exp(cdix)fTdi (ti)

= ti exp(−cdix)cdi exp(cdix)fTdi (ti)

= ticdifTdi (ti).

Now we can calculate the log likelihood:

li = log(fTdi (ti))

= log

(
1

ticdi
fεi(x)

)
= − log(ti)− log(cdi) + log(fεi(x))

= − log(ti)− log(cdi) + log

(
fεi

(
1

cdi
log
( ti
mdi

)))
.

Budge et al. (2010) then use Microsoft Excel’s Solver to maximize l over a, vc, b0, b1 and
b2, for a fixed integer value of τ , and then performe a grid search over τ .

2.3.3. Fit of the model

To measure the fit of the model, Budge et al. (2010) use a measure which is similar to
a coefficient of determination. It is defined as follows. They generate N random samples
(they take N = 50) each containing 10% of the entire sample. These samples are training
samples. The remaining 90% are the holdout samples. For each sample (which consists
of a training sample with a corresponding holdout sample) they calculate

R2 = 1−
∑nholdout

i=1 |Tdi − m̂di |∑nholdout

i=1 |Tdi − m̄|
, (2.2)

with m̂di the fitted median estimate based on the training sample, m̄ the empirical
median of the holdout sample and where the summations are over the holdout sample.
From the 50 R2 values Budge et al. (2010) generate this way, they choose the R2 value
which is the median to be the coefficient of determination, and they use the training
sample belonging to this R2 value to estimate the parameters, which they then compare
to the parameters estimated using the entire sample. Note that if m̂di is a good fit, we
have that |Tdi−m̂di| < |Tdi−m̄|, so a higher value of R2 indicates a better fit of m̂di . For
their data they found R2 = 35.77% for the nonparametric model, and R2 = 35.53% for
the parametric model. They conclude that the parametric model captures the important
features of the travel time distribution almost as well as the nonparametric model, where
the last model does not restrict the forms of the median and coefficient of variation
functions. The benefit of the parametric model is that it is more insightful, and since
it is almost as good as the nonparametric model, Budge et al. (2010) claims that this
parametric model is a good model.
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2.4. Filling the model

In this section we apply the model, discussed in the section above, to our GPS-data,
in order to fit a distribution to our travel times, dependent on the distance. Since
Budge et al. (2010) found that their parametric approach is almost as good as their
nonparametric approach, we choose to work with their parametric model, since we think
that it is more insightful. We will apply the model to our first data sample (the eight
days in January) and then use the parameters we will find for this data sample, for all
of our data.

In Section 2.2 we concluded that we do not reject the hypothesis that log(T̃d) is
Student’s t distributed. Now we want to see if the logarithm of our data is Student’s t
distributed, with a location and scaling that both depend on the distance, i.e.,

log(T̃d) = log(md) + cdε,

where

md =

{
2
√
d/a d ≤ 2dc,

vc/a+ d/vc d > 2dc,

cd =

√
b0(b2 + 1) + b1(b2 + 1)md + b2m2

d

md

,

and ε follows a centered Student’s t distribution with τ degrees of freedom.
We start with modelling md. For this, we use the least squares method. We choose the

least squares method, since it is easier to compute by hand and easier to program than
the maximum likelihood method Budge et al. (2010) use. The least squares estimator θ̂
minimizes the sum of squares

S(θ) =
n∑
i=1

(log(Ti)− f(di, θ))
2

with respect to θ, where θ = {vc, a}, f(d, θ) = log(md), and n is the number of rides.
We minimize S(θ) by considering only the rides for which d > 2dc (since then we have
all the parameters) and then solving the set of normal equations

n∑
i=1

∂f(d, θ)

∂v
(log(Ti)− f(di, θ)) = 0,

n∑
i=1

∂f(d, θ)

∂a
(log(Ti)− f(di, θ)) = 0.

For this, we must guess a dc. Based on the road network of the city of Amsterdam,
and the fact that we only consider rides within Amsterdam, we think that the cruising
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velocity vc is not very high. The highways are used rarely, so we consider vc as corre-
sponding with high street travel. Based on this assumption of the meaning of vc, the
roads in Amsterdam, and the location of the fire stations, we assume that dc < 0.9 km.
Of course, we do not want to take a dc which is too small or too large. We think that
choosing dc too small has more negative consequences than choosing it too large, so we
let dc = 1 km just to be on the safe side (and thus only consider the Ti’s for which d ≥ 2,
which are 60 rides).

For this subset, we get

f(d, θ) = log(vc/a+ d/vc),

∂f(d, θ)

∂v
=

1/a− d/v2c
vc/a+ d/vc

,

∂f(d, θ)

∂a
=

−vc/a2

vc/a+ d/vc
.

Solving the set of normal equations explicitly is not possible, since f is nonlinear in
θ. We therefore use an iterative method to approximate the solution. Instead of using
Microsoft Excel Solver (as Budge et al. (2010) do), we use the Gauss-Newton method
with initial guess θ0 = {vc, a} = {0.86, 0.50}, where vc is in measured in kilometers
per minute, and a in kilometers per (minutes)2. This initial guess is partly based on
the final parameters of Budge et al. (2010), and partly on our assumptions of maximal
travel speed in Amsterdam. The Gauss-Newton method is an iterative procedure, which
stops when the estimate does not change anymore. Sometimes, there is more than one
equilibrium to which the Gauss-Newton method can converge, so a judicious choice of
θ0 is important. Our choice of θ0 gives us the following results:

vc = 0.86,

a = 0.49,

dc = 0.79,

tc = 1.76.

Now, we can estimate md. If our estimation of md is good, then log(Td) ≈ log(md),
since for log(Td) = log(md) + cdε, we have E[log(Td)] = log(md), because E[ε] = 0. To
see if our estimation of md is good, we look at the QQ-plot of log(T̃d) against log(md),
see Figure 2.4, and the fit of log(md) to log(T̃d), shown in Figure 2.5. The QQ-plot is
right-tailed, which indicates that log(T̃d) has more extreme values than log(md). This
is exactly what we would expect, since log(T̃d) has variability while log(md) has no
variability. The fit of log(md) to log(T̃d) in Figure 2.5 looks good. We conclude that
log(md) is a good estimator for our data log(T̃d). The next thing we should do, is find
the right parameters b0, b1 and b2, so we can estimate cd. This is rather difficult and
takes much time, so we leave it with just a first guess of these parameters and look
how good the results are. We choose (b0, b1, b2) = (0.03, 0.0001, 0.04), based on the
values Budge et al. (2010) obtained for these parameters, and the differences between
the values of vc and a that we found and that Budge et al. (2010) found. If log(T̃d)
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Figure 2.4.: QQ-plot of log(T̃d) against log(md).
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Figure 2.5.: The fit of log(md) to log(T̃d).

has a Student’s t distribution with location md, scaling cd, and τ degrees of freedom,

then log(T̃d)−log(md)
cd

has a centered Student’s t distribution with τ degrees of freedom.

So, we test if log(T̃d)−log(md)
cd

has a centered Student’s t distribution with τ degrees of
freedom. Since we can not derive τ , we have to choose τ , and based on the results
of Budge et al. (2010), and on or own evaluation of the data, we choose τ = 4. The
Kolmogorov-Smirnov test gives a D-statistic of 0.081107 and a p-value = 0.4945. The

fit of the centered Student’s t distribution to log(T̃d)−log(md)
cd

is shown in Figure 2.6. From
this figure and the Kolmogorov-Smirnov test, we conclude that the parametric model
describes the data well.

Now we will look at the rest of our data. We consider the month November of the year
2015, November 4 until November 30 to be precise, which contains 321 rides. A plot
of the travel times against the distances together with the logarithm of the travel times
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Figure 2.6.: Empirical distribution function of log(T̃d)−log(md)
cd

with the fitted
centered t distribution with τ = 4 degrees of freedom.

against the distances, is shown in Figure 2.7. We will now apply the parametric model,
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Figure 2.7.: Scatterplots of travel times against the distances and the loga-
rithm of the travel times against the distances for 04/11/2015
until 30/11/2015.

and use the parameters obtained for the data of January. A fit of log(md) to log(T̃d) for
the data of November is shown in Figure 2.8. This looks fine, but when we take a look at

the empirical distribution function of log(T̃d)−log(md)
cd

, we see that a the centered Student’s
t distribution with τ = 4 degrees of freedom is not at all a good fit. The location seems
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Figure 2.8.: The fit of log(md) to log(T̃d) for the data of November.

to be wrong, so log(md) is not a good estimator for log(T̃d). The Kolmogorov-Smirnov
test confirms this. It gives a D-statistic of 0.26168 and a p-value which is smaller than
2.2e-16. We conclude with the R2 measure defined in (2.2). For the training sample we
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Figure 2.9.: Empirical distribution function of log(T̃d)−log(md)
cd

with the fitted
centered t distribution with τ = 4 degrees of freedom for the
data of November.

take the data from January, and for the hold-out sample we take the data of November.
For our data and choice of parameters we have that R2 = 0.3708937. Even though we
do not think that the parametric model works well here, we find an R2 value similar
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to the R2 value of Budge et al. (2010) (R2 = 37.09% compared to R2 = 35.53%). So,
maybe this is actually quite good, considering that we work with actual data and not
only with a theoretic model.

Summarizing, in this chapter we filtered all unnecessary information out of our GPS-
data. We described a model on the distribution of travel times by Budge et al. (2010) in
detail and applied it to our GPS-data. We found that it is likely that our travel times
follow a Student’s t distribution with τ = 4 degrees of freedom, where the location and
scale parameters are based on the distance.
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3. Dispatching: Non-concurrent
incidents

In Chapter 1, we said that one of the possible improvements for the fire department,
when having insight in the behavior of the travel times, is optimal dispatching of water
tenders. In this chapter, we will look at decision making concerning the dispatching of
water tenders. We consider non-concurrent incidents, meaning that only one incident
happens at a time, and that we always have all our water tenders to our disposal, which
we consider to be equal to two or three. In Chapter 4, we combine the results of this
chapter with the results of Chapter 2. So, we start with a basic model in this chapter,
and we amplify it in the next chapter, where we consider concurrent incidents.

We let Ti, i = 1, 2, 3, be the distribution of the travel time of water tender i. We
send two fire engines to the incident, such that the minimum of the travel times, T ∗ij =
min{Ti, Tj}, is minimized. We look at different situations, such as water tenders having
a possibility of sharing the same routes, or, water tenders sharing a part of their route.
We model this by considering different distributions of Ti and Tj. Note that the case
that Ti and Tj have a deterministic distribution is trivial, since then it is always directly
clear which water tender will arrive first at the incident.

3.1. Ti and Tj exponential and independent

We start with the situation where Ti and Tj are independent and exponentially dis-
tributed. The results shown here are well-known, but we state them nevertheless, since
they will be used further in this chapter.

Theorem 3.1. Let Ti ∼ Exp(λi) and Tj ∼ Exp(λj), λi, λj > 0, be independent. Then

T ∗ij ∼ Exp(λi + λj).

Proof. Since Ti ∼ Exp(λi) we have that

P(Ti > t) = 1− FTi(t) = exp(−tλi).
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So we have

P(T ∗ij > t) = P(min{Ti, Tj} > t)

= P(Ti > t, Tj > t)

= P(Ti > t)P(Tj > t)

= exp(−tλi) exp(−tλj)
= exp(−t(λi + λj)).

Hence, T ∗ij ∼ Exp(λi + λj).

What we can conclude from this, is that when our travel times are exponentially
distributed, it is always a good idea to send two cars instead of one, since the expectation
of the minimum of two is always smaller than the expectation of the minimum of one:
E[T ∗ij] = 1

λi+λj
< 1

λi
= E[Ti]. This is a general result, which we will prove in Subsection

3.3.1. So, the current policy of the BWAA to always send two water tenders instead
of one is a good policy. The question arises which two water tenders we should send.
We will look into this in the next sections, where we consider hyperexponential and
hypoexponential travel times.

3.2. Ti and Tj hyperexponential

Now, we consider Ti and Tj hyperexponentially distributed with two phases. A prop-
erty of the hyperexponential distribution is that is has a decreasing failure rate. This
means, in the case of travel times, that when a water tender is on its way to an incident
and the ride already takes a long time, it will be even a lot longer with high probability.
The idea behind hyperexponential travel times is the following: there is more than one
way to travel from one point to another, so you have multiple routes to choose from. Say,
there are two different routes to go from the fire station to the fire, and that the travel
times of both different routes are exponentially distributed with different parameters.
We choose the first route with probability α and the second route with probability 1−α.
Then

Ti =

{
Xi with probability α

Yi with probability 1− α,

where Xi and Yi are independent and both exponentially distributed with parameters
λi and µi respectively. We denote this as Ti ∼ H2(α, 1− α;λi, µi). The tail probability
of Ti is

P(Ti > t) = α exp(−λit) + (1− α) exp(−µit).

We want to obtain the optimal decision when we have two water tender at one fire
station and one water tender at another fire station, see Figure 3.1. We will first look
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Figure 3.1.: Possibility of a shared route. ◦1 and ◦2 are the fire stations, ×
is the location of the fire. X1, X2, Y1, Y2 are the distributions of
travel times. Water tenders A and B are located at ◦1 and water
tender C is located at ◦2. Water tenders A and B could drive
the same route.

at the situation where we have two water tenders at different fire stations, and then, we
will look at the situation where we have two water tenders at the same fire station. We
will compare these two situations to obtain the optimal decision.

Let us now consider two different water tenders stationed at two different fire stations,
such that these water tenders do not share any routes. Then we come to the following
theorem:

Theorem 3.2. Let

Ti ∼ H2(α, 1− α;λi, µi)

Tj ∼ H2(β, 1− β;λj, µj),

be independent. Then the minimum T ∗ij of Ti and Tj is hyperexponentially distributed
with four phases:

T ∗ij ∼ H4(αβ, α(1− β), (1− α)β, (1− α)(1− β);λi + λj, λi + µj, µi + λj, µi + µj).

Proof. The minimum of Ti and Tj can be obtained as follows:

P(T ∗ij > t) = P(Ti > t, Tj > t)

= P(Ti > t)P(Tj > t)

= (α exp(−λit) + (1− α) exp(−µit))
× (β exp(−λjt) + (1− β) exp(−µjt))

= αβ exp(−(λi + λj)t) + α(1− β) exp(−(λi + µj)t)

+ β(1− α) exp(−(µi + λj)t) + (1− α)(1− β) exp(−(µi + µj)t).

Hence, T ∗ij is hyperexponentially distributed with four phases:

T ∗ij ∼ H4(αβ, α(1− β), (1− α)β, (1− α)(1− β);λi + λj, λi + µj, µi + λj, µi + µj).
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The expectation of T ∗ij is

E[T ∗ij] =

∫ ∞
0

P(T ∗ij > t)dt

= αβ
λi+λj

+ α(1−β)
λi+µj

+ β(1−α)
µi+λj

+ (1−α)(1−β)
µi+µj

.

Now, we will look at a different situation. Say, we have two water tenders at the same
station. The travel times are still hyperexponentially distributed with two phases. Since
they are stationed at the same fire station, they share both routes. The probabilities
with which each route is chosen, can differ. This leads to the following theorem:

Theorem 3.3. Let

X ∼ Exp(λ)

Y ∼ Exp(µ),

be independent and define

Ti =

{
X with probability α

Y with probability 1− α,

Tj =

{
X with probability β

Y with probability 1− β,
,

for 0 ≤ α, β ≤ 1. Then the minimum T ∗ij of Ti and Tj is hyperexponentially distributed
with three phases:

T ∗ij ∼ H3

(
αβ, α + 2αβ + β, (1− α)(1− β);λ, λ+ µ, µ

)
.

Proof. For the minimum T ∗ij of Ti and Tj we have

T ∗ij = min{Ti, Tj}

=


X with probability αβ

min{X, Y } with probability α(1− β) + (1− α)β

Y with probability (1− α)(1− β).

From Section 3.1 we know that min{X, Y } ∼ Exp(λ+ µ). Hence,

T ∗ij ∼ H3

(
αβ, α + 2αβ + β, (1− α)(1− β);λ, λ+ µ, µ

)
.
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We consider a situation where we have three water tenders. Two of these water
tenders are stationed at the same fire station, the last one is stationed at a different fire
station. All three water tenders have hyperexponentially distributed travel times with
two phases. We want to know which two of these three water tenders should be sent
to an incident such that the expected travel is minimized. This leads to the following
theorem:

Theorem 3.4. Let

TA =

{
X1 with probability α

Y1 with probability 1− α,

TB =

{
X1 with probability β

Y1 with probability 1− β,

TC =

{
X2 with probability β

Y2 with probability 1− β,
,

where

X1 ∼ Exp(λ)

Y1 ∼ Exp(µ)

X2 ∼ Exp(λ)

Y2 ∼ Exp(µ).

Then

E[TAB] ≥ E[TAC ].

Proof. From Theorem 3.3 we know that

T ∗AB ∼ H3

(
αβ, α + 2αβ + β, (1− α)(1− β);λ, λ+ µ, µ

)
.

So, the tail probability of T ∗AB is given by

P(T ∗AB > t) = αβ exp(−λt) + (α + 2αβ + β) exp(−(λ+ µ)t)

+ (1− α)(1− β) exp(−µt).

Thus, the expectation T ∗AB is given by

E[T ∗AB] = αβ
λ

+ α+2αβ+β
λ+µ

+ (1−α)(1−β)
µ

.

From Theorem 3.2 we know that

T ∗AC ∼ H4(αβ, α(1− β), (1− α)β, (1− α)(1− β); 2λ, λ+ µ, µ+ λ, 2µ)

= H3(αβ, α + 2αβ + β, (1− α)(1− β); 2λ, λ+ µ, 2µ).
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So, the tail probability of T ∗AC is given by

P(T ∗AC > t) = αβ exp(−2λt) + (α + 2αβ + β) exp(−(λ+ µ)t)

+ (1− α)(1− β) exp(−2µt).

Thus, the expectation T ∗AC is given by

E[T ∗AC ] = αβ
2λ

+ α+2αβ+β
λ+µ

+ (1−α)(1−β)
2µ

.

Hence, the difference between E[T ∗AB] and E[T ∗AC ] is

E[T ∗AB]− E[T ∗AC ] = αβ
λ

+ α+2αβ+β
λ+µ

+ (1−α)(1−β)
µ

− αβ
2λ
− α+2αβ+β

λ+µ
− (1−α)(1−β)

2µ

= αβ
2λ

+ (1−α)(1−β)
2µ

> 0.

Hence, E[TAB] ≥ E[TAC ].

The theorem states that when the distribution of TB and TC is the same, we should
send A and C. This seems very obvious. We will now look at an example where TB and
TC do not have the same expectation, such that E[TB] < E[TC ], but that the expected
minimum travel time of water tenders A and C is smaller than the expected minimum
travel time of water tenders A and B.

Example 3.5. Let

TA =

{
X1 with probability 1

2

Y1 with probability 1
2
,

TB =

{
X1 with probability 1

3

Y1 with probability 2
3
,

TC =

{
X2 with probability 3

5

Y2 with probability 2
5
,
,

where

X1 ∼ Exp(4)

Y1 ∼ Exp(3)

X2 ∼ Exp(3)

Y2 ∼ Exp(2).

Then

E[TA] = 1
2
· 1
4

+ 1
2
· 1
3

= 7
24

E[TB] = 1
3
· 1
4

+ 2
3
· 1
3

= 5
12

E[TC ] = 3
5
· 1
3

+ 2
5
· 1
2

= 2
5
.
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Hence, E[TA] < E[TB] < E[TC ]. According to Theorem 3.3 we have

E[T ∗AB] = 1
2
· 1
3
· 1
4

+ (1
2
· 2
3

+ 1
2
· 1
3
) + 1

2
· 2
3
· 1
3

= 113
504
.

And according to Theorem 3.2 we have

E[T ∗AC ] = 1
2
· 3
5
· 1
7

+ 1
2
· 2
5
· 1
6

+ 1
2
· 3
5
· 1
6

+ 1
2
· 2
5
· 1
5

= 349
2100

.

Hence,

E[T ∗AB]− E[T ∗AC ] = 113
504
− 349

2100
= 731

12600
> 0.

Thus, although E[TB] < E[TC ], E[T ∗AB] > E[T ∗AC ].

One could argue how realistic hyperexponentially distributed travel times are. First,
if one sends two water tenders from the same base and one can choose which route
they take, one would let them take different routes. So we need the drivers of the
water tenders to choose their routes independently. Second, we consider the travel time
per route to be exponentially distributed, which does not agree with our results from
Chapter 2. Despite this, we continue to look at travel time distributions based on the
exponential distribution, since the exponential distribution is insightful and gives clearer
results than other, more realistic distributions.

3.3. Ti and Tj hypoexponential

In this section we look at travel times which are hypoexponentially distributed. The
idea behind this is that we have different routes from a fire station to an incident, and
that these routes intersect with each other. At every intersection, the driver of the water
tender can choose which route he will follow. Figure 3.2 shows a graph of this situation.
This seems not realistic, but later in this section we give two examples of hypoexponential
distributions, the Erlang distribution and a sum of different exponential distributions,
which have a better connection to reality. The hypoexponential distribution has an
increasing failure rate. Thus, when a water tender is on its way to an incident and the
ride already takes a long time, it will be with high probability that the water tender
will soon arrive at the location of the incident. We start with some results for a general
hypoexponential distribution, where the exponential components are multiplied by a
factor α and 1− α, 0 ≤ α ≤ 1, respectively.

Theorem 3.6. Let

X ∼ Exp(λ)

Y ∼ Exp(µ),

be independent and define

Ti = αiX + (1− αi)Y
Tj = αjX + (1− αj)Y,
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×
Y

X

Figure 3.2.: Possibility of a partly shared route. ◦ is the location of the
fire station and × is the location of the fire. X and Y are
the distributions of the travel times of the red and blue route
respectively. At each intersection of the red and the blue route,
a water tender can choose which route he takes from that point.

for 0 ≤ αi, αj ≤ 1. Then Ti and Tj are hyperexponentially distributed and dependent and

T ∗ij ∼ Hypo3

(
µαj

µαj−λ(1−αj)
, λ(1−αi)
λ(1−αi)−µαi

,
λµ(αi−αj)

(µαi−λ(1−αi))(λ(1−αj)−µαj)
; λ
αj
, µ
1−αi

, λ+ µ
)
.

Proof. The minimum of Ti and Tj can be obtained as follows:

T ∗ij = min{Ti, Tj}
= min{αiX + (1− αi)Y, αjX + (1− αj)Y }
= (1− αi)Y + min{αiX,αjX + (1− αj − 1 + αi)Y }
= αjX + (1− αi)Y + min{(αi − αj)X, (αi − αj)Y }
= αjX + (1− αi)Y + (αi − αj) min{X, Y }.

If we look at the tail probability of T ∗ij, we get, by the law of total probability,

P(T ∗ij > t) = P(αjX + (1− αi)Y + (αi − αj) min{X, Y } > t)

= P(αjX + (1− αi)Y + (αi − αj)X > t|X <≤ Y )P(X ≤ Y )

+ P(αjX + (1− αi)Y + (αi − αj)Y > t|X > Y )P(X > Y ).

We will work out these products of probabilities separately. By the definition of condi-
tional probability we get,

P(αjX + (1− αi)Y + (αi − αj)X > t|X ≤ Y )P(X ≤ Y )

= P(αjX + (1− αi)Y + (αi − αj)X > t,X ≤ Y ).
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If we now again apply the law of total probability we get

P(αjX + (1− αi)Y + (αi − αj)X > t,X ≤ Y )

= P(αiX + (1− αi)Y > t,X ≤ Y )

= P(αiX + (1− αi)Y > t,X ≤ Y |Y > t)P(Y > t)

+ P(αiX + (1− αi)Y > t,X ≤ Y |Y ≤ t)P(Y ≤ t)

= P(αiX + (1− αi)Y > t,X ≤ Y |Y > t)P(Y > t) + 0

= P(αiX + (1− αi)Y > t,X ≤ Y, Y > t),

where we use that

P(αiX + (1− αi)Y > t,X ≤ Y |Y ≤ t) ≤ P(αiY + (1− αi)Y > t|Y ≤ t)

= P(Y > t|Y ≤ t)

= 0.

We will now integrate over the densities of X and Y , so we can express the probability
in terms of λ, µ, αi and αj.

P(αiX + (1− αi)Y > t,X ≤ Y, Y > t)

=

∫ ∞
0

fX(x)P(Y > t−αix
1−αi

, Y ≥ x, Y > t)dx.

Note that when x > t we have that t−αix
1−αi

< x, t and that when x ≤ t we have that
t−αix
1−αi

≥ x, t. So we end up with∫ ∞
0

fX(x)P(Y > t−αix
1−αi

, Y ≥ x, Y > t)dx

=

∫ t

0

fX(x)

∫ ∞
t−αix
1−αi

fY (y)dydx+

∫ ∞
t

fX(x)

∫ ∞
x

fY (y)dydx

=

∫ t

0

λ exp(−λx) exp(−µ t−αix
1−αi

)dx+

∫ ∞
t

λ exp(−λx) exp(−µx)dx

= exp( −µt
1−αi

)λ

∫ t

0

exp(−x(λ(1−αi)−µαi)
1−αi

)dx+ λ
λ+µ

exp(−t(λ+ µ))

= λ(1−αi)
λ(1−αi)−µαi

(
exp( −µt

1−αi
)− exp(−t(λ+ µ))

)
+ λ

λ+µ
exp(−t(λ+ µ))

= λ(1−αi)
λ(1−αi)−µαi

exp( −µt
1−αi

) + λµ
(λ+µ)(µαi−λ(1−αi))

exp(−t(λ+ µ)).

We can evaluate P(αjX + (1 − αi)Y + (αi − αj)Y > t|X > Y )P(X > Y ) in a similar
way, which gives as a result:

P(αjX + (1− αi)Y + (αi − αj)Y > t|X > Y )P(X > Y )

=
µαj

µαj−λ(1−αj)
exp(−λt

αj
) + λµ

(λ+µ)(λ(1−αj)−µαj)
exp(−t(λ+ µ)).
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Hence, our final result is

P(T ∗ij > t) = λ(1−αi)
λ(1−αi)−µαi

exp( −µt
1−αi

) + λµ
(λ+µ)(µαi−λ(1−αi))

exp(−t(λ+ µ))

+
µαj

µαj−λ(1−αj)
exp(−λt

αj
) + λµ

(λ+µ)(λ(1−αj)−µαj)
exp(−t(λ+ µ))

=
µαj

µαj−λ(1−αj)
exp(−λt

αj
) + λ(1−αi)

λ(1−αi)−µαi
exp( −µt

1−αi
)

+
λµ(αi−αj)

(µαi−λ(1−αi))(λ(1−αj)−µαj)
exp(−t(λ+ µ)).

We conclude that

T ∗ij ∼ Hypo3

(
µαj

µαj−λ(1−αj)
, λ(1−αi)
λ(1−αi)−µαi

,
λµ(αi−αj)

(µαi−λ(1−αi))(λ(1−αj)−µαj)
; λ
αj
, µ
1−αi

, λ+ µ
)
.

The expression for T ∗ij is not very intuitive. Therefore, we look at the situations where
αi and αj are either equal to 1 or 0, since for these situations we know the results at
forehand. When αi = 1 and αj = 1, we have that

P(T ∗ij > t) = P(min{X,X} > t) = exp(−tλ).

When αi = 0 and αj = 0, we have that

P(T ∗ij > t) = P(min{Y, Y } > t) = exp(−tµ).

And, finally, when αi = 1 and αj = 0, we have that

P(T ∗ij > t) = P(min{X, Y } > t) = exp(−t(λ+ µ)).

The expectation of T ∗ij is

E[T ∗ij] =

∫ ∞
0

P(T ∗ij > t)dt

=
µαj

µαj−λ(1−αj)

αj

λ
+ λ(1−αi)

λ(1−αi)−µαi

1−αi

µ
+

λµ(αi−αj)

(µαi−λ(1−αi))(λ(1−αj)−µαj)
1

λ+µ

=
αj

λ
+ 1−αi

µ
+

αi−αj

λ+µ
.

We will now compare the dependent to the independent situation. This gives us the
following result:

Theorem 3.7. Let

TA = αX1 + (1− α)Y1

TB = βX1 + (1− β)Y1

TC = βX2 + (1− β)Y2,
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where

X1 ∼ Exp(λ)

X2 ∼ Exp(λ)

Y1 ∼ Exp(µ)

Y2 ∼ Exp(µ),

and 0 < α, β < 1. Then

E[T ∗AB] > E[T ∗AC ].

Proof. The expections of the minimum of TA and TB, and TA and TC are, respectively,

E[T ∗AB] = β
λ

+ 1−α
µ

+ α−β
λ+µ

,

E[T ∗AC ] = αβ
2λ

+ (1−α)(1−β)
2µ

+ α−2αβ+β
λ+µ

.

Thus, we have

E[T ∗AB]− E[T ∗AC ] = β(2−α)
2λ

+ (1−α)(1+β)
2µ

+ 2β(α−1)
λ+µ

= β(2−α)µ(λ+µ)
2λµ(λ+µ)

+ (1−α)(1+β)λ(λ+µ)
2λµ(λ+µ)

+ 2β(α−1)2λµ
2λµ(λ+µ)

= λ2(1−α+β−αβ)
2λµ(λ+µ)

+ λµ(1−α−β+2αβ)
2λµ(λ+µ)

+ µ2β(2−α)
2λµ(λ+µ)

= λ2(1−α)(1+β)
2λµ(λ+µ)

+ λµ(1−α)(1−β)
2λµ(λ+µ)

+ λµαβ
2λµ(λ+µ)

+ µ2β(2−α)
2λµ(λ+µ)

> 0,

since 0 < α, β < 1. Hence, E[T ∗AB] > E[T ∗AC ].

The theorem states that when the expectation of TB and TC is the same, we should
send A and C. This seems obvious. We will now look at an example where TB and TC
do not have the same expectation, such that E[TB] < E[TC ], but it is still better to send
water tenders A and C instead of A and B. Note that this is not always true, but that
there are cases in which it is true.

Example 3.8. We consider three water tenders, A, B and C, whose travel times are
hyperexponentially distributed. Water tenders A and B are stationed at the same fire
station. For a particular fire, the distribution of the travel times is as follows:

TA ∼ 1
2
X1 + 1

2
Y1

TB ∼ 1
3
X1 + 2

3
Y1

TC ∼ 1
5
X2 + 4

5
Y2,
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where

X1 ∼ Exp(4)

X2 ∼ Exp(2)

Y1 ∼ Exp(3)

Y2 ∼ Exp(3).

Then

E[TA] = 7
24

E[TB] = 11
36

E[TC ] = 11
30
.

Hence, E[TA] < E[TB] < E[TC ]. If we could send only one water tender, we would send
water tender A. But, if we could send two water tenders, which would be the second
water tender to send. E[TB] is smaller than E[TC ], but A and B are dependent since
they share the same routes, where A and C do not. To make a good decision, we will
look at E[T ∗AB] and E[T ∗AC ]:

E[T ∗AB] = 1
3
1
4

+ 1
2
1
3

+ 1
6

1
12

= 19
72

E[T ∗AC ] = 1
2
1
5
1
6

+ 1
2
4
5
1
7

+ 1
5
1
2
1
5

+ 1
2
4
5
1
6

= 337
2100

.

Hence, E[T ∗AB] > E[T ∗AC ], so we should send A and C even though E[TB] < E[TC ].

We will now look at two examples of hypoexponential distributions. First, we look
at the Erlang(2) distribution, which can be seen as the hypoexponential(2) distribution

which we just illustrated, with α = 1
2
, X

d
= Y and the sum of X and Y multiplied by

two. Second, we look at a sum of different exponential random variables. Here, the
factor α is equal to 1

2
and the sum of X and Y is multiplied by two.

3.3.1. Ti and Tj Erlang

We now consider every route as a combination of different subroutes, for which the
travel times are all independent and identically exponentially distributed. So, we have

Ti = Xi + Yi,

where Xi and Yi are both Exp(λ) distributed. Hence, Ti is Erlang(2) distributed.
We will now prove a theorem about the difference between the expected value of the

minimum of dependent and independent Erlang distributed travel times.

Theorem 3.9. Let

TA = X1 + Y1

TB = X1 + Y1

TC = X2 + Y2,
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where X1, X2, Y1 and Y2 are all Exp(λ) distributed and independent. Then,

E[T ∗AB] > E[T ∗AC ].

Proof. We start with evaluating T ∗AB, so we can calculate E[T ∗AB]. After that, we do the
same for T ∗AC .

T ∗AB = min{TA, TB} = min{X1 + Y1, X1 + Y1} = X1 + Y1 = TA,

and

E[T ∗AB] = E[TA] = 2
λ
.

Furthermore,

P(T ∗AC > t) = P(TA > t)P(TC > t)

= (1 + λt) exp(−λt)(1 + λt) exp(−λt)
= (1 + λt)2 exp(−2λt),

which gives

E[T ∗AC ] =

∫ ∞
0

(1 + λt)2 exp(−2λt)dt

=

∫ ∞
0

exp(−2λt)dt+ 2

∫ ∞
0

λt exp(−2λt)dt+

∫ ∞
0

(λt)2 exp(−2λt)dt

= 1
2λ

+

∫ ∞
0

exp(−2λt)dt+ λ
2

∫ ∞
0

t exp(−2λt)dt

= 1
2λ

+ 1
2λ

+ 1
4

∫ ∞
0

exp(−2λt)dt

= 1
λ

+ 1
8λ

= 9
8λ
.

When we look at the difference between E[T ∗AB] and E[T ∗AC ], we see

E[T ∗AB]− E[T ∗AC ] = 2
λ
− 9

8λ
= 7

8λ
> 0.

Hence, E[T ∗AB] > E[T ∗AC ].

This result looks rather general. Intuitively we would expect that we do not need TA,
TB and TC to be Erlang distributed for it to be true that the minimum of two random
variables is smaller than one of the two random variables. We will prove this in the next
theorem.

Theorem 3.10. Let TA, TB and TC be general distributions, where TA = TB
d
= TC, and

TC is independent of TA and TB. Then

E[T ∗AB] ≥ E[T ∗AC ].
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Proof. Since TA = TB, we have

T ∗AB = min{TA, TB} = TA.

For the minimum of TA and TC we have the following:

P(T ∗AC > t) = P(TA > t)P(TC > t)

FT ∗AC
(t) = 1− (1− FTA(t))(1− FTC (t))

= FTA(t) + FTC (t) + FTA(t)FTC (t).

We want to prove that FT ∗AB
(t) ≤ ET ∗AC

(t) for t ≥ 0, since this implies E[T ∗AB] ≥ E[T ∗AC ].
We will prove this by contradiction. Say FT ∗AB

(t) > ET ∗AC
(t). Then we have

FT ∗AB
(t) > FT ∗AC

(t)

FTA > FTA(t) + FTC (t) + FTA(t)FTC (t)

0 > FTC (t)(1− FTA(t)),

which is a contraction. Hence, FT ∗AB
(t) ≤ FT ∗AC

(t), and thus E[T ∗AB] ≥ E[T ∗AC ].

Note that this comparison is similar to the comparison between one general distribu-
tion and the minimum of two distributions, as is Section 3.1.

3.3.2. Ti and Tj sums of different exponential random variables

We consider a similar situation as in the previous section, only now the travel times of
the subroutes are exponentially distributed with different parameters. Figure 3.3 shows
a graph of this situation. We have

Ti = Xi + Yi,

where

Xi ∼ Exp(λ)

Yi ∼ Exp(µ),

λ 6= µ, and the distribution of Ti is

fTi(x) =

∫ x

0

fXi
(x− y)fYi(y)dy

=

∫ x

0

λ exp(−λ(x− y))µ exp(−µy)dy

= λµ exp(−λx)

∫ x

0

exp(−(µ− λ)y)dy

=
λµ

µ− λ
(

exp(−λx)− exp(−µx)
)
.

38



×
C

A

B

X3Y2

X1

X2

Y1

Figure 3.3.: Partly shared route. A,B,C, are the fire stations, × is the
location of the fire. X1, X2, X3, Y1, Y2 are the distributions of
travel times. Water tenders located at A and B share a part of
their route.

The tail probability then becomes

P(Ti > t) =

∫ ∞
t

fTi(x)dx

=

∫ ∞
t

λµ
µ−λ

(
exp(−λx)− exp(−µx)

)
dx

= µ
µ−λ exp(−λt) + λ

λ−µ exp(−µt).

Theorem 3.11. Let

TA = X1 + Y1

TB = X2 + Y1

TC = X3 + Y2,

where

X1 ∼ Exp(λ)

X2 ∼ Exp(λ)

X3 ∼ Exp(λ)

Y1 ∼ Exp(µ)

Y2 ∼ Exp(µ).

Then

E[T ∗AB] > E[T ∗AC ].
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Proof. First, we evaluate T ∗AB, so we can compute E[T ∗AB]. After that, we compute
P(TAC > t) with which we can compute E[T ∗AC ].

T ∗AB = min{TA, TB}
= min{X1 + Y1, X2 + Y1}
= Y1 + min{X1, X2},

and hence,

E[T ∗AB] = 1
µ

+ 1
2λ

= 2λ+µ
2λµ

.

Further

P(TAC > t) = P(TA > t)P(TC > t)

=
(

µ
µ−λ exp(−λt) + λ

λ−µ exp(−µt)
)2

= µ2

(µ−λ)2 exp(−2λt) + 2λµ
(µ−λ)(λ−µ) exp(−(λ+ µ)t) + λ2

(λ−µ)2 exp(−2µt),

and hence,

E[T ∗AC ] = µ2

2λ(µ−λ)2 + 2λµ
(µ−λ)(λ−µ)(λ+µ) + λ2

2µ(λ−µ)2

= µ3(λ−µ)2(λ+µ)+4λ2µ2(λ−µ)(λ+µ)+λ3(µ−λ)2(λ+µ)
2λµ(µ−λ)2(λ−µ)2(λ+µ)

= (λ−µ)4(λ2+3λµ+µ2)
2λµ(µ−λ)2(λ−µ)2(λ+µ)

= λ2+3λµ+µ2

2λµ(λ+µ)
.

The difference then is

E[T ∗AB]− E[T ∗AC ] = 2λ+µ
2λµ
− λ2+3λµ+µ2

2λµ(λ+µ)

= (2λ+µ)(λ+µ)−(λ2+3λµ+µ2)
2λµ(λ+µ)

= λ2

2λµ(λ+µ)

> 0,

for λ 6= µ, λ, µ > 0. Hence, E[T ∗AB] > E[T ∗AC ].

Just as in Theorem 3.7, the result of Theorem 3.11 seems very obvious. Therefore, we
will now look at an example where we have that E[TB] < E[TC ], but it is still better to
send water tenders A and B instead of A and C.

Example 3.12. We consider three water tenders, A, B and C, where water tenders A
and B share a part of their route to the fire. The travel times are distributed as follows:

TA ∼ X1 + Y1

TB ∼ X2 + Y1

TC ∼ X3 + Y2,
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where

X1 ∼ Exp(4)

X2 ∼ Exp(4)

X3 ∼ Exp(3)

Y1 ∼ Exp(2)

Y2 ∼ Exp(2).

Then

E[TA] = 3
4

E[TB] = 3
4

E[TC ] = 5
6

and hence, E[TA] = E[TB] < E[TC ]. If we would send only one water tender, we would
send water tender A or B. But if we send two, the choice of sending A and B is not
necessarily the better choice, since A and B are dependent. We take a look at the
minimum of TA and TB and the minimum of TA and TC to see which two water tenders
we should send. The minimum of TA and TB is

E[T ∗AB] = 1
2

+ 1
4+4

= 5
8
.

For the minimum of TA and TC we first look at the tail probability of T ∗AC :

P(T ∗AC > t) =
(

2
2−4 exp(−4t) + 4

4−2 exp(−2t)
)(

2
2−3 exp(−3t) + 3

3−2 exp(−2t)
)

=
(
− exp(−4t) + 2 exp(−2t)

)(
− 2 exp(−3t) + 3 exp(−2t)

)
= 2 exp(−7t)− 3 exp(−6t)− 4 exp(−5t) + 6 exp(−4t),

and hence,

E[T ∗AC ] = 2
7
− 1

2
− 4

5
+ 3

2
= 17

35
.

So

E[T ∗AB] = 5
8
> 17

35
= E[T ∗AC ].

Hence, it is better to send water tender A and C instead of A of B, even though the
travel time of B is shorter than the travel time of C.

In this section we have seen different types of the hypoexponential distribution. We
have seen that the expectation of the minimum of independent random variables is
smaller than the expectation of the minimum of dependent random variables. In practice

41



this means that it is optimal to send the two out of three water tenders who do not share
a (part of a) route then two who do share a (part of a) route. So, the current policy of
the BWAA, to send two water tenders to each incident, is a good policy. If the BWAA
would get more than one water tender per fire station in the future, they should not send
two of those water tenders to an incident, instead of two water tenders from different fire
stations. Also, it is of importance for the BWAA to take into account the probability
of taking the same route, when sending water tenders from two fire stations, which are
located closely to each other. Just as in Section 3.2 one could argue how realistic travel
times are which are based on exponential travel times, since these do not agree with our
results in Chapter 2. Again, just as in Section 3.2 we choose the exponential distribution,
since it is insightful and gives clearer results than other, more realistic distributions.
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4. Dispatching: Concurrent
incidents

In this chapter, we consider multiple incidents happening at the same time. As a conse-
quence, not all water tenders are available, since some of them are at another incident.
And, if we send a water tender to a fire, we can not use it for a certain period of time.
So, the dispatching decision no longer depends on the current incident only. We will
model this situation as a Markov Decision Process. Further, we will look at a specific
example to get insight in the behaviour of the optimal policy. We end this chapter with
a theorem about the behaviour of the optimal policy.

4.1. Problem description

We consider an infinite horizon, meaning that our time t goes to infinity. In our model
there is only one water tender at each fire station, and we let N be the number of fire
stations. We believe that being in time at an incident which is happening now, is more
important than being in time at an incident happening in the future, so we take in a
fixed pre-determined discount factor α ∈ (0, 1). Every time epoch t, an incident occurs,
and we need to decide how many and which water tenders we should send. A water
tender which is sent to an incident, stays at the incident for at least one time epoch, but
it can be longer. Sending more water tenders means an equal or shorter expected travel
time. But, on the other hand, sending more water tenders leads to less water tenders
when the next incident occurs, at time epoch t+ 1. Also, the expected minimum travel
time depends on the choice of the water tenders sent. The distribution of the individual
travel times, and whether or not the travel times are independent, does matter, see
Chapter 3.

4.2. Model

A water tender can only be sent to a fire when it is at the fire station. We let {st} be
the state process, indicating whether or not a water tender is at the fire station at time
t. We have st = (st(1), . . . , st(N)),

st(i) =

{
1 if water tender i is at fire station i at time t,

0 otherwise,
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Fires

Station 1 s(1)

Station 2 s(2) Station 3 s(3)

y(1) a(1)

y(2) a(2) y(3) a(3)

Figure 4.1.: The Markov Decision Process for N = 3. The variables s(i),
a(i) and y(i), i = 1, 2, 3, indicate if the water tender is at the
fire station, goes to a fire or returns from a fire, respectively.

for i ∈ {1, . . . , N} and st ∈ S1 × · · · × SN = S, S = {0, 1}N . We consider an action
space A(s) = A1(s)× · · · ×AN(s), such that for at = (at(1), . . . , at(N)) ∈ A(s) we have

at(i) =

{
1 if we send water tender i to the fire at time t,

0 otherwise,

A(s) = {at ∈ {0, 1}N : at(i) ≤ st(i)},

since we can not send a water tender, when it is not at the fire station. We let yt =
(yt(1), . . . , yt(N)) indicate whether or not a water tender is back at the station:

yt(i) =


1 if st−1(i) = 0 or at−1(i) = 1,

and the water tender returns to the fire station,

0 otherwise,

and let yt happen according to a Bernoulli process with parameter p. So, if st−1(i) = 0
or at−1(i) = 1 then yt(i) = 1 with probability p.

We let events happen in the following order. First some or none of the water tenders
which were sent away, come back, so yt happens. Then we measure the state st, the
number of water tenders we have, and after that we make a decision at, how many water
tenders we send away. This gives us

st+1 = st − at + yt+1.

Figure 4.1 shows a graph of this situation for N = 3. We let Ti be the time in minutes
it takes water tender i to arrive at an incident, and define

T (at) = min{Ti : at(i) = 1}.

We consider certain costs, if it takes a water tender more than M minutes to arrive at
a fire:

c(at) = 1(T (at) ≥M),
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so, sending more water tenders leads to less costs c(a, t). This leads to the total dis-
counted expected costs for time t:

Vt(st) = min
at∈A(s)

{c(at) + α
∑
s′∈S

pst+1(s
′|st, at)Vt+1(s

′)}, (4.1)

where pst+1(st+1|st, at) is the probability that at time epoch t+ 1, the state is st+1, given
that the state variable and the decision variable at epoch t, are st and at respectively.
So, the costs we make in state st is the sum of the direct costs, c(at), according to our
decision at, and the costs we make in the future, based on our current decision, where
we discount our future costs with a factor α. Of all the possible options at, we choose
that one that minimizes our total discounted expected costs Vt(st). We assume that Vt
converges to some V for t → ∞, which leads to the optimal total discounted expected
costs:

V (s) = min
a∈A(s)

{c(a) + α
∑
s′∈S

ps(s′|s, a)V (s′)}, (4.2)

4.3. Policy iteration

In this section, we look at a special case of (4.2), where we only consider how many
water tenders we should send, independent of which one it is. We thus assume that the
travel times of all water tenders are identical and independently distributed (i.i.d). This
is different from what we did in Chapter 3, but, since this situation is easier to evaluate,
we use this model to get some insight in the behaviour of the optimal policy. The optimal
policy gives us for every situation s the optimal decision a. We will determine this
optimal policy by using policy iteration. We let s = #water tenders at the fire stations
and a = #water tenders sent from the fire stations to the incident. We assume that the
cost function c(a) is decreasing in a, which means that it is cheaper to send more water
tenders. This makes sense, since sending more cars reduces the expected travel time.

For the policy iteration we consider

V (s) = min
a<s
{c(a) + α

N−s∑
k=0

pk(1− p)N−s−k
(
N − s
k

)
V (s− a+ k)},

where p is the probability that a water tender returns. Note that this value function
equals the value in (4.2) after taken the limit to infinity. For policy iteration, we need
a starting value, so we take V (0) = 0, for some “reference” state 0. The steps of the
policy iteration method are as follows:
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1 Take some policy P .

2 Compute V for this policy.

3 Find a better P ′. If non exists: stop.

4 Set P := P ′ and go to step 2.

Here we compute the new P ′ by

P ′(s) = arg mina<s{c(a) + α
∑
s′∈S

pst+1(s
′|st, at)Vt+1(s

′)}.

The Matlab code (MATLAB, 2015) for this policy iteration can be found in the appendix.
We will now consider policy iteration for different distributions of the travel time.

4.3.1. Ti exponentially distributed

We consider exponential travel times, so Ti ∼ Exp(λ) for all i = 1, . . . , N . From
Chapter 3, we know that the minimum of a i.i.d. exponentially distributed variables
is Exp(aλ) distributed. This, combined with the fact that the tail probability of Ti is
P(Ti > M) = exp(−λM), gives us an expression for the cost function:

c(a) = exp(−aλM).

A graph of the cost function for a = 1, . . . , 100, λ = 0.1, and M = 6, is shown in Figure
4.2. We see that the cost function decreases fast, and is almost equal to zero at a = 10,
which means that there is not much extra benefit if we send more than 10 water tenders.
This seems realistic, since we don not expect the fastest water tender out of 100 water
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Figure 4.2.: Different cost functions for a = 1, . . . , 100, M = 6, λ = 0.1,
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Figure 4.3.: Optimal policy for N = 100 water tenders, the travel time Ti
is Exp(0.1) distributed and the water tender needs to arrive in
M = 6 minutes.

tenders be much faster than the fastest water tender out of, say, 20 water tenders. The
optimal policy depends on our choice of p and α. A bigger p means that water tenders
will come back more quickly, and a higher value of α means that we consider actions
in the future more important. Note that when we have zero water tenders, there does
not exist an optimal policy, since there is no choice to be made. A graph of the optimal
policy for different values of p and α, if we consider N = 100, is shown in Figure 4.3.
100 water tenders seems like a lot, but, as we said before, we want to get some insight
into the behaviour of the optimal policy P . In Figure 4.3 we see that the optimal policy
is non-decreasing in s, the number water tenders available. It is remarkable that the
optimal decision is to send 50 water tenders when there are 100 water tenders available,
α = 0.2, and p = 0.8. In reality we would never make such a decision, even if our water
tenders would return fast. The reason that P increases intuitively fast probably lays in
the fact that we do not bring costs into account for sending more water tenders, we only
give a benefit. The reason that we, in reality, would never send so many water tenders
is that for every water tender sent there need to come firemen along, if only for driving
the water tender, and that costs gasoline. These are major disadvantages, which we did
not take into account in this example.

47



4.3.2. Ti uniformly distributed

Now, we consider uniformly distributed travel times at the interval (0, 11), so
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Figure 4.4.: Optimal policy for N = 100 water tenders, the travel time Ti is
Unif(0, 11) distributed and the water tender needs to arrive in
M = 6 minutes.

Ti ∼ Unif(0, 11). This means that every water tender takes between 0 and 11 minutes
to arrive at a fire, and that every travel time between 0 and 11 minutes is equally likely.
We choose this interval, since most of our travel times considered in Chapter 2 are in
this interval, and because we choose M = 6. The cost function then becomes

c(a) = 1(T (a) ≥M)

= P(Ti ≥M)a

= (11−M
11

)a.

A graph of the cost function, for a = 1, . . . , 100 and M = 6, is shown in Figure 4.2. We
see that this cost is decreasing comparable fast to the cost function for Ti ∼ Exp(λ).
Figure 4.4 shows a graph of the optimal policy for different values of p and α, if we
consider N = 100. We see that the optimal policy P for Ti ∼ Unif(0, 11), is similar to
the optimal policy for Ti ∼ Exp(λ). P increases only slightly slower, which is probably
due to the fact that c(a) decreases only slightly faster for Ti ∼ Unif(0, 11) than for
Ti ∼ Exp(λ).
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4.3.3. log(Ti) Student’s t distributed
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Figure 4.5.: Optimal policy for N = 100 water tenders, the travel time
log(Ti) is Student’s t(2
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, 3) distributed, and the water tender

needs to arrive in M = 6 minutes.

Recall that in Chapter 2, we discovered that the logarithm of the travel times were
Student’s t distributed with a certain shifting m and scaling s:

log(Ti) = log(m) + sZi,

for i ∈ {1, . . . , N}, where Zi follows a centered Student’s t distribution with τ degrees
of freedom. To make analytical computations more clearly, we choose τ = 3. Then, we
have

fZi
(x) =

Γ( τ+1
2

)
√
τπΓ( τ

2
)

(
1 + x2

τ

)− τ+1
2

=
Γ(2)√
3πΓ(3

2
)

(
1 + x2

3

)−2
=

6
√

3

π(3 + x2)2
.
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The tail probability of Zi then is

P(Zi > t) =

∫ ∞
t

fZi
(x)dx

=

∫ ∞
t

6
√

3

π(3 + x2)2
dx

=
1

2
−

√
3t

π(3 + t2)
−

Arctan
[
t√
3

]
π

.

The tail probability of Ti then becomes

P(Ti > t) = P
(

log(Ti) > log(t)
)

= P
(

log(m) + cZi > log(t)
)

= P
(
Zi >

log(t)−log(m)
c

)
=

1

2
−

√
3
(
log(t)−log(m)

c

)
π
(
3 +

( log(t)−log(m)
c

)2) − Arctan
[ log(t)−log(m)

c
√
3

]
π

.

Hence,

c(a) =

(
1

2
−

√
3
( log(M)−log(m)

c

)
π
(
3 +

( log(M)−log(m)
c

)2) − Arctan
[ log(M)−log(m)

c
√
3

]
π

)a

.

A graph of the cost function for a = 1, . . . , 100, M = 6, m = 2
5

and c = 1
2

is shown
in Figure 4.2. We see that it decreases very fast. Only sending no water tenders at all
results in direct costs, the direct costs of sending 2 or 20 water tenders has no difference
in direct costs. Figure 4.5 shows the optimal policy. We see that it is non-decreasing,
and that it increases more slowly than when Ti is exponentially or uniformly distributed.

4.4. Optimal decision

We consider again the optimal value function of (4.1). In the previous section, we
saw that that the optimal policy function is non-decreasing. In this section, we want to
prove this. Before we do this, we will prove that the optimal value function is partially
non-increasing. For this, we follow the paper of Papadaki and Powell (2007).

First, we introduce the function f(st, at) = st − at, such that we have

st+1 = f(st, at) + yt+1.

We also introduce the probability qyt (yt), being the probability that yt water tenders
become available at the beginning of decision epoch t. This gives us

pst+1(st+1|st, at) = qyt+1(st+1 − f(st, at)). (4.3)

Now, we give two definitions.
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Definition 4.1. The partial ordering operator � or � are defined, on the set S of
N -dimensional vectors, as follows: we denote s � r for s, r ∈ S, if s(i) ≤ r(i) for all
i ∈ {1, . . . , N}, and s � r for s, r ∈ S, if s(i) ≥ r(i) for all i ∈ {1, . . . , N}.

Definition 4.2. We say that a real-valued function F defined on an N -dimensional
set S is partially non-increasing if for all r+, r− ∈ S such that r+ � r−, we have
F (r+) ≤ F (r−).

Recall that st+1 = f(st, at) + yt+1, so we have st+1 � f(st, at). Because of this we can
rewrite the expectation in the optimality equation 4.1:∑

s′∈S

pst+1(s
′|st, at)Vt+1(s

′) =
∑

s′∈S,s′�f(st,at)

pst+1(s
′|st, at)Vt+1(s

′).

To prove that Vt(st) is partially non-increasing for all t ≥ 0, we need the following
lemma, by Papadaki and Powell (2007):

Lemma 4.3. Let Vt+1 be partially non-increasing in S and let x � 0. Then∑
i∈S,i�f(s+x,a)

pst+1(i|s+ x, a)Vt+1(i) ≤
∑

i∈S,i�f(s,a)

pst+1(i|s, a)Vt+1(i). (4.4)

Proof. Note that since x � 0, we have f(s+ x, a) � f(s, a) for all a ∈ A. So, since Vt+1

is partially non-increasing, we have∑
j∈S,j�0

qyt+1(j)Vt+1(i+ f(s+ x, a)) ≤
∑

k∈S,k�0

qyt+1(k)Vt+1(i+ f(s, a)).

We now substitute j = i − f(s + x, a) in the left-handside of the above equation and
k = i− f(s, a) in the right-handside of the above equation. This gives us∑

i∈S,i�f(s+x,a)

qyt+1(i− f(s+ x, a))Vt+1(i) ≤
∑

i∈S,i�f(s,a)

qyt+1(i− f(s, a))Vt+1(i).

We can use equation (4.3) to rewrite qyt+1(i− f(s, a)):

qyt+1(i− f(s, a)) = pst+1(i|s, a).

Hence, we have∑
i∈S,i�f(s+x,a)

pst+1(i|s+ x, a)Vt+1(i) ≤
∑

i∈S,i�f(s,a)

pst+1(i|s, a)Vt+1(i).

So, indeed, when Vt+1 is partially non-increasing in S and x � 0, equation (4.4) holds.
This proves the lemma.

Now, we have proved this lemma, we can prove that Vt(st) is partially non-increasing
for all t ≥ 0 (Papadaki and Powell, 2007).
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Theorem 4.4. Let c(at) be partially non-increasing for all at ∈ A, t ≥ 0. Then, the
value function Vt(st) is partially non-increasing in st for all t ≥ 0, and thus V (s) is
non-increasing for all s ∈ S.

Proof. We will prove this theorem by induction. Assume that Vn is partially non-
increasing for n = t+1, . . . , T > 0. We want to prove that Vt is partially non-increasing.
Recall from equation 4.1 that Vt is defined as

Vt(st) = min
at∈A
{c(at) + α

∑
i∈S,i�f(st,at)

pst+1(i|st, at)Vt+1(i)}.

Since the action space is finite (there are only N water tenders, thus for every time
epoch we have at most N actions), there is an action a+t which attains the minimum of
Vt(s

+
t ) for some state s+t . So we have

Vt(s
+
t ) = c(a+t ) + α

∑
i∈S,i�f(s+t ,a

+
t )

pst+1(i|s+t , a+t )Vt+1(i).

Now, if we consider a state s−t such that s+t � s−t , we get, according to lemma 4.3,

Vt(s
+
t ) = c(a+t ) + α

∑
i∈S,i�f(s+t ,a

+
t )

pst+1(i|s+t , a+t )Vt+1(i)

≤ c(at) + α
∑

i∈S,i�f(s−t ,at)

pst+1(i|s−t , at)Vt+1(i)

≤ min
at∈A
{c(at) + α

∑
i∈S,i�f(s−t ,at)

pst+1(i|s−t , at)Vt+1(i)}

= Vt(s
−
t ).

Hence, Vt is partially non-increasing. Note that if we take the limit of T → ∞, we get
that Vt is partially non-increasing for all t ≥ 0, and hence V ,

V (s) = min
a∈A(s)

{c(a) + α
∑

i∈S,i�f(s,a)

ps(i|s, a)V (i)},

is non-increasing in s ∈ S.

Before we arrive at the main result of this chapter, Theorem 4.8, we need Topkis’s
theorem. First, we give a definition.

Definition 4.5. A function W (s, a) is submodular in (s, a) if

W (s, a+ 1)−W (s, a) ≥ W (s+ 1, a+ 1)−W (s+ 1, a).

Theorem 4.6 (Topkis). Let

P (s) = arg mina∈A(s){c(a) + α
∑

j∈S,j�f(s,a)

ps(j|s, a)V (j)}

= arg mina∈A(s){W (s, a)}.

If W (s, a) is submodular, then P (s) is non-decreasing in s ∈ S.
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A proof of this theorem can be found in Krishnamurthy (2016).
Now, we come to the final result of this chapter. We will prove that P (s) is non-

decreasing in s ∈ S. For this, we need that V (s) is convex. Convexity is defined as
follows:

Definition 4.7. A function V (s) is convex if

2V (s) ≤ V (s+ 1) + V (s− 1).

Theorem 4.8. If V (s) is convex, then P (s) is non-decreasing in s ∈ S.

Proof. For P (s) we have that

P (s) = arg mina∈A(s){c(a) + α
∑

j∈S,j�f(s,a)

ps(j|s, a)V (j)}

= arg mina∈A(s){W (s, a)},

where,

W (s, a) = c(a) + α
∑

j∈S,j�f(s,a)

ps(j|s, a)V (j)

= c(a) + α
∑

j∈S,j�f(s,a)

qy(j − f(s, a))V (j)

= c(a) + α
∑

i∈S,i�0

qy(i)V (i+ f(s, a))

= c(a) + α
∑

i∈S,i�0

qy(i)V (i+ s− a).

According to Topkis’s theorem, submodularity of W (s, a) is sufficient for P (s) to be
non-decreasing in s ∈ S. Recall that W (s, a) is submodular in (s, a) if

W (s, a+ 1)−W (s, a) ≥ W (s+ 1, a+ 1)−W (s+ 1, a).

We define W (s) = W (s, a+ 1)−W (s, a) and rewrite it as follows:

W (s) = W (s, a+ 1)−W (s, a)

= c(a+ 1)− c(a) + α
∑

i∈S,i�0

qy(i)
(
V (i+ s− a− 1)− (V (i+ s− a)

)
.

W (s+ 1) now becomes

W (s+ 1) = W (s+ 1, a+ 1)−W (s+ 1, a)

= c(a+ 1)− c(a) + α
∑

i∈S,i�0

qy(i)
(
V (i+ s− a)− (V (i+ s− a+ 1)

)
.

53



Now, we can evaluate if W (s) ≥ W (s+ 1):

W (s) ≥ W (s+ 1)

V (i+ s− a− 1)− (V (i+ s− a) ≥ V (i+ s− a)− (V (i+ s− a+ 1)

V (i+ s− a− 1) + (V (i+ s− a+ 1) ≥ 2V (i+ s− a).

Hence, W (s, a) is submodular in (s, a) if and only if V (s) is convex. Thus, if V (s) is
convex, then P (s) is non-decreasing in s ∈ S. This proves the theorem.

In this chapter, we considered concurrent incidents. We modelled this as a Markov
Decision Process, and used policy iteration to get insight in the behaviour of the optimal
policy in a specific situation, namely when it only matters how many water tenders
should be sent to an incident, and not which ones. We concluded that it is likely that the
optimal policy is non-decreasing, meaning that if we have more water tenders available,
we should not send less water tenders to an incident than in the situation where we have
less water tenders. We ended this chapter with a proof of this presumption. The model
proposed in this chapter is a basic model, which has to be extended further, before
drawing useful concluding for the BWAA.
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5. Conclusion

In this thesis, we have taken a deeper look into the model of Budge et al. (2010) on travel
times depending on the distance. We worked out the details of the model and applied
it to the GPS-data we received from the fire department in the area of Amsterdam, the
Netherlands, the BWAA. We found that the model gives slightly better results to our
data of the BWAA, than it gives to the data from Calgary, Alberta, that Budge et al.
(2010) used. We think that there is still a lot of potential improvement. The dataset we
used was rather small and a larger set of GPS-data over a longer period of time should
give more useful results. Although we find a better fit than Budge et al. (2010), we think
they should be much better if we want to draw real conclusions from it.

Further research should provide a better explanation of the variability due to weather
or traffic conditions. This variability depends for a large part on the time of year and
the time of day. Applying this in more detail to the model could lead to a better fit of
the model to the data.

Next, we looked into the situation of non-concurrent incidents. We proposed different
situations, varying from having an opportunity to take the same route to sharing a part
of a route, and modelled it using a hyperexponential distribution and a hypoexponential
distribution respectively, to make it insightful. One reason we choose a hyperexponential
and a hypoexponential distribution is because they look rather simple. Another reason
is that the hyperexponential distribution has a decreasing failure rate while the hypo-
expoential distribution has an increasing failure rate. This means that in the case of a
hyperexponential travel time a long ride has a high probability of being even a lot longer,
while in the case of a hypoexponential travel time a long ride has a high probability of
being almost finished. We proved that in both cases independent travel times lead to
a shorter expected travel time, when the expectation of the single travel times are the
same, and that there are even situations where the expectation of the single travel times
are different, but the independent travel times still lead to a shorter expected travel time.
Since we only considered distributions which are based on the exponential distribution,
the results might not be directly applicable to reality.

We would recommend further research on the difference between minima based on
dependent and independent distributions, using distributions as the normal or the Stu-
dent’s t distribution.

We concluded this thesis with considering concurrent incidents. We modelled this as a
discounted infinite horizon Markov Decision Process in which we considered independent
travel times, and a cost function, which is decreasing in the number of water tenders sent.
We also assumed that water tenders come back according to a geometric distribution.
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We proved that the optimal value function is non-increasing in the number of water
tenders available, and that the optimal policy is non-decreasing in the number of water
tenders available.

The model we proposed, is a basic model, which has to be extended further, before
drawing useful concluding for real fire departments, as the BWAA. A good extension to
this model would be to include the geographical distribution according to which incidents
take place, so the distance between an incident and a fire station is not the same for all fire
stations. The model can also be extended by considering a time distribution according to
which incidents take place, so we can use a continuous time scale, instead of considering
a time scale with time epochs based on the occurrence of an incident. Another extension
would be to take dependence into account, leading to not only deciding how many water
tenders should be sent, but also which water tenders should be sent, when every fire
station has only one water tender.
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A. Matlab code

Listing A.1: Best policy

1 function [ B e s t p o l i c y ]= B e s t p o l i c y (N, alpha , p , c )
2 %Finds the opt imal p o l i c y f o r the opt imal d i scounted va lue func t i on
3 %V( x)=min {a=<x }{( c ( a)+alpha ∗sum { i =0}ˆ{N−x }( pˆ i (1−p )ˆ{N−x−i } BCD(N−x ) ( i )∗
4 %V(x−a+i ) )
5 %for a l l x in ( 0 , . . . ,N) .
6 P=[1:N ] ;
7 Q=zeros (1 ,N) ;
8 maxit =1000;
9 j =1;

10 while abs (sum(P−Q))>0 && j<maxit
11 Q=P;
12 V=sym( zeros (1 ,N) ) ;
13 syms V 0
14 for i =1:N
15 V( i ) = s t r c a t ( ’V ’ ,num2str( i ) ) ;
16 end
17 V g =[0 ,V ] ;
18 Eqn=sym( zeros (1 ,N+1)) ;
19 Eqn(1)=V 0 == binsum ( V g , 0 , 0 ,N, alpha , p , c ) ;
20 for i =2:N+1
21 Eqn( i ) = V g ( i ) == binsum ( V g , i −1,P( i −1) ,N, alpha , p , c ) ;
22 end
23 [A,B] = equationsToMatrix (Eqn , [ V 0 ,V ] ) ;
24 X=l i n s o l v e (A,B) ;
25 V=double (X) ;
26 P = p o l i c y (V, p , alpha , c ,N) ;
27 j=j+1
28 end
29 B e s t p o l i c y=P;
30 end
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Listing A.2: policy

1 function [P]= p o l i c y (V, p , alpha , c ,N)
2 %Gives a s o l u t i o n to
3 %P( x)=argmin {a=<x }{( c ( a)+sum { i =0}ˆ{N−x }( pˆ i (1−p )ˆ{N−x−i } BCD(N−x ) ( i )∗
4 %V(x−a+i )
5 %for a l l x in ( 0 , . . . ,N) .
6 P=zeros (1 ,N) ;
7 for i = 1 :N
8 R=ones (1 , i +1);
9 for j =1: length (R)

10 R( j )=binsum (V, i , j −1,N, alpha , p , c ) ;
11 end
12 [ argvalue , argmin ]=min(R) ;
13 P( i )=argmin−1;
14 end

Listing A.3: binsum

1 function [ va lue ]=binsum (V, x , a ,N, alpha , p , c )
2 %Gives a s o l u t i o n to
3 %( c (a)+alpha ∗sum { i =0}ˆ{N−x }( pˆ i (1−p )ˆ{N−x−i } BCD(N−x ) ( i )∗V(x−a+i ) ) .
4 Y=sym( zeros (1 ,N−x +1)) ;
5 for i =0:N−x
6 Y( i +1)=binopdf ( i ,N−x , p)∗V(x−a+i +1);
7 end
8 v a l u e s t a r t=sum(Y) ;
9 va lue=c ( a)+alpha ∗ v a l u e s t a r t ;

10 end
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