
Eindhoven, October 2017

by

Collin Drent

BSc Industrial Engineering & Management Sciences

Eindhoven University of Technology 2015

Student identity number 0805771

in partial fulfilment of the requirements for the degree of

Master of Science

in Operations Management and Logistics

Supervisors:

prof.dr.ir. G.J. van Houtum, TU/e, OPAC

prof.dr. T. van Woensel, TU/e, OPAC

dr.ir. J.J. Arts, Université du Luxembourg, LCL

dr. M.C.A. Olde Keizer, CQM

dr.ir. J.B.M. van Doremalen, CQM

Dynamic Dispatching and
Repositioning Policies in Service

Logistics Networks

TUE. School of Industrial Engineering.

Series Master Theses Operations Management and Logistics

Subject headings: Service logistics, Repair, Dynamic dispatching, Dynamic repositioning,

Markov decision processes, Heuristics

Dynamic Dispatching and Repositioning Policies
in Service Logistics Networks

Abstract

Motivated by the increasing demand for faster service when advanced capital goods fail, we address the

problem of dispatching and pro-actively repositioning service engineers in a service logistics network such that

extremely short solution times to service requests can be realized in a cost-efficient way. By formulating this

problem as a Markov decision process, we are able to investigate the structure of the optimal policy, thereby

focusing on specific characteristics of this optimal policy. Using these insights, we then propose scalable static

and dynamic heuristics for both the dispatching and repositioning sub-problem for networks of industrial size,

based on the minimum weighted bipartite matching problem and the maximum expected covering location

problem, respectively. The dynamic dispatching heuristic takes into account real-time information about

both the state of equipment and the fleet of service engineers, while the dynamic repositioning heuristic

maximizes the expected weighted coverage of future service requests. In a test bed with a small network,

we show that our most advanced heuristic performs excellent with an average optimality gap of 4.6% under

specific circumstances, but strictly outperforms all other heuristics across all instances. To show the practical

value of our proposed heuristics, we conducted extensive numerical experiments on a large test bed with

networks of industrial size where significant savings of up to 61.9% compared to a benchmark static policy

are attained. In the same test bed, we show that being flexible in deviating from previous dispatch and

reposition decisions, regardless of the heuristics that are used for these decisions, can lead to substantial

savings of 49.2% compared to when reallocation is not allowed. The results also show that using the proposed

dynamic dispatching heuristic, instead of the widely adopted ‘closest-idle first’-heuristic, leads to savings of

27.7%.

Keywords:

Service logistics; Repair; Dynamic dispatching; Dynamic repositioning; Markov decision processes; Heuristics

ii

Summary

For many manufacturers and service organizations, the availability of capital goods - such as MRI scanners,

industrial printers or ATMs - is of crucial importance for their operations. Therefore, their uptime is of

utmost importance; each minute of unplanned downtime may be costly, risky (in case of medical equipment),

or both. As a result, the total unplanned downtime should be minimized. Many of these capital goods are

maintained by means of a service logistics network, which is owned and managed by a service organization.

Such a network typically consists of a single central warehouse and many service regions (mostly determined

by geographical borders) in which the capital goods are installed (see Basten and Van Houtum (2014)).

Generally, spare parts are kept on stock both in the central warehouse and in the vehicles of the service

engineers that operate in service regions. Upon failure of a capital good, a service engineer is dispatched to

this failed capital good if the problem cannot be solved remotely. A failure is often caused by a failed part

which can then be replaced immediately by a new part if the dispatched service engineer has this part in its

car stock, otherwise it is replaced in a second visit.

According to a recent survey among executives, one of the two top challenges for service organizations is

the increasing demand from customers for shorter solution times (Pinder Jr, 2016). Furthermore, recent

developments of communication networks and easy-to-integrate sensors allow service organizations to collect

real-time data about the state of equipment, which provides enormous opportunities (PWC, 2014).

In this thesis we propose an innovative service logistics network design for each service region, from which

we expect that it can realize extremely short solution times to service requests by exploiting the trend of

real-time data becoming increasingly available. In this new design, there is a local warehouse and there are

service engineers that carry no car stock. We assume that, upon a failure of a system, a perfect remote

diagnosis, using real-time data, can be executed. Subsequently, a service engineer is dispatched to the failed

system and, independently from the service engineer, a spare part is delivered from the local warehouse

to the failed system by a fast transportation mode (e.g., a parcel carrier). Whenever a service engineer

is dispatched to the failed system, it may leave a significant part of the service region without coverage.

It could therefore be beneficial to reposition idle service engineers to maintain a proper coverage level in

anticipation of future demand, after having dispatched a service engineer to a failed system. Furthermore, in

practice, penalty costs for not being able to repair a failed system before the solution time target is exceeded,

are significantly higher than the cost of repositioning idle service engineers. Consequently, dispatching and

iii

iv SUMMARY

repositioning idle service engineers in a smart way could lead to significant savings in operating costs in this

innovative service logistics network design. This leads to the overarching objective of this thesis, which is

to develop scalable heuristics that perform well and which are focused on both pro-actively repositioning of

service engineers and deciding which service engineer to dispatch to service requests in a cost-efficient way.

Maintenance and service logistics is a topic widely studied in the literature. One of the important areas in

maintenance and service logistics that has been studied extensively, is the area of spare parts management,

where the focus mainly lies on (multi-item) spare parts optimization models. However, much lesser attention

has been devoted to the planning or management of service engineers that are required to install or repair

these parts, and none attention has been devoted to the planning of these service engineers with an explicit

focus on realizing short solution times. Interestingly enough, the problem of planning the service engineers

to realize short solution times, in isolation, is not unique to service logistics, but also appears in the vast

literature of Dynamic Ambulance Management (DAM), where dispatching and repositioning decisions also

have to be made in real-time. Namely, in life-threatening emergencies, ambulances should be dispatched to

and reach these emergencies within extremely short response times. Most research in DAM focuses either on

how to pro-actively reposition idle ambulances such that the coverage is maximized or on dynamic dispatching

methods, that take into account the current state of the system in the dispatch decision. Hence, despite the

aforementioned relation between them, dynamic dispatch and reposition decisions have predominantly been

studied in isolation in DAM literature. To that end, we are the first to jointly consider dynamic dispatch

and reposition decisions and we apply it in a service logistics network.

We formulate the dynamic dispatch and reposition problem as a Markov Decision Process (MDP) and solve

this problem to optimality for a small, artificial service logistics network. We then propose scalable dynamic

and static heuristics for both the dispatch and reposition sub-problem, based on the numerical investigation

of the optimal policy. Hence, although the MDP solves both the dispatch and reposition problem in an

integrated way, we decompose the problem into two sub-problems and design a heuristic independently for

both the dispatching and repositioning sub-problems. This is also common in practice, where managers at

service organizations are faced with two main problems in real-time: a dispatching problem and reposition

problem. The developed dispatching (repositioning) heuristics are generic in the sense that they can be

combined with any repositioning (dispatching) heuristic. Our static heuristics are characterized by rules of

thumbs that are determined a-priori which are then always followed, regardless of the current state of the

network. By contrast, our dynamic heuristics are characterized by maximizing a goal function that takes

into account information about the current state of the network. Our proposed dynamic dispatch heuristic,

based on the minimum weighted bipartite matching problem, is the first dynamic heuristic that assigns a

fleet of service engineers to failed capital goods that takes into account real-time data about the state of

equipment and the current position of each service engineer, whereas the static dispatching heuristic is the

widely adopted ‘closest-idle first’-heuristic. Both our static and dynamic reposition heuristic are based on

SUMMARY v

the maximum expected covering location problem and they take into account both penalty costs and demand

information of the capital goods. Current models, both in literature and in practice, limit themselves by

imposing the constraint that once a decision has been made (either to dispatch or to reposition) the service

engineer becomes eligible for a new decision once it has completed its service or has arrived at its final

location. We analyze the benefit of relaxing this assumption by analyzing the allowance of reallocation

in the policy, i.e. being flexible in deviating from previous dispatch and reposition decisions. Combining

the option of whether or not reallocating with two options each for both the dispatching and repositioning

sub-problem, leads to eight proposed heuristic policies in total.

We compare the performance of our proposed heuristics against the optimal policy in a small network

in a small test bed and against a myopic policy, the SDSR heuristic (static dispatching heuristic, static

repositioning heuristic, no reallocation), that is currently used in practice across a large test bed of industrial

size. In the small test bed, we show that the average and the maximum optimality gap over all examined

symmetric problem instances of the DDDR-R heuristic (dynamic dispatching heuristic, dynamic repositioning

heuristic, reallocation), our most advanced and best-performing heuristic, are 4.6% and 10.4%, respectively.

This is a clear improvement compared to the myopic SDSR heuristic, which has optimality gaps of 99.0%

and 322.6%, respectively. However, in a rather pessimistic test bed, we find that the same DDDR-R heuristic

performs worse with optimality gaps of of 37.8% and 73.9%, respectively. Nevertheless, in the same test

bed we observe that this was still a clear improvement compared to the myopic SDSR heuristic (optimality

gaps of 99.9% and 224.5%, respectively). As the overarching objective of this thesis is to develop scalable

heuristics that perform well in practice, we conduct a large test bed with networks of industrial size. In this

large test bed, we show that huge savings can be obtained by either employing a dynamic dispatching policy

or allowing for reallocation in the policy. The combination of both using the dynamic dispatching policy

and allowing for reallocation, where we observe savings of up to 61.9%, results in the highest savings in the

real-life service logistics networks.

Finally, we quantify the benefit of individually using either a dynamic dispatching heuristic, a dynamic

repositioning heuristic or allowing reallocation in the policy. We show that savings of close to 50% can be

attained by letting each service engineer be eligible for dispatch and reposition decisions, regardless of whether

they are on their way to their destination or have already reached their destination. This quantification,

which is currently lacking in the literature, shows that it is very beneficial from a cost-perspective to relax

the limitation of no reallocation, regardless of the policy used. This analysis of individual benefits also

shows that using the proposed dynamic dispatching heuristic, instead of the widely adopted ‘closest-idle

first’-heuristic, results in savings of 27.7%

Preface

This thesis marks the end of not only my graduation project conducted at CQM in collaboration with

Eindhoven University of Technology, but also of the five-year student period that I thoroughly enjoyed. I

would like to take a moment to thank everyone who supported me along this journey.

First and foremost, I am deeply grateful to Geert-Jan van Houtum, my first supervisor, for your excellent

guidance the past two years. Without your critical view and invaluable suggestions, this thesis would not

have materialized. Your passion for doing doing research made me enthusiastic for pursuing PhD research,

in which I hope we can continue our pleasant collaboration. I would like to thank Tom van Woensel, my

second supervisor, for your useful feedback and valuable remarks on this thesis. Additionally, I would like

to thank Joachim Arts for your willingness to complete my thesis assessment committee.

Moreover, I thank Minou Olde Keizer, my daily supervisor at CQM, for your prompt and, from an academic

perspective, invaluable feedback, for the enjoyable and constructive discussions we had and for giving me

lots of freedom in conducting this research. I would like to thank Jan van Doremalen for his critical remarks

in the early stages of this thesis and for giving me the opportunity to conduct my research within CQM. I

would also like to thank my fellow interns and colleagues from CQM, particularly the ones from the Chain

Management department, for making my time at CQM as enjoyable as it has been.

Next, I would like to thank my friends, the ones I already had before I came to Eindhoven and the ones that

I have met along the way and around the world, especially during my exchange semester at the National

Taiwan University. You were my favorite distractions from the hard work and you helped me to keep the

broader picture in mind. Particularly, I am indebted to Veerle. Even though you probably had no clue when

I was talking about study-related material, you were always there to listen to my struggles.

Finally, I would like to express my deepest appreciation to my family, in particular to Mama, Papa, Levi and

Melvin. Thanks for your unfaltering and selfless support for my ambitions throughout the years. Thanks

for the celebrations together during the high peaks, but more importantly, thanks for the endless and

unconditional support during the low valleys.

Collin Drent, October 2017

vi

Contents

Abstract ii

Summary iii

Preface vi

1 Introduction 1

2 Literature review 6

2.1 High solution times . 6

2.2 Medium solution times . 7

2.3 Short solution times . 7

3 Model description 11

3.1 Dispatch and reposition problem . 11

3.2 Overview of assumptions . 14

4 Markov decision process formulation 16

4.1 State space . 16

4.2 Action space . 17

4.3 Transition probabilities . 18

4.4 Direct expected cost . 19

4.5 Example . 20

5 An exact approach 22

5.1 Value iteration . 22

5.2 Numerical investigation . 24

6 Heuristic approaches 30

6.1 Dispatching . 31

6.2 Repositioning . 33

6.3 Heuristic policies . 37

vii

viii CONTENTS

7 Computational study 39

7.1 Test beds and objectives . 39

7.2 Numerical results . 43

8 Conclusion and discussion 53

8.1 Main results . 53

8.2 Reflection on limitations . 55

8.3 Future research . 55

Bibliography 57

A Additional information computational study 60

A.1 Confidence intervals computational study . 60

List of Figures

1.1 Illustration of network design . 3

3.1 Order of events . 12

4.1 Illustration of transition of states . 21

5.1 A graph representation of the small network under study . 24

5.2 Optimal policy exhibits a static dwell point policy . 26

5.3 Optimal policy exhibits a dynamic dwell point policy . 26

5.4 Optimal policy exhibits a dynamic dispatching policy . 27

5.5 Optimal policy exhibits the reallocation of service requests . 28

6.1 Example of solution to dynamic dispatching problem . 33

7.1 Distribution of average cost per time unit for large symmetric test bed 50

7.2 Distribution of average cost per time unit for large asymmetric test bed 50

ix

List of Tables

5.1 Parameter settings of numerical investigation of symmetric case 25

6.1 Overview of eight heuristics . 37

7.1 Parameter settings of small symmetric test bed . 40

7.2 Parameter settings of small asymmetric test bed . 40

7.3 Parameter settings of large symmetric test bed . 42

7.4 Parameter settings of large asymmetric test bed . 43

7.5 Summary of computational results for small symmetric test bed 45

7.6 Summary of computational results for small asymmetric test bed 46

7.7 Summary of computational results for large symmetric test bed 47

7.8 Summary of computational results for large asymmetric test bed 48

7.9 Distribution of average cost per time unit in euros for large symmetric test bed 49

7.10 Distribution of average cost per time unit in euros for large asymmetric test bed 51

7.11 Benefit of either using the dynamic dispatching heuristic, dynamic repositioning heuristic or
allowing reallocation in the policy . 52

A.1 Average cost per time unit and 95% confidence interval for each instance of small symmetric
test bed . 60

A.2 Average cost per time unit and 95% confidence interval for each instance of small asymmetric
test bed . 62

A.3 Average cost per time unit and 95% confidence interval for each instance of large symmetric
test bed: heuristic 1-4 . 63

A.4 Average cost per time unit and 95% confidence interval for each instance of large symmetric
test bed: heuristic 5-8 . 69

A.5 Average cost per time unit and 95% confidence interval for each instance of large asymmetric
test bed: heuristic 1-4 . 74

A.6 Average cost per time unit and 95% confidence interval for each instance of large asymmetric
test bed: heuristic 5-8 . 80

x

Chapter 1

Introduction

Capital goods - such as MRI scanners, industrial printers or ATMs - are expensive, technologically complex

systems that are used in the primary processes of their users. Therefore, their uptime is of utmost importance;

each minute of unplanned downtime may be costly, risky (in case of medical equipment), or both. As a result,

the total unplanned downtime should be minimized.

Many capital goods are being maintained by means of a service logistics network, which is owned and

managed by a service organization. Such a network typically consists of a single central warehouse and

many service regions (mostly determined by geographical borders) in which the capital goods are installed

(see Basten and Van Houtum (2014)). Generally, spare parts are kept on stock both in the central warehouse

and in the vehicles of the service engineers that operate in service regions. Upon failure of a capital good, a

service engineer is dispatched to this failed capital good if the problem cannot be solved remotely. A failure

is often caused by a failed part which can then be replaced immediately by a new part if the dispatched

service engineer has this part in its car stock. Otherwise a (costly) second visit is needed, which usually

occurs the next day. The spare part that is required is then delivered from the central warehouse during the

night.

Service organizations invest heavily in maintenance and services to minimize the amount of unplanned down-

time. In a recent survey, the Dutch Organization for Maintenance (Nederlandse Vereniging voor Doelmatig

Onderhoud) reported that services and spare parts constituted, with a total amount of 30-35 billion euro, 4%

of the gross domestic product of the Netherlands1. In the same survey, it is estimated that the maintenance

and service logistics industry employs 280.000-300.000 service engineers.

According to a recent survey among executives, one of the two top challenges for service organizations is

the increasing demand from customers for better service (Pinder Jr, 2016). In practice, this means that

although customers are currently satisfied when failures are solved within a day, in the future customers

1NVDO. (2017, January 22). Maintenance en Service Logistiek slaan handen in één. Retrieved from: http://www.nvdo.nl/

nieuws/maintenance-en-service-logistiek-slaan-handen-ineen-3418/

1

http://www.nvdo.nl/nieuws/maintenance-en-service-logistiek-slaan-handen-ineen-3418/
http://www.nvdo.nl/nieuws/maintenance-en-service-logistiek-slaan-handen-ineen-3418/

2 Chapter 1. Introduction

demand solution times (i.e. the time between the service call and the completion of solving the failure) of

1-2 hours or even lower in case of critical medical systems (e.g., IGT or iXR systems of Philips Healthcare

that are used during surgeries).

Recent developments of communication networks and easy-to-integrate sensors allow service organizations

to collect real-time data about the state of equipment, which provides enormous opportunities (PWC, 2014).

Especially, executing a perfect remote diagnosis upon failure of a capital good before a service engineer is

dispatched, will be a game changer in having the right spare part at the failed capital good in a timely

fashion. This diagnosis will namely indicate whether a particular spare part is needed and, if so, which part,

thereby enabling short solution times.

In this research, we want to analyze an innovative network design for a service region, from which we

expect that it can realize extremely short solution times by exploiting real-time data. Figure 1.1 shows the

conceptual model of this network design. In this design, there is a local warehouse and there are service

engineers that carry no car stock. We assume that, upon a failure of a system, a perfect remote diagnosis

can be executed. Subsequently, two procedures are initiated; i) a service engineer is dispatched to the failed

system; ii) the spare part is delivered from the local warehouse to the failed system by a fast transportation

mode (e.g., a parcel carrier). In the second procedure, we exploit the future possibility of remote diagnosis

such that the correct spare part is sent. It is important to note that whenever a service engineer is dispatched

to the failed system, it may leave a significant part of the service region without coverage. It could therefore

be beneficial to reposition idle service engineers to maintain a proper coverage level in anticipation of future

demand, after having dispatched a service engineer to a failed system. Furthermore, in practice, penalty

costs for not being able to repair a failed system before the solution time target is exceeded, are significantly

higher than the cost of repositioning idle service engineers. Consequently, repositioning idle service engineers

in a smart way could lead to significant savings in operating costs. When customers demand solution times

that are extremely low, service engineers have to be dispatched quickly upon a failure of system. This can

only be achieved when service engineers are predominantly idle, i.e. when their utilization is low. As a

result, the importance of repositioning idle service engineers in a smart way, will - in light of the trend of

decreasing solution times - only increase.

Managers of service organizations are faced with three decisions (not to be confused with the two procedures

that are initiated upon a failure of a system) in the design and control of such an innovative network:

1. How many service engineers are needed? (tactical)

2. How many and which spare parts should be stored in the local warehouse? (tactical)

3. How should service engineers be dispatched in response to or reposition in anticipation of a failure?

(operational)

3

Dispa
tch Servi

ce En
ginee

r

Spare Part

Reposition Service Engineer

Re
po
sit
ion

Se
rv
ice

En
gin

ee
r

Failure

Local
Warehouse

Figure 1.1: Illustration of network design

In practice, service organizations have contracts with their customers that prescribe the service that they

should attain in terms of a certain fraction of failed systems that should be repaired within a certain time

window (e.g., 95% of all failures should be repaired within 3 hours after the service call). Hence, we want to

design and control this network such that this service measure - specifically a very low threshold - is attained

in a cost-efficient way. In this thesis, we focus on the operational decision that has to be made, i.e. decision

3, and leave the other two decisions for future research. The reason for this is threefold. First, we are the

first to address this innovative network and we intend to start from the operational decisions before we move

on to the tactical decisions (i.e. a bottom-up approach). Second, despite the practical relevance and the

aforementioned relation between them, dynamic dispatch and reposition decisions have only been studied in

isolation in literature (as we will see in our literature review). To that end, by answering question 3 in this

thesis, we are the first to jointly consider dynamic dispatch and reposition decisions in a service logistics

network, thereby having a clear contribution to the related literature. Third, as we will see in the remainder

of this thesis, the complexity of question 3 is already sufficiently high to devote this whole thesis research to

it.

The overarching objective of this thesis is therefore to present a tractable optimization model that assists

decision makers in answering question 3. More specifically, we intend to come up with scalable heuristics

that perform well and which are focused on both pro-actively repositioning of service engineers and deciding

which service engineer to dispatch to service requests in a cost-efficient way. Despite the common usage of

scalability when addressing heuristics, the issue whether a heuristic can be deemed as scalable itself differs

from research to research depending on the objective of the heuristic. In this thesis we adopt the same

meaning of scalability of a heuristic as Caseau and Laburthe (1999), where a heuristic is scalable if it can

be used to make good decisions in a suitable time horizon in problems of real-life size. Since we address

4 Chapter 1. Introduction

a real-time problem, the length of a time horizon is suitable when decisions can be made instantaneously,

meaning that the time complexity of our proposed heuristics should be low.

The main contribution of this thesis is fourfold:

• We are the first to jointly address the real-time dispatch and reposition problem of service engineers in

a service logistics network to realize short solution times. We formulate the real-time service engineer

dispatch and reposition problem, which we solve to optimality for small instances. By means of a

numerical investigation, we are the first to show that the optimal policy for the dispatch and reposition

problem of service engineers exhibits certain behavior with respect to three aspects, i.e. location

strategy for idle service engineers, dispatching strategy of service engineers that takes into account the

state of the system, and reallocation of service engineers.

• We propose scalable dynamic and static heuristics for both the dispatch and reposition sub-problem,

based on the numerical investigation of the optimal policy. Our static heuristics are characterized by

rules of thumbs that are determined a-priori which are then always followed, regardless of the current

state of the network. By contrast, our dynamic heuristics are characterized by maximizing a goal

function that takes into account information about the current state of the network. Our proposed

dynamic dispatch heuristic, based on the minimum weighted bipartite matching problem, is the first

dynamic heuristic that assigns a fleet of service engineers to failed capital goods that takes into account

real-time data about the state of equipment and the current position of each service engineer. Both our

static and dynamic reposition heuristic are based on the maximum expected covering location problem

and they take into account both penalty costs and demand information of the capital goods, where the

dynamic variant maximizes the expected weighted coverage of future service requests.

• We compare our proposed heuristic dispatch and reposition policies on a wide range of both small

and large problem instances. In a small test bed, we show that our most advanced heuristic performs

excellent under specific circumstances, but strictly outperforms all other heuristics across all instances.

To show the practical value of our proposed heuristics, we conducted extensive numerical experiments

with service logistics networks of industrial size. In these numerical experiments we show that our

most advanced heuristic greatly outperforms (up to 61.9% savings) the myopic policy that is common

in current practice.

• We quantify the benefit of individually using either a dynamic dispatching heuristic, a dynamic reposi-

tioning heuristic of allowing reallocation in the policy. We show that savings of close to 50 percent can

be attained by letting each service engineer be eligible for dispatch and reposition decisions, regard-

less of whether they are on their way to their destination or have already reached their destination.

This quantification, which is currently lacking in the literature, shows that it is very beneficial from a

cost-perspective to relax the limitation of no reallocation, regardless of the policy used. This analysis

5

of individual benefits also shows that using the proposed dynamic dispatching heuristic, instead of the

widely adopted ‘closest-idle first’-policy heuristic, results in savings of 27.7%.

The remainder of this thesis is structured as follows. In Chapter 2, we provide a review of related literature

and we position the contribution of this work with respect to existing literature. In Chapter 3, we give a

formal problem definition. In Chapter 4, we translate the formal problem definition into a Markov Decision

Process. In Chapter 5, we present insights into the optimal policy that we use in designing eight scalable

heuristics in Chapter 6. In Chapter 7, we present a computational study to evaluate the performance of our

scalable heuristics in both a test bed for small instances and a test bed that is of industrial size. Finally, we

end with our conclusion and discussion in Chapter 8.

Chapter 2

Literature review

Maintenance and service logistics is a topic widely studied in the literature. One of the important areas in

maintenance and service logistics that has been studied extensively, is the area of spare parts management

(we refer the reader to Basten and Van Houtum (2014) and Van Houtum and Kranenburg (2015) for an

excellent overview of spare parts management), where the focus mainly lies on (multi-item) spare parts

optimization models. However, much lesser attention has been devoted to the planning or management of

service engineers that are required to install or repair these parts. In this research, we study the real-time

management of service engineers in service logistics networks.

We structure our literature review according to the solution time target that needs to be attained. We do

so since, as we see in the remainder of this chapter, the solution time target determines in which class of

problems the management of service engineers falls and hence also which analysis techniques are applicable.

The main focus lies in the range of short solution times, however in order to provide a complete overview, we

shortly discuss related literature when solution time targets are high and medium, respectively. We conclude

this chapter by providing an extensive overview of the related literature when solution time targets are low.

Here, we position our work and we also discuss why particularly this stream of literature relates to our

problem.

2.1 High solution times

At first glance, the main stream of literature that seems to be related to this work is the area of dynamic

vehicle routing problems. When solution time targets are high, management of service engineers mainly

consist of routing them dynamically (i.e. there is an explicit routing dimension inherent to the decisions

that are made) to known and upcoming requests throughout the day, which is a typical Dynamic Vehicle

Routing Problem (DVRP) (Laporte, 1992). We refer to Pillac et al. (2013) for an overview of the available

6

2.2 Medium solution times 7

techniques (e.g., Approximate Dynamic Programming (ADP), meta-heuristics) for DVRPs.

2.2 Medium solution times

When solution time targets are of medium level, management of service engineers should not only consist of

routing decisions but should also anticipate future demand with more caution. That is, the decisions should

reflect that in some regions service request could arrive in the near future by diverted routes from one service

request to another. Such a path would then anticipate a service request in between a route from one known

service request to another known service request, thereby increasing the chance of adhering to the solution

time target if the anticipated service request realizes. This problem relates to the new class of Anticipatory

Routing Problems (ARPs), which also falls under broad category dynamic and stochastic routing problems.

In ARPs, vehicles are routed dynamically to known demand in anticipation of future demand. Thomas

and White III (2004), Thomas (2007), Ulmer et al. (2015) and Ulmer et al. (2017) all studied ARPs and

developed algorithms based on Markov Decision Processes (MDP) to route a single vehicle. The research

of Ichoua et al. (2006) extended the problem to a multi-vehicle setting but they do not exploit real-time

information.

2.3 Short solution times

As stressed out in the introduction, we study the management of service engineers in service logistics net-

works to realize short solution times such that this challenge for service organizations can be coped with

in the near future. To the best of the our knowledge, there is no literature that explicitly focuses on this

subject. Moreover, real-time management of service engineers to realize short solution times, in contrast to

high or medium solution time target, is dominated by dispatching and repositioning decisions, instead of

(anticipatory) routing decisions This makes the problem inherently different from the aforementioned types

of problems. Consequently, even though the literature on dynamic and stochastic routing problems seems

applicable to our problem, we will not use results from, nor will we contribute to these streams. Hence,

we resort ourselves to a complete different stream of literature where the focus lies also on dispatching and

repositioning decisions, albeit in a different application domain.

Interestingly enough, the problem of planning the service engineers to realize short solution times, in isolation,

is not unique to service logistics, but also appears in the vast literature of ambulances and fire-fighters

management. For instance, in life-threatening emergencies, ambulances should be dispatched to and reach

these emergencies within extremely short response times. Since we want to realize short solution times, the

real-time management of service engineers in our network show similarities with the real-time management

8 Chapter 2. Literature review

of emergency providers.

In particular, the concept of Dynamic Ambulance Management (DAM), where the expected fraction of late-

arrivals of ambulances is minimized, has gained momentum in recent years. See Maxwell et al. (2014) for an

overview of the widely used techniques for DAM (e.g., MDP theory), where the main concern is the lack of

scalability to large-scale systems due to the curse of dimensionality (Powell, 2007). To overcome this, some

researches have focused on developing DAM heuristics based on Approximate Dynamic Programming (ADP)

(e.g., Maxwell et al. (2010) and Schmid (2012)), while Naoum-Sawaya and Elhedhli (2013) formulated DAM

heuristics based on two-stage Stochastic Programming, and Alanis et al. (2013) formulated a DAM heuristic

based on a two-dimensional Markov chain model. More recently, Van Barneveld et al. (2016),Van Barneveld

et al. (2017), Jagtenberg et al. (2015) and Jagtenberg et al. (2016) have considered DAM-policies in real-life

EMS networks, where they developed real-time heuristics that outperformed myopic polices.

The vast majority of the papers on DAM focuses on how to pro-actively reposition idle vehicles such that the

coverage is maximized. This ensures that future incidents get a larger likelihood of being reached in time,

thereby increasing the total expected fraction of incidents that can be reached within the time threshold.

Jagtenberg et al. (2015) show that pro-actively repositioning significantly outperforms static policies in which

idle ambulances always return to a base station in terms of minimizing late-arrivals. With regard to the

actual dispatching (i.e. deciding which ambulance to dispatch to incidents), most articles assume a static

dispatch rule: whenever an incident occurs they use the ‘closest-idle first’-policy. Such a ‘closest-idle first’-

policy is due to both regulatory and ethical reasons most common in practice (Schmid, 2012), but, as the

research of Jagtenberg et al. (2016) shows, at the same time far from optimal if the goal is to minimize

late-arrivals . Intuition behind this sub-optimality lies in the notion of coverage. Always sending the closest-

idle vehicle could lead to a, from a system perspective, sub-optimal coverage, thereby decreasing the total

expected fraction of incidents that can be reached within the time threshold.

Only few papers in the DAM literature focus on dynamic dispatching methods, which is also the focus of

our research. The exceptions are Jagtenberg et al. (2016), Naoum-Sawaya and Elhedhli (2013) and Schmid

(2012), where Naoum-Sawaya and Elhedhli (2013) and Schmid (2012) are the only ones that jointly address

dynamic dispatching and dynamic repositioning policies. Dynamic dispatching methods, in contrast to static

dispatching methods such as the ‘closest-idle first’-policy, take into account the current state of the system

in the dispatch decision. Hence, dynamic dispatching methods do not rely on a-priori decision rules that are

always taken regardless of the state of the system, as is the case with their static counterpart.

Jagtenberg et al. (2016) consider dynamic dispatching of ambulances to requests, where the objective is

to minimize late-arrivals (i.e. arrivals that exceed a certain time threshold). The problem is formulated

as an MDP and due to the restriction that ambulances always have to return to a static base station (i.e.

they consider a static reposition policy), their state space remains tractable. Hence, using value iteration,

2.3 Short solution times 9

the authors are able to compute the optimal policy. For larger instances, they propose a fast and efficient

heuristic based on the maximum expected covering location problem (Daskin, 1983) which performs close

to the optimal solution from the MDP. In this research, we also use structural results from the maximum

expected covering location problem to design an efficient heuristic, albeit in a different way. There are two

differences between their problem and our problem. First, idle ambulances always return to their static

base station, which is know to be suboptimal (see Jagtenberg et al. (2015)), whereas in our problem, service

engineers can immediately serve other service calls without returning to their base station. Second, similar

to the research of Schmid (2012), if there are idle ambulances and an incident occurs, an ambulance has to

be dispatched, which is not the case in our research.

Naoum-Sawaya and Elhedhli (2013) formulate a two-stage stochastic optimization model for both the rede-

ployment and dispatching of ambulances that minimizes the number of re-locations over a planning horizon

while maintaining an acceptable service level. Their approach falls in the class of periodic re-optimization

methods (see Pillac et al. (2013)), as they solve the problem periodically for each planning horizon. In this

approach, critical information is revealed over time, meaning that the complete instance is only known at

the end of the planning horizon. As a consequence, the method only provides solutions for the current state

which relies on currently available data, but do not guarantee that the solution will remain good once new

data becomes available. In this thesis however, we intend to integrate stochastic knowledge about future

states analytically such that we formally capture the stochastic nature of the problem. Furthermore, their

modeling approach relies on the assumption that scenarios are known and that they are of medium size,

such that optimization can take place instantaneously. By contrast, in service logistics of real-life size, this

assumption will probably not hold, which makes this modeling approach not suitable for our problem.

Schmid (2012) considers both the dispatching of ambulances to request sites and the repositioning of ambu-

lances before and after they have served a request. They propose a dynamic programming model and solve

this model using ADP due to the intractability of it. There are two differences between their study and our

problem. First, if there are idle ambulances and an incident occurs, an ambulance has to be dispatched.

In our problem, we can choose to postpone a service call. Second, after an incident, an ambulance always

returns to the hospital before becoming idle again whereas in our problem a service engineer is immediately

available after the visit.

Even though the same decisions (i.e. dispatch and reposition decisions) have to be made in our research

and DAM research, there are two differences with our research that all aforementioned DAM studies have

in common. First, in DAM literature, all models limit themselves by imposing the constraint that once a

decision has been made (either to dispatch or to reposition) the vehicle becomes eligible for a new decision

once it has completed its service or has arrived at its final location. In other words, reallocation is not allowed.

We hypothesize however that it could be beneficial to reallocate (e.g., when a service request arrives on

or next to a already determined route of a service engineer) and we therefore include and analyze this

10 Chapter 2. Literature review

possibility in our research. Second, whereas the performance in DAM studies is predominantly formulated

in response times (actual time between arrival of emergency and arrival at the scene) for obvious reasons,

the performance in our research is formulated in monetary terms. In the former, being to late at a scene

can result in life-threatening situations (or worse, casualties), whereas in the latter a penalty cost will be

incurred, which is a fundamental difference that we need to include in our research.

As stressed out in the introduction, we intend to come up with scalable heurstics that perform well in practice

and are focused on both pro-actively repositioning of service engineers and deciding which service engineer

to dispatch to failures. Here, the goal is to minimize the late-arrivals after a certain threshold such that a

certain performance measure is attained. More specifically, we intend to integrate the models of Jagtenberg

et al. (2015), Jagtenberg et al. (2016), Schmid (2012), and extend the models in light of the differences,

where we especially incorporate the possibility of reallocation. Our goal is to use the same techniques to

formulate the problem, namely techniques from Markov decision theory. Subsequently, we use exact analysis

(e.g., value iteration) in case of small instances and in order to understand the optimal policy, and then

develop scalable heuristics for larger instances of industrial size. The quality of these scalable heuristics can

then be compared to static policies that are mostly used in practice using simulation.

Chapter 3

Model description

In this chapter, we introduce the real-time service engineer dispatch and reposition problem. We first

formulate the dispatch and reposition problem in mathematical terms and describe the problem in more

detail. We then conclude this chapter by both summarizing and justifying the assumptions we have made

in modelling the dispatch and reposition problem.

3.1 Dispatch and reposition problem

We model the service region of interest as a graph, with finite node set N . For notational convenience,

the nodes are assumed to be numbered n = 1, . . . , |N |. There are two types of nodes: demand nodes and

non-demand nodes. The former are nodes where capital goods are installed and hence where demand can

occur. Additionally, service engineers can wait at these nodes in anticipation of future demand or travel via

these nodes to other nodes. The latter are nodes in the network where service engineers can only reside in

anticipation of future demand or nodes that lie on their route when they are dispatched to failures. These

disjoint sets are denoted by N d and Nw = N \ N d, respectively. Hence, the sole purpose of non-demand

nodes i ∈ Nw is waiting or routing, whereas demand nodes j ∈ N d have the additional property that

demand can occur at these nodes. For simplicity, we number the nodes in such a way that the first |N d|
nodes in the numbering represent the demand nodes, i.e.; N d = {1, 2, . . . , |N d|}, Nw = {|N d|+ 1, . . . , |N |}.
Furthermore, let Ni ⊆ N be the set of neighboring nodes of node i ∈ N . The total number of identical

service engineers in this region is denoted by N and we assume that service engineers are indistinguishable.

We assume that the length of each edge equals 1, so it takes one time step to traverse an edge. Consequently,

our graph is a unit distance graph, which is a special case of a graph where all edges have length 1. Hence,

time is discretized in time steps of ∆t, which enables us to keep the problem size and its analysis tractable

(as we will see in the next chapter). These discrete points in time also mark the decision epochs at which

11

12 Chapter 3. Model description

all information about the events that occurred in the preceding time step becomes available to the decision

maker. As a consequence, it takes a service engineer ∆t time (e.g., 20 minutes) to cross an edge. In practice,

the graph should be constructed in such a way that ∆t is sufficiently small enough to model service engineer

movements. To model more realistic situations, one could decrease ∆t, but then the graph should be scaled

accordingly by adding more nodes and edges. For ∆t→ 0, this model becomes continuous in both time and

space.

At each node i ∈ N d, we assume that exactly one capital good is installed. The capital good is composed of

critical and non-critical components. When a critical component of a machine fails, the whole machine goes

down, while a machine can continue its functioning upon the failure of a non-critical component. We limit

ourselves to the failures of critical components, since these failures have a high impact in terms of downtime.

Furthermore, the components under consideration that fail are only repaired by replacement, meaning that

we limit ourselves to corrective maintenance. Such a failed part will be replaced by a new part, for which

we here assume that it has arrived at or before the service engineer arrives (this relates to the spare parts

planning sub-problem).

Upon the failure of a component, a service request arrives at the start of the next decision epoch at the

central decision maker. In practice, this is often either the original equipment manufacturer or a service

organization that is responsible for the maintenance function. The decision maker now has to choose how

to dispatch and reposition service engineers such that this service request is fulfilled in the near future.

Note that he may also choose to postpone service requests. That is, not immediately deciding to dispatch

a service engineer to this node or to start the repair. When a service engineer arrives or already resides

at the node where the failed capital good is installed, the repair can start after the central decision maker

decides to perform a repair at that particular node, which takes ∆t time units by assumption. See Figure

3.1 for a graphical representation of this repositioning and dispatching process. Here, a capital good fails

during [∆t, 2∆t), for which the service request arrives at the central decision maker at t = 2∆t. The central

decision maker now decides to reposition a service engineer in the direction of the failed capital good. At

t = 4∆t, a service engineer arrives at the failed capital good, after which the decision maker immediately

decides to repair the capital good. This repair is finished at t = 5∆t, after which the service engineer is

again repositioned.

Central decision maker:

System:

∆t 2∆t 3∆t 4∆t 5∆t 6∆t

Capital good fails

Service request
and reposition

Successful
repair

Service engineer
arrives at node

Start repair Reposition

Figure 3.1: Order of events

3.1 Dispatch and reposition problem 13

The failures of the components at each node i ∈ N d, occur according to a Poisson process (i.e. their lifetimes

are exponentially distributed random variables) with rate λi(∆t). Although λi(∆t) depends on the chosen

time step size ∆t, we will omit this dependence in the remainder of this thesis by simply choosing, without

loss of generality, ∆t = 1. Let us define p0
i (∆t) and p1

i (∆t) as the probability that the capital good at node

i ∈ N d has failed and not failed, respectively, during discrete time step ∆t. Similar to the parameter of the

Poisson process, these probabilities depend on the chosen time step size ∆t, but we again select ∆t = 1 and

omit this dependence in the remainder of this thesis. Since demand at node i ∈ N d occurs according to a

Poisson process with a constant rate λi, we have: :

p0
i = P (Xi < 1) = 1− e−λi . (3.1)

p1
i = 1− P (Xi < 1) = e−λi , (3.2)

where Xi represents the life time distribution of the critical component in the capital good at demand node

i, which is an exponentially distributed random variable. Our objective is, first of all, formulated in terms

of the solution times to failures: The time between the arrival of the service request and the moment a

service engineer completes the repair of the failure. In service logistics networks, service contracts postulate

a solution time threshold T for solution times (which is equal to the time between the moment the service

request becomes known to the decision maker and the moment the repair has been completed) that should be

achieved for a certain fraction of service requests (e.g., service requests should be solved within 100 minutes).

Otherwise, a cost penalty, denoted by αi (<∞) for node i ∈ N d, has to be paid by the service organization to

their customer. Therefore, we look for a dynamic dispatch and reposition policy that minimizes the fraction

of service requests for which the solution time is larger than T .

Second, in practice, service organizations also often want to serve the delayed service requests as fast as

possible even though the solution time is larger than T . This is mostly because a linear penalty cost,

denoted by βi (< ∞) for node i ∈ N d, is agreed upon for delayed service requests for the time period

between the time threshold T and the point in time that the capital good is repaired.

Finally, service organizations also incur costs that are related to traveling of their service engineers, we

therefore assign a weight γ (< ∞) to the number of edges that are traveled by the service engineers,

representing the traveling costs (e.g., gasoline, insurance). Hence, as we will see in the next chapter where

we present the mathematical formulation of the problem, we formulate the objective such that all relevant

costs are taken into account. Interviews with our industrial partner, a large manufacturer of industrial

printers, confirmed that this cost structure indeed captures all relevant costs that are common in practice.

As a performance criterion, we are interested in the long-run average cost per time unit.

14 Chapter 3. Model description

3.2 Overview of assumptions

We summarize and discuss the main assumptions introduced in the previous section:

1. Service engineers are indistinguishable. This assumption is made since we are interested in dynamic

dispatching and reposition policies from a system perspective, meaning that we centrally organize the

fleet of service engineers. To solely focus on the configuration of the whole fleet, we assume that each

service engineer can be treated equally. In practice, this assumption is justified if service engineers have

the same background and training which results in that they have developed the same set of skills.

2. The length of each edge equals 1, which takes one time step ∆t to traverse. For ∆t→ 0, this model not

only becomes continuous in both time and space but also more accurate, which results in a realistic

model. For larger values of ∆t, the model becomes less accurate in the sense that the model does not

differentiate between events that occur at the start and end of time period [t, t+ ∆t).

3. Each node i ∈ N d has exactly one installed capital good. We use this assumption to keep the state

space tractable in our model formulation, which we will see in the next chapter. From a practical point

of view, if multiple capital goods are installed at a location, then one could model this situation by a

single node for each of these goods. Consequently, this means that even though the distance between

these goods are zero from a practical point of view, they are separated ∆t from each other from a

modeling perspective. When ∆t becomes small, this difference not only becomes negligible but also

allows us to differentiate in repairing individual capital goods at a single location which could lead to

a more flexible policy. Furthermore, interviews with our industrial partner confirmed that, due to high

investment costs of these capital goods, most locations have only one installed capital good, with a few

locations having more than one installed capital good.

4. Repair times are deterministic and take ∆t time units. The assumption of deterministic repair times

is justified since in our model, it is known beforehand which spare part needs to be repaired. Hence,

service engineers are prepared for the repair which means that we can consider the variability in the

duration of the repair as negligible. Furthermore, it allows us to formulate the problem with a tractable

mathematical model, which we will see in the next chapter. In the next chapter, we also show that our

model can easily be extended to incorporate deterministic repair times that are an integral multiple of

∆t, resulting in a more realistic model.

5. Service requests (demand) at each node arrive according to a Poisson process with constant rate. This

is a common assumption in literature and allows a tractable analysis as we will see in the next chapter.

Moreover, the assumption is often justified in practice(cf. Caglar et al. (2004); Sherbrooke (2006);

Graves (1985)). Additionally, it is reasonable to assume constant failure rates since in practice, long

3.2 Overview of assumptions 15

down-times of capital goods are not allowed.

Despite the benefit of being able to formulate a tractable model due to the key assumption in our model,

i.e. both time and space are discretized in steps of length ∆t, it considerably simplifies the problem at hand.

Consequently, the results of our tractable model do not hold directly in practice, but should be looked at

while taking into account the limitations of this key assumption. We reflect on these limitations in Chapter

8.

Chapter 4

Markov decision process formulation

In this chapter, we model the problem that has been discussed in the previous chapter as a Markov Decision

Process (MDP). We start by formulating the state space, which remains tractable due to our choice to

discretize both space and time. We then describe the action space, which is focused on both the configuration

of the fleet of service engineers and the repairs. Subsequently, the transition probabilities are discussed. The

MDP formulation is then finalized by formulating the direct expected cost, which takes into account costs

for both reaching a failure too late, i.e. exceeding the solution time threshold, and for the total travel

distance of the service engineers. We conclude this chapter by providing an illustrative example that shows

the underlying dynamics of our MDP.

4.1 State space

For each node i ∈ N d, the tuple si = (yi, σi), represents the local state of node i, where yi ∈ {0, 1, . . . , N}
represents the number of service engineers that are currently residing at node i, and σi ∈ {0, 1, . . . , T̂}
denotes the state of the capital good at node i. To be more precise, σi = 0 indicates that the capital good is

up and running, whereas σi ∈ {1, . . . , T̂} means that the capital good has failed for σi time units, for each

node i ∈ N d. Thus, by setting T̂ = b T∆tc+ 1, σi = T̂ means that the capital good has failed for longer than

solution time threshold T . Consequently, in light of our goal to minimize the fraction of service requests

that exceed solution time threshold T , we only need to capture information about the state of the capital

good until σi = T̂ . With regard to the non-demand nodes, for each node i ∈ Nw the local state si = (yi)

only contains the number of service engineers that are currently residing at node i. In the remainder of this

thesis, we use y and Σ to denote the state vectors (yi)i∈N and (σi)i∈Nd , respectively. The state space of

the entire system can be represented as:

S = {(si)i∈N } = {(s1, s2, . . . , s|N |)}

16

4.2 Action space 17

Throughout this thesis, we use yi(s) and σj(s) to denote the number of service engineers at node i ∈ N
and the state of the capital good at node j ∈ N d, respectively, when the state of the system is s ∈ S.

The size of the state space, |S|, is restricted by imposing a logical constraint. As the total number of

service engineers in our system is equal to N < ∞, we have that
∑
i∈N

yi(s) = N for each s ∈ S. Hence,

|S| = (T̂ +1)|N
d| ·
(|N |+N−1
|N |−1

)
, where the latter term represents the number of ways of distributing N identical

service engineers among |N | nodes such that each node can have 0 or more (≤ N) service engineers.

As a final note, our MDP formulation can easily be extended to incorporate deterministic repair times that

are an integral multiple of ∆t. Let ri be the deterministic repair time that is required for the repair of

the capital good located at demand node i ∈ N d. We then add for each demand node i ∈ N d a new

state parameter, denoted by zi, to tuple si that represents how many time units ago a repair started, with

zi ∈ {0, 1, . . . , r̂i}. Then, by setting r̂i = ri
∆t , we can model deterministic repair times that are an integral

multiple of ∆t and which can depend on the capital good located at demand node i ∈ N d. The action space

and transition probabilities should also be changed accordingly, resulting in a higher dimensional MDP.

4.2 Action space

At each state s ∈ S, a set of actions As can be performed, which is a subset of the action space A (i.e.

A =
⋃
s∈S As). Such an action specifies for each node n ∈ N how many service engineers will be sent to

each of its neighboring nodes, and for each node m ∈ N d where a capital good has failed and at least one

service engineer resides, whether a repair should be carried out or not.

The action space As can be represented as:

As = {(Ai)i∈N , (Ri)i∈Nd} = {(A1, A2, . . . , A|N |), (R1, R2, . . . , R|Nd|)},

where tuple Ai = (ali)l∈Ni , with ali ∈ N0, represents the number of service engineers that are sent from node

i to neighbouring node l and Ri ∈ {0, 1} represents whether a repair is performed (Ri = 1) or not (Ri = 0)

at node i ∈ N d. Analogously to the state space, the action space is thus a Cartesian product of local actions

that apply to individual nodes in the graph. The actions are locally interacting (i.e. actions Ai and Ri solely

influence xi, {(xj)j∈Ni} or both) and the interaction network can be represented by the underlying graph.

The action space As is subject to the following restrictions:

Ri ∈ {0, 1} ∀i ∈ {j ∈ N d|yj(s) ≥ 1 ∧ σj(s) 6= 0} (4.1)

Ri = 0 ∀i ∈ {k ∈ N d|yk(s) = 0 ∨ σk(s) = 0} (4.2)∑
l∈Ni

ali +Ri ≤ yi(s) ∀i ∈ N d (4.3)

18 Chapter 4. Markov decision process formulation

∑
l∈Ni

ali ≤ yi(s) ∀i ∈ Nw (4.4)

Equation (4.1) states that when at least one service engineer is at a node i ∈ N d where a capital good has

failed, we can take the decision to either repair (Ri = 1) or not (Ri = 0) (Equation (4.2)). For demand

nodes, where there is no service engineer or the capital good is up and running or both, the default action

to not repair the capital good (i.e. Ri = 0) is taken. Then, when the action to repair the capital good at

node i ∈ N d, is taken, at least one service engineer has to reside at node i after the concurrent reposition

actions are taken. This is expressed in Equation (4.3). Here, we assume that only one service engineer is

needed to repair the failed capital good (the service engineer that remains at node i) and that a repair is

non-preemptive. This is a reasonable assumption since in practice, repairs mostly require only one service

engineer that completes the repair once started. Equation (4.4) states that the total number of service

engineers that leave a certain node should be less than or equal to the number of service engineers that are

currently residing at that node.

All other actions from As that are not restricted by Equations (4.1)-(4.4) are feasible. This completely

defines the allowed action space for each state. Hence, all service engineer movements are allowed, except

that once the action to repair a capital good at a node is taken, at least one service engineer has to remain

at this node to repair the capital good, which takes ∆t time units.

4.3 Transition probabilities

Let Pa(s, s′) denote the probability that action a in state s at time t will lead to state s′ at time t + ∆t.

This probability depends on the local transitions that occur at each node, i.e. the randomness in our model

stems from the independent transitions that occur locally at each node i ∈ N during discrete time step ∆t.

More specifically, the state s′ to which the system transitions after taking action a in state s is determined

by three factors:

1. The random event that a capital good fails or not. This influences state vector Σ.

2. The decision to carry out a repair or not. This also influences state vector Σ.

3. The configuration actions of the service engineers. This impacts state vector y through Equation (4.6).

Let P̂a(si, s
′
i) be the probability that non-demand node i ∈ Nw goes from local state si to local state s′i due

to action a. Analogously, let P̄a(si, s
′
i) be the probability that demand node i ∈ N d goes from local state si

to local state s′i due to action a. Then we can define Pa(s, s′), which is the product of the local transition

4.4 Direct expected cost 19

probabilities, as follows:

Pa(s, s′) =
∏
i∈Nw

P̂a(si, s
′
i)
∏
j∈Nd

P̄a(sj , s
′
j) (4.5)

With regard to the non-demand nodes, P̂a(si, s
′
i), can only take value 0 and 1, namely:

P̂a(si, s
′
i) =

1 if yi(s

′) = yi(s) +
∑
l∈Ni

ail −
∑
l∈Ni

ali

0 otherwise

Logically, P̂a(si, s
′
i) takes value 1 if flow balance Equation (4.6) holds, otherwise, this local transition cannot

occur. Just as with the non-demand nodes, for each of the local transitions from si to s′i through action a

at demand node i ∈ N d, it needs to hold that:

yi(s
′) = yi(s) +

∑
l∈Ni

ail −
∑
l∈Ni

ali (4.6)

Then, P̄a(si, s
′
i) is defined as (in each of these cases Equation (4.6) also needs to hold):

P̄a(si, s
′
i) =

p1
i if [σi(s) = 0 ∧ σi(s′) = 0]

p0
i if [σi(s) = 0 ∧ σi(s′) = 1]

1 if [σi(s) 6= 0 ∧ (Ri = 1 ∧ σi(s′) = 0)] ∨

[σi(s) 6= 0 ∧ (Ri = 0 ∧ σi(s′) = min{σi(s) + 1, T̂})]

0 otherwise

In words, P̄a(si, s
′
i) takes value p1

i (see Equation (3.1) in Section 3.1), if the capital good at demand node

i does not fail during discrete time step ∆t. Next, the capital good at demand node i fails during discrete

time step ∆t with probability p0
i (see Equation (3.2) in Section 3.1), leading to a transition from σi(s) = 0

to σi(s
′) = 1. For each demand node i where a capital good has failed, it can either be repaired or not,

depending on the action, leading to σi(s
′) = 0 or σi(s

′) = min{σi(s) + 1, T̂}, respectively, with certainty.

Additionally, the flow balance of service engineers needs to hold (see Equation (4.6)). Other local transitions

cannot occur.

4.4 Direct expected cost

Along with taking action a in state s, we incur a direct expected cost, denoted by Ca(s), which consist of

three parts; a cost for exceeding the solution time threshold T , a cost for each additional time unit by which

20 Chapter 4. Markov decision process formulation

the solution time threshold T is exceeded, and a cost for the total distance traveled by the service engineers.

Ca(s) is then defined as:

Ca(s) =
∑
i∈Nd

αi · 1[σi(s)=T̂−1 ∧ Ri=0] +
∑
j∈Nd

βj · 1[σj(s)=T̂ ∧ Rj=0] + γ ·
∑
i∈N

∑
l∈Ni

ali, (4.7)

where 1[x] denotes the indicator function, which is 1 if x holds and 0 otherwise. This cost function assigns a

weight to the number of service requests whose solution times exceed T , to the amount of remaining delayed

service requests and to the amount of edges that are traveled by the service engineers. In practice, the latter

represents costs related to traveling (e.g., gasoline, insurance). The magnitude of α, β and γ determines the

emphasis that is put on maximizing the amount of service requests that are resolved within solution time

T , minimizing the delay with which service requests are fulfilled, or minimizing the distance that is traveled

by the service engineers.

4.5 Example

Figure 4.1 shows an example of a transition from state s to s′ through action a. In this example, with T̂ = 4,

we have a small network with N = {1, . . . , 9}, with red and green demand nodes, N d = {1, 2, 3, 4}, which

are demand nodes with failed and non-failed capital goods, respectively. The remaining five grey nodes are

the waiting nodes. Neighboring nodes are nodes that are connected with edges, e.g., N7 = {5, 6, 8, 9} and

N1 = {5, 6}. There are 3 service engineers in this network. In state s, 2 service engineers reside at node 1

and 1 service engineer resides at node 8, hence y1(s) = 2 and y8(s) = 1. Lastly, the capital good at node 1

has failed for 3 time units and the capital good at node 2 for 1 time unit, hence σ1(s) = 2 and σ2(s) = 1.

The decision maker now decides to reposition two service engineers and repair the failed capital good at node

1 through action a, with a5
1 = 1, a2

8 = 1 and R1 = 1, after which the system transitions to state s′. Next to

the changes in yi(s
′) ∀i ∈ N , σ1(s′) has made a transition. The service engineer that remained at node 1

has repaired the capital good and therefore σ1(s′) = 0. Since the capital good at node 2 was not repaired

during the transition from state s to s′, σ2(s′) has increased with one. Finally, the capital goods at node 3

and node 4 have failed (σ3(s′), σ4(s′) = 1) during discrete time step ∆t.

4.5 Example 21

State s ∈ S

1

y1(s) = 2
σ1(s) = 3

5

y5(s) = 0

2

y2(s) = 0
σ2(s) = 1

6

y6(s) = 0

7

y7(s) = 0

8

y8(s) = 1

3

y3(s) = 0
σ3(s) = 0

9

y9(s) = 0

4

y4(s) = 0
σ4(s) = 0

Action a ∈ As

1

R1 = 1

5 2

6 7 8

3 9 4

a28 = 1

a51 = 1

State s′ ∈ S

1

y1(s
′) = 1

σ1(s
′) = 0

5

y5(s
′) = 1

2

y2(s
′) = 1

σ2(s
′) = 2

6

y6(s
′) = 0

7

y7(s
′) = 0

8

y8(s
′) = 0

3

y3(s
′) = 0

σ3(s
′) = 1

9

y9(s
′) = 0

4

y4(s
′) = 0

σ4(s
′) = 1

Figure 4.1: Illustration of transition of states

Chapter 5

An exact approach

In this chapter, we first describe an exact solution algorithm with which we solve the MPD, as formulated in

the previous chapter, to optimality. We will then perform a numerical investigation to gain insights into the

structure of the optimal policy. However, as our MDP can only be solved to optimality for small instances

due to the curse of dimensionality1, we will perform this numerical investigation on a small network. These

insights will be helpful in developing a scalable heuristic that can be used for larger instances, as we will do

in the next chapter.

5.1 Value iteration

In Sections 3.1 and 4.1, we restricted the state space by imposing a logical constraint that ensures that

both the state space and the action space are finite. Additionally, the transition cost function (see Section

4, equation (4.7)) is also bounded from above. A stationary average optimal policy exists that can be

determined using the value iteration algorithm (Puterman, 2014), if the model would also be unichain2.

Following the same logic as Olde Keizer et al. (2017), who applied the value iteration algorithm to the joint

maintenance and inventory optimization problem, our model can contain multiple recurrent states. If for

instance all service engineers reside at a waiting node and the stationary policy (for each state s) is to let

all service engineers stay at their node, i.e. ali = 0 ∀ l ∈ Ni, ∀ i ∈ Nw. Using this policy, each capital good

at each node i ∈ N d will be in the failed state σi(s) = T̂ in the long run, and the initial configuration of the

service engineers will remain unchanged. The transition matrix corresponding to this action then contains(|Nw|+N−1
|Nw|−1

)
recurrent states (the number of unique configurations of N service engineers in a network with

|Nw| nodes). Consequently, our model is multichain rather than unichain.

1The well-know curse of dimensionality refers to the size of both the state space, action space and outcome space that
increases rapidly in a high-dimensional MDP like we have formulated in Section 4 (Powell (2007)).

2An MDP is unichain if the transition matrix corresponding to every deterministic stationary policy consists of a single
recurrent class and a (possibly empty) set of transient states (Puterman, 2014).

22

5.1 Value iteration 23

However, as long as the value of α and β in the cost function are positive, it is realistic to assume that any

optimal policy repairs a failed capital good at some point in time. This means that our model does satisfy

the weak unichain assumption3 as defined in Tijms (1994). As a result, we can find the minimal average

cost per time unit and the corresponding optimal policy by applying the value iteration algorithm.

The minimal average cost per time unit, denoted by g∗, is independent of the initial state, and follows from

the Bellman optimality equations (see Bellman (1957)) for the (discrete-time) average cost MDP:

v∗(s) = min
a∈As

[
Ca(s) +

∑
s′∈S

Pa(s, s′) · v∗(s′)
]

∀s ∈ S, (5.1)

where v∗(s) is the optimal value of state s. The optimal stationary policy, denoted by π∗, which consists of

the optimal action for each state s ∈ S, f∗(s), is the policy that attains the minimum in (5.1). Note that

action f∗(s) is the action that minimizes the expected value of the resulting state s′.

We solve the fixed-point equations in (5.1) by applying the value iteration algorithm (see Tijms (1994)), which

is shown in Algorithm 1. Here vn denotes the value function obtained with the n-th iteration. Observe that

the number of optimality equations grows linearly with the number of states. Hence, the number of optimality

equations grows exponentially in the number of demand nodes and/or as a combinatorial number when the

total number of nodes and/or number of service engineers grow. As a result, the optimality equations in

(5.1) can only be solved for small networks.

Algorithm 1 Value Iteration

Require: ε > 0, n = 0, v0(s) = 0 ∀s ∈ S
1. For each s ∈ S, compute the value function vn+1(s) as:

vn+1(s) := max
a∈As

{
Ca(s) +

∑
s′∈S Pa(s, s′)vn(s′)

}
and select a stationary policy fn+1(s) which minimizes the value function:

fn+1(s) ∈ argmaxa∈As
{
Ca(s) +

∑
s′∈S Pa(s, s′)vn(s′)

}
2. Let

Mn := maxs∈S{vn(s)− vn−1(s)}, mn := mins∈S{vn(s)− vn−1(s)}

stop if Mn −mn < ε, otherwise set n := n+ 1 and go to step 1

Let fn denote the stationary policy which minimizes the value function for n ≥ 1, and let gs(fn) denote

the corresponding one-step difference vn(s) − vn−1(s). Since gs(fn) is, in the long rung, independent of

initial state s, we drop the index s and denote it by g(fn). Then it holds that mn ≤ g∗ ≤ g(fn) ≤ Mn,

for all s ∈ S, where the sequences {mn, n ≥ 1} and {Mn, n ≥ 1} are non-decreasing and non-increasing,

respectively (Tijms, 1994). In other words, the sequence {vn(s), n ≥ 1} converges to v∗(s) for each s ∈ S
when n grows large. Additionally, g(fn), the average cost per time unit resulting from policy fn, deviates

3For each average cost optimal stationary policy, the associated Markov chain has no two disjoint closed sets (Tijms, 1994).

24 Chapter 5. An exact approach

at most 100ε percent from g∗.

5.2 Numerical investigation

In this section, we numerically investigate the structure of the optimal policy obtained with Algorithm 1 with

ε = 10−3 for a small, tractable region. See Figure 5.1 for the graph representation of the small, tractable

region, which consists of a grid with |N | = 9 and |N d| = 4. We consider two service engineers, i.e. N = 2.

We use this example throughout this section. Note that the red demand nodes (1 and 4) represent nodes

where a capital good has failed, whereas green demand nodes (2 and 3) represent nodes where a capital

good is up and running. Furthermore, the black rectangles represent the time a failed capital good has

failed (recall that this is equal to σi(s) in our MDP formulation). For instance, the capital good at node

1 has failed for one time unit, whereas the capital good at node 4 has failed for two time units and T̂

is equal to 3. We first investigate the structure of the optimal policy for symmetric instances, where the

characteristics of the demand nodes are equal. We then continue with investigating the structure of the

optimal policy for asymmetric instances, where the characteristics of the demand nodes differ from each

other. All computations were carried out on a PC running Windows (64 bit) with an Intel Quad Core 2.20

GHz processor and 8 GB RAM. The average computation time to calculate g∗ for a single instance of this

small network is on average equal to approximately 100 minutes.

1∎◻
◻

5 2 ◻◻
◻

6 7 8

3◻◻
◻

9 4 ∎∎
◻

Figure 5.1: A graph representation of the small network under study

We emphasize that instead of characterizing the structure of the optimal policy or determining the perfor-

mance in terms of the optimal cost rate, we intend to derive insights into how the optimal policy behaves.

This is the subject of the remainder of this chapter. We will then use these insights to come up with a

scalable heuristic that can be used for larger instances, which is the focus of the next chapter.

5.2 Numerical investigation 25

5.2.1 Symmetric case

In the symmetric case we set ∆t equal to 1 and take λi = 0.105 ∀i ∈ N d, which results in p0
i = 0.1, p1

i =

0.9 ∀i ∈ N d. Furthermore, we take two values for γ ∈ {0, 0.5}, and we subsequently vary the values of αi,

βi and T̂ , where the former two are equal for all nodes i ∈ N d due to symmetry. Note that this choice

seems reasonable in practice. Whereas the cost for traveling is rather fixed and relatively small compared to

contractual penalties, the costs for service requests whose solution times exceed T and for solving delayed

service requests and the solution time threshold depend on the agreement between the service organization

and the customer and can thus vary. Moreover, in practice it is not reasonable to set βi > αi since the

primary purpose is mostly to maximize the amount of service requests that are served within T . We

therefore choose three combinations (αi � βi, αi > βi and αi = βi) of values for αi and βi, that is (αi,

βi) ∈ {(5, 1), (5, 3), (5, 5)}. We choose three values for T in our numerical investigation, namely T ∈ {2, 3, 4},
which results in 18 test instances. See Table 5.1 for an overview of the parameter settings in the numerical

investigation of the symmetric case.

Table 5.1: Parameter settings of numerical investigation of symmetric case

Input parameter No. of choices Values
1 Travel cost, γ 2 0, 0.5
2 Time threshold, T 3 2,3,4
3 Cost penalties, (αi, βi) 3 (5, 1), (5, 3), (5, 5)

The main observations that can be drawn from the numerical investigation of the symmetric case is that

the optimal policies (regardless of the parameter settings in most cases) exhibit similar characteristics with

regard to three aspects, which we will discuss in the remainder of this subsection. These three aspects relate

to the location strategy for idle service engineers, the dispatching strategy of service engineers that takes

into account the state of the system, and the reallocation of service engineers.

Dwell point policy

In warehousing literature, a dwell point policy prescribes the position of idle order-pick equipment (see

Rouwenhorst et al. (2000)), which is analogous to a base location policy in DAM literature. The latter refers

to positions in an emergency services network where idle ambulances are sent to such that the response times

to future emergencies is minimized.

Figure 5.2a shows that whenever there are two idle service engineers, which can best be shown when all

demand nodes have capital goods that are up and running, it is optimal to send them to node 6 and node

8 (or node 5 and 9 due to symmetry). Furthermore, Figure 5.2b shows that it is optimal to keep the idle

service engineers at node 6 and node 8, if no failure occurs, which makes these two nodes dwell points. This

26 Chapter 5. An exact approach

is also quite intuitive since all demand nodes are reached from there within one time step.

1◻◻
◻

5 2 ◻◻
◻

6 7 8

3◻◻
◻

9 4 ◻◻
◻

SESE

(a) Idle service engineers reposition to dwell points

1◻◻
◻

5 2 ◻◻
◻

6 7 8

3◻◻
◻

9 4 ◻◻
◻

SE SE

(b) Idle service engineers stay at dwell points

Figure 5.2: Optimal policy exhibits a static dwell point policy

1∎◻
◻

5 2 ◻◻
◻

6 7 8

3◻◻
◻

9 4 ◻◻
◻SE

SE

(a) Idle service engineer repositions to dwell point

1∎∎
◻

5 2 ◻◻
◻

6 7 8

3◻◻
◻

9 4 ◻◻
◻

R

SE

(b) Idle service engineer stays at dwell point

Figure 5.3: Optimal policy exhibits a dynamic dwell point policy

In case a failure occurs at a demand node, Figure 5.3a suggests that dwell points then depend on the state

of the system. Here, the optimal policy prescribes that the service engineer from node 5 is sent to node 1,

where he will repair the capital good that has failed for 1 time unit, and that the remaining idle service

engineer is sent to node 4. Note that the latter action results in that the remaining demand nodes are

reached within 2∆t at maximum, and that the total time to reach the remaining demand nodes is minimized

and equal to 4∆t. In the succeeding decision epoch, a repair is carried out at node 1, while the idle service

engineer remains at node 4. Thereafter, both service engineers are idle again and if no failure has occurred,

then both service engineers will reposition to the static dwell points as is depicted in Figure 5.2. Hence, this

illustration of the optimal policy shows that dwell points depend on the current state and that idle service

engineers reposition pro-actively to retain a good coverage (i.e. time to reach remaining demand).

5.2 Numerical investigation 27

Dispatching policy

In practice, a dispatching policy that is often used is the ‘closest-idle first’-policy, where the closest-idle

service engineer is sent to an incoming service request. Figure 5.4 shows, however, that the optimal policy

can prescribe a different action than sending the closest-idle service engineer. In the state of the system in

Figure 5.4a, the capital good at node 1 has failed for two time units, whereas the capital good at node 2 has

failed for one time unit. The optimal policy prescribes that the service engineer at node 1 does not repair

this capital good, but that he is sent to node 5, such that both failed capital goods can be repaired within T̂ .

Note that in practice this service engineer would repair this capital good since he is the closest-idle service

engineer. Furthermore, this optimal action suggests that the optimal dispatching policy of service engineers

to service requests takes into account the state of the system, instead of relying on static policies like the

‘closest-idle first’-policy. This observation is important in designing an efficient dispatching heuristic, which

we will see in the next chapter.

1∎∎◻
◻

5 2 ∎◻◻
◻

6 7 8

3◻◻◻
◻

9 4 ◻◻◻
◻

SE

SE

(a) Idle service engineers are dispatched

1∎∎∎
◻

5 2 ∎∎◻
◻

6 7 8

3◻◻◻
◻

9 4 ◻◻◻
◻

SE
R

(b) Idle service engineer is dispatched

Figure 5.4: Optimal policy exhibits a dynamic dispatching policy

Reallocation

In practice, whenever a service engineer is assigned to a service request, he will be assigned to this service

request until he repairs the corresponding capital good. In other words, the service request cannot be

postponed anymore and the service engineer that is assigned to it, cannot be reallocated anymore. Figure

5.5 shows that the optimal policy can prescribe to do otherwise. In the first state (see Figure 5.5a), one

service engineer is sent to node 3 and one service is sent to node 8, such that they eventually repair the

failed capital good at node 3 and node 2, respectively. After this action, during the succeeding time period,

the capital good at node 4 also fails. The optimal action (see Figure 5.5b) now prescribes to reallocate and

send a service engineer to node 4 to repair this capital good. The reason for this postponement of the service

28 Chapter 5. An exact approach

request at node 2 is that the service engineer cannot make it to repair the capital good at node 2 within T̂

(he arrives at node 2 when σ2 = 3). Hence, by sending this service engineer to node 4, one repairs at least

one capital good within T̂ . Even though this action depends on the cost structure and the value of T̂ , it

suggests that it can be more efficient to remain flexible in reallocating service requests, than to stick to an

assignment of service engineers to service requests once it is decided upon. This observation is also useful in

designing an efficient dispatching heuristic, which we will see in the next chapter.

1◻◻
◻

5 2 ∎◻
◻

6 7 8

3∎◻
◻

9 4 ◻◻
◻

SE

SE

(a) Idle service engineers are dispatched

1◻◻
◻

5 2 ∎∎
◻

6 7 8

3∎∎
◻

9 4 ∎◻
◻

SE

R

(b) Optimal policy reallocates idle service engineer

Figure 5.5: Optimal policy exhibits the reallocation of service requests

5.2.2 Asymmetric case

In the asymmetric test bed, we only consider two values for (αi, βi)(∈ {(5, 1)(15, 3)}) and two values for

the demand intensity λi(∈ {0.105, 0.210}). We set γ equal to 0.5 and consider three values for T , that is

T ∈ {2, 3, 4}. We observe that the optimal policy exhibits similar behavior to the symmetric cases, albeit

influenced by both the demand and cost parameters.

With respect to dwell points, we observed that, for instance, if we have (αi, βi) = (15, 3) for i = 1, 2 and

(αi, βi) = (5, 1) for i = 3, 4 and equal demand intensities for all demand nodes, both service engineers, when

idle, reside at node 5. Similarly, when we have λi = 0.210 for i = 1, 2 and λi = 0.105 for i = 3, 4 and equal

values for the cost parameters for all demand nodes, both service engineers, when idle, also reside at node 5.

This suggests, which is also quite intuitive, that the locations of the dwell points point policy is influenced

by both cost and demand parameters of the demand nodes. More specifically, idle service engineers move

towards demand nodes that have either high penalty costs or a high demand intensity, or both. In the next

chapter, we will see that our devised reposition heuristics, both dynamic and static, explicitly take into

account both cost and demand parameters of the demand nodes.

With respect to the dispatching policy and the fact that the optimal policy exhibits reallocation, we observed

5.2 Numerical investigation 29

similar actions as extensively discussed in the symmetric case. In contrast to the dwell point policy, where

the influence of the demand and cost parameters was easy to observe, it was less obvious to determine how

the dispatch and reallocation policy is influenced by the parameters. Although we observed, for instance,

that service engineers are first dispatched to demand nodes with high cost penalties and then to demand

nodes with low cost penalties if both exist at the same time, we are not able to give specific examples like we

provided in the previous section. This is mainly due to the fact that it is unclear when the optimal action is

due to cost parameters, demand parameters, or both, or just because of the combination of timing of failures

and the current configuration of the service engineers. We therefore conclude this numerical investigation

and we design our heuristics based on the characteristics of the optimal policy that we discussed before.

Chapter 6

Heuristic approaches

In the previous chapter, we solved the dispatch and reposition problem using an exact approach by solving

the MDP to optimality. However, due to the curse of dimensionality, we cannot use this method for problems

of practical size. Hence, we intend to use the derived insights from the previous chapter to derive scalable

heuristics that can be used for larger instances.

Although the MDP solves both the dispatch and reposition problem in an integrated way, we decompose

the problem into two sub-problems and design a heuristic independently for both the dispatching and repo-

sitioning sub-problems. Note that this is also common in practice, where managers at service organizations

are faced with two main problems in real-time: a dispatching problem and reposition problem.

In this chapter, we start with discussing the dispatching sub-problem and we finish with addressing the

repositioning sub-problem. For both sub-problems, we derive a static heuristic and a dynamic heuristic.

Our static heuristics are characterized by rules of thumbs that are determined a-priori and which are then

always followed, regardless of the current state of the network. By contrast, our dynamic heuristics are

characterized by maximizing a goal function that takes into account information about the current state

of the network. We conclude this section by discussing how we solve the real-time dispatch and reposition

problem of service engineers by applying our proposed heuristics (either the static or dynamic variant) for

both sub-problems in a consecutive manner. Here, we also differentiate between whether reallocation is

allowed or not in the policy. This has implications for the definition of ‘idle’ that we use in the discussions

of our proposed heuristics in the remainder of this chapter. When reallocation is not allowed, ‘idle’ service

engineers are service engineers that arrived at their final destination or have completed a repair in the

preceding time step and become eligible for dispatching and repositioning decisions again in the succeeding

decision epoch. In contrast, when reallocation is allowed, at every decision epoch, the whole fleet of service

engineers is ‘idle’, regardless of whether they are on their way to their destination or have already reached

their destination.

30

6.1 Dispatching 31

6.1 Dispatching

The numerical investigation in Section 5.2 suggests that the optimal policy exhibits a dispatching policy that

takes into account all service engineers, when deciding upon which service engineer must be dispatched to

each waiting service request. In other words, the current state of the system is taken into account, rather

than solely relying on static decision rules that do not take into account state information. However, the

former is computationally more expensive than the latter.

In this subsection we discuss two dispatching heuristics. We start with briefly discussing a static heuristic

that is often encountered in practice. We then discuss a dynamic counter part, where we take all idle service

engineers and (a subset of) all waiting service requests into account when determining which service engineer

is dispatched to each waiting service request.

6.1.1 Static

A dispatching heuristic that is both intuitive and easy to implement is called the ‘closest-idle first’-heuristic.

Because of these two characteristics, this heuristic is often used in practice, which was also confirmed by our

interviews at our industrial partner, a large manufacturer of industrial printers. In this heuristic, whenever

a service requests arrives, the closest service engineer that is idle is sent to this service request. If multiple

service requests arrive at the same time, then each next service request is selected with equal probability to

which the closest-idle service engineer will be dispatched. We will also use this heuristic as the benchmark

to compare our proposed dynamic dispatching heuristic to, which we will discuss in the next subsection.

Observe that even though this heuristic is often used in practice, it does not incorporate the state of the

capital goods of the corresponding waiting service requests, and hence it does not differentiate between

waiting service requests. It could thus be possible that a service request, that lies very remote from the

nearest idle service engineer, has to wait for a very long time, thereby incurring costs, if other service

requests arrive constantly that lie closer to the idle service engineers. This undesirable situation can be

prevented by taking into account the state of the failed capital goods that correspond to the waiting service

requests in the dispatching heuristic.

6.1.2 Dynamic

The problem of dispatching service engineers to waiting service requests, while taking into account the

distance to and the characteristics of the waiting service requests, shows similarities with a well-known

assignment problem: the Minimum Weighted Bipartite Matching problem (MWBM).

32 Chapter 6. Heuristic approaches

To this end, we introduce a weighted complete bipartite graph G = (V1, V2, E, l), where the two partitions

V1, V2 are the two node sets, E the edge set and l a function assigning weights to edges. The node set V1

corresponds to the locations of the idle service engineers. To each idle service engineer we introduce a node

indexed by its location (if there are more service engineers at a location, we use subindices to differentiate

between them). Similarly, the node set V2 consists of the nodes where a capital good is currently failed.

Let v1 ∈ V1 and v2 ∈ V2, then l((v1, v2)) assigns a non-negative real-valued weight to edge (v1, v2) ∈ E as

follows:

l((v1, v2)) = (d(v1, v2)− σ(v2))+, (6.1)

where x+ = max(0, x), d(v1, v2) is the Manhattan distance1 (since we have a grid) between v1 and v2 and

σ(v2) is the failed state of the capital good at node v2 (which corresponds to σv2(s) in the MDP formulation).

Hence, l : E → R+
0 . Note that this mapping ensures that the longer a capital good has failed or the closer

it is located to a service engineer, or both, the higher the priority this capital good has to dispatch a service

engineer to it. This is exactly the mechanism that we want to attain with our dynamic dispatching heuristic,

since we want to minimize costs that are associated with both delayed services and traveling.

A matching M ⊆ E is a collection of edges such that no two edges share an endpoint. Furthermore, a

matching is perfect if |M | = |V1| = |V2| and let M be the set of all perfect matchings. Note that our

dynamic dispatching problem (DDP) can then be formulated as the following MWBM:

(DDP) min
M∈M

∑
e∈M

l(e), (6.2)

Observe that it could be possible that |V1| > |V2| or |V1| < |V2|. In that case, we insert into the relevant

partition (the partition with the lowest cardinality) dummy nodes with ∞-weight edges to all nodes in the

opposite partition. By solving problem (DDP), we can find the optimal allocation of idle service engi-

neers to the waiting service requests. We use the Hungarian algorithm, which runs in O(max{|V1|3, |V2|3})
(Jungnickel, 2008), to solve problem (DDP) to optimality. We refer the reader to Jungnickel (2008) for an

extensive discussion of the Hungarian algorithm. During the interviews with service engineer planners at

our industrial partner, it became clear that the service logistic networks at which this research focuses typ-

ically employ around 20-30 service engineers and contain 120-130 demand nodes. Therefore, the maximum

value that max{|V1|3, |V2|3} can attain, remains also relatively small and hence the Hungarian algorithm

can be used to make instant dispatching decisions. Hence, the dynamic dispatching heuristic is well-scalable

1The Manhattan distance between two points in a grid is based on a strictly horizontal and/or vertical path (that is, along
the grid lines), as opposed to the diagonal or ‘as the crow flies’ distance. The Manhattan distance is equal to the sum of the
horizontal and vertical components.

6.2 Repositioning 33

according to our definition of scalability.

V1 V2

v1,1

v1,2

v3

w7

w9

Dummy

2

1
∞

2
1
∞

3
4
∞

Figure 6.1: Example of solution to dynamic dispatching problem

Figure 6.1 shows an example of an assignment that results from solving problem (DDP). In this example,

there are three idle service engineers: two at location 1 and one at location 3. These idle service engineers

are indexed by their location (where we use a subindex, i.e. v1,1 and v1,2, for the two service engineers at

location 1) and partitioned in the set V1. We have two waiting service requests: one for location 7 and one for

location 9. Since |V1| > |V2|, we add a dummy waiting service request to partition V2 with∞-weight edges to

the three elements of V1. In this example, we set d(v1,1, w7) = d(v1,2, w7) = 3, d(v1,1, w9) = d(v1,2, w9) = 5,

d(v3, w7) = 4 and d(v3, w9) = 8 (note that these are just artificial values for illustrative purpose and that

we could have taken other values as well that result in the same weights). The capital good at location 7

and the capital good at 9 have failed for 1 and 4 time units, respectively. Our weight function (6.1) now

assigns the weight to the edges between the elements (excluding dummy elements) of partition V1 and V2

(see Figure 6.1 for the resulting weights). Solving problem (DDP), results in a matching between v1,1 and

w9, v1,2 and w7, and v3 and the dummy service request. Hence, service engineer 1 is dispatched to location

9, service engineer 2 is dispatched to location 7, whereas service engineer 3 remains idle and becomes eligible

for repositioning.

6.2 Repositioning

The numerical investigation in Section 5.2 suggests that the optimal policy exhibits a dwell point policy. This

means that idle service engineers are repositioned by sending them to dwell points in anticipation of future

34 Chapter 6. Heuristic approaches

demand. We also saw that the location of these dwell points can depend on the state of the system. This

suggests that the optimal policy exhibits a dwell point policy that is dynamic, rather than static. However,

for problems of practical size it is computationally expensive to take into account the whole state of the

system when reposition decisions have to be made instantly. In this subsection we discuss two repositioning

heuristics. We start with a static repositioning heuristic, where we determine the location of the dwell points

a priori, after which we send each idle service engineer to the closest dwell point. We then discuss a dynamic

variant, where the locations of the dwell points are not determined a priori.

6.2.1 Static

In a static repositioning policy, we search for static dwell points where idle service engineers are being sent

to in anticipation of future demand, and we want to determine the maximum number of service engineers

that can occupy a dwell point at the same time. This is also a common heuristic in practice. In fact,

during interviews with service engineers planners at our industrial partner, it became clear that the planners

indeed send each idle service engineer to the nearest so-called waiting location (an equivalent term for dwell

points). However, at our industrial partner, these waiting locations are determined based on the physical

characteristics of the location (for instance, some waiting locations were the homes of service engineers).

On the contrary, we determine dwell points and the maximum number of service engineers that can occupy

each dwell point at the same time such that we incorporate how well idle service engineers can serve future

service requests.

We use the notion of coverage as a measure for how well or how bad future demand is anticipated to,

since it is intuitive that a well-covered service region outperforms a not so well-covered service region in

anticipating future service requests. The sub-problem of finding dwell points, and their capacity, where

idle service engineers are sent to, such that the weighted expected coverage is maximized, can then be seen

as a stochastic variant of the maximal covering location problem, called the Maximum Expected Covering

Location Problem (MEXCLP) (Daskin, 1983).

In the MEXCLP, we have N service engineers that need to be positioned over a set of possible dwell points

N , hence a demand node can also be a dwell point. A service engineer can be either idle or busy. Let

q ∈ [0, 1] be the probability that a service engineer is busy. Note that it is implicitly assumed that this

probability is the same for all service engineers and independent of their position with respect to the demand

and the other service engineers. We calculate this probability by dividing the total expected load of the

network by the number of service engineers, that is:

q = min{

∑
i∈Nd

p0
i

N
, 1} (6.3)

6.2 Repositioning 35

Here we do not take into account the length of an occupied period when a service engineer is actually busy.

Since we use q both when reallocation is and when reallocation is not allowed, the busy period will vary

and therefore it is difficult to take into account the busy period. To simplify the calculation, we neglect the

busy period. We introduce the decision variable xj which represents the capacity of node j ∈ N . Next, we

introduce the set Wi for all i ∈ N d, which is the set of nodes that cover demand node i. With cover we

mean that if a service engineer is positioned at node j ∈Wi and the capital good at node i fails, then node i

can be reached within T̂ − 1 time steps by this service engineer, and hence be repaired within T̂ time steps.

More formally, we have Wi = {j ∈ N|d(j, i) ≤ T̂ − 1}. Furthermore, we introduce a binary variable yik that

is equal to 1 if and only if node i ∈ N d is covered by at least k service engineers. The expected covered

demand of node i given that exactly k service engineers cover this node, denoted by Eik, is calculated as

follows:

Eik = λi · P (at least 1 out of k service engineers is idle)

= λi · (1− P (k service engineers are busy))

= λi · (1− qk) (6.4)

The expected weighted covered demand of node i given that exactly k service engineers cover this node,

denoted by Êik, is then equal to (αi + βi) · Eik = (αi + βi) · λi · (1− qk)

Our static repositioning problem (SRP) can then be formulated as the following weighted MEXCLP:

(SRP) max
∑
i∈Nd

N∑
k=1

(αi + βi) · λi(1− q)qk−1yik (6.5)

subject to
∑
j∈N

xj ≤ N, (6.6)

∑
j∈Wi

xj ≥
N∑
k=1

yik, ∀i ∈ N d (6.7)

xj ∈ {0, . . . , N}, ∀j ∈ N (6.8)

yik ∈ {0, 1}, ∀i ∈ N d,∀k ∈ {0, . . . , N} (6.9)

The objective function (6.5) sums the total expected weighted coverage. Here we assign weight (αi + βi) to

the expected coverage of each demand node i ∈ N d. This ensures that if node i has higher costs for delayed

services, then the expected coverage of this node has more priority than nodes with lower costs for delayed

services. In practice, this means that (more) dwell points will lie closer near demand nodes that have high

costs for delayed services. Consequently, such a demand node has a higher chance of being repaired within

T time units, as soon as the capital good fails, which leads to lower costs than when you would not take this

36 Chapter 6. Heuristic approaches

weight into account in determining dwell points.

Equation (6.6) states that at most N service engineers are to be positioned. This Equation will be binding

in general. Equation (6.7) ensures that if node i ∈ N d is covered by at least k service engineers, then the

sum of all service engineers that are located at a node j ∈ Wi is at least k. Furthermore, Equation (6.8)

imposes the logical integral constraint that we can only position between 0 and N service engineers at a

node. Finally, Equation (6.9) ensures that variable yik can only take value 0 or 1.

6.2.2 Dynamic

In the previous subsection, we discussed the notion of coverage, and subsequently discussed a related model

that we can use to determine static dwell points, where service engineers are sent to when they are idle.

Daskin (1983) showed that the marginal coverage contribution of the kth service engineer to the expected

value of the covered demand of node i is equal to Eik−Eik−1 = λi · (1−q)qk−1. Hence, the weighted marginal

coverage contribution of the kth service engineer to the expected value of the covered demand of node i is

equal to Êik− Êik−1 = (αi +βi) ·λi(1− q)qk−1. Consequently, if a service engineer is sent to node j where he

will become the kth service engineer, then the total marginal coverage contribution of this service engineer

to the total expected covered demand (of the demand nodes where the capital good is still up and running)

is equal to
∑
i∈{x∈Wj |σx=0} = Êik − Êik−1.

Based on this observation, we can now design the following repositioning heuristic: At each decision

epoch, we sent each idle service engineer to the neighboring node, or let him remain at the current node,

with the highest total weighted marginal coverage contribution to the total covered demand. That is,

send each service engineer that is currently at node i to (or let him remain at) node j such that j ∈
argmaxn∈Ni∪{i}{

∑
l∈{x∈Wn|σx=0}

Êlk − Êlk−1}.

Note that, if we have n idle service engineers, then the maximum size of the search space of this local search

heuristic is equal to 5n. This is because the decision to send a service engineer to a neighboring node could

depend, because of the marginal coverage contribution, on whether it is already decided to send another

service engineer to this particular node in the same decision epoch. We deal with this by randomly selecting

the next service engineer in the set of idle service engineers for which we still need to decide where to sent

these service engineers. Consequently, we do this for each idle service engineer until a decision has been

made for each idle service engineer at a particular decision epoch. This reduces the maximum cardinality of

the search space to n · 5, which is suitable for making reposition decisions in real-time in networks of real-life

size when n becomes large. As a result, the dynamic repositioning heuristic is well-scalable according to our

definition of scalability.

6.3 Heuristic policies 37

6.3 Heuristic policies

In the two previous subsections, we extensively elaborated on the static and dynamic heuristics for both the

sub-problem of dispatching and repositioning, respectively. Next to these heuristics, we can also differentiate

between the case where reallocation is possible and where it is not. In practice, which was also confirmed by

the production planners at our industrial partner, once service engineers are dispatched or sent to a dwell

point they become available for dispatching or repositioning again when they reach their destination. In

contrast, the numerical investigation of the optimal policy in Section 5.2.1 suggests that the optimal policy

does reallocate service engineers even before they reach their destination. In essence, reallocation leads to

being considerably more flexible in deviating from previous dispatch and reposition decisions. Combining

the option of whether or not reallocating with two options each for both the dispatching and repositioning

sub-problem, we have eight heuristics in total. Table 6.1 presents an overview of these eight heuristic policies,

ranging from myopic (SDSR heuristic) to advanced (DDDR-R heuristic).

Table 6.1: Overview of eight heuristics

Name Dispatching Repositioning Reallocating
1 SDSR Static Static
2 SDSR-R Static Static X
3 SDDR Static Dynamic
4 SDDR-R Static Dynamic X
5 DDSR Dynamic Static
6 DDSR-R Dynamic Static X
7 DDDR Dynamic Dynamic
8 DDDR-R Dynamic Dynamic X

Each heuristic consist of two consecutive steps that are carried out at the start of each time period ∆t:

1. A central decision maker determines which idle service engineers are dispatched to the waiting service

requests by using the dispatch heuristic. If reallocating is allowed, the size of the set of idle service

engineers is equal to N . If reallocating is not allowed, then the set of idle service engineers consists of

all service engineers that arrived (and possibly finished a repair) at their destination at the end of the

previous time period.

2. If there are still idle service engineers after having dispatched service engineers to all waiting service

requests, the central decision maker determines for each idle service engineer where to sent them to

next. This corresponds to solving the reposition sub-problem.

Observe that if reallocating is allowed, multiple paths with the same Manhattan distance exist, where each

path can have a different performance in the end. Namely, if a service engineer is sent from node with

coordinates (0, 0) on the grid, to a node with coordinates (m,n) on the grid, then there exist
(
m+n
m

)
different

38 Chapter 6. Heuristic approaches

paths. We overcome this by randomly selecting, at the start of each time step, the next node with equal

probability.

Finally, if reallocating is allowed, then there is not an explicit repair decision. In contrast, if reallocating

is not allowed, then the decision to dispatch a service engineer from node x to a service request at node y

also implies that this failed capital good will be repaired after d(x, y) + 1 time units (note that ∆t = 1).

Therefore, if after the dispatching decision, service engineers are dispatched to nodes where they are already

residing, then this means that a repair will be carried out by them in the upcoming time period.

Chapter 7

Computational study

In this chapter, we present both a small and large computational study to evaluate the performance of

the heuristics that we discussed in the previous chapter. We first introduce the test beds and objectives.

Subsequently, we present and discuss the results of the computational study.

7.1 Test beds and objectives

We first discuss the small test bed, which compares the performance of the heuristics with the performance

of the optimal policy. We then conclude this section with discussing the large test bed, where we consider

real-life networks of industrial size.

7.1.1 Small test bed

In the small test bed, we consider the network as discussed in Section 5.2. As discussed before, it is well-

known that solving MDPs suffers from the curse of dimensionality; We therefore resort to test instances that

are rather small such that they can be solved within reasonable time.

The small test bed serves three objectives. First, we want to determine which heuristic performs best

compared to the optimal policy. Second, we want to quantify the gap between the performance, in terms of

the cost rate, of the optimal policy, denoted by g∗, obtained by Algorithm 1 with ε = 10−3 and the cost rate

obtained by heuristic n, denoted by gn. We calculate this relative difference as follows:

%GAP = 100 · g
n − g∗
g∗

, (7.1)

where gn is obtained by performing a simulation study using the technique of Discrete Event Simulation

(DES). Third, we want to investigate how the answers to the first two objectives are influenced by different

39

40 Chapter 7. Computational study

parameter settings.

We consider two test beds of small instances, one with symmetric demand intensities and cost parameters

(where demand intensities and cost parameters are identical for all demand nodes) and one with asymmetric

demand intensities and cost parameters (where demand intensities and cost parameters vary across the

demand nodes). In the former, we consider five different demand intensities for each demand node i ∈ N d,

λi ∈ {0.15, 0.20, 0.25, 0.30, 0.35}. Next, we consider two different values for the solution time threshold,

that is T̂ ∈ {3, 4}. Finally, with regard to the cost parameters, we consider three different values for γ, i.e.

γ ∈ {0.50, 0.75, 1.00}, and three different combinations for (αi, βi) ∈ {(8, 4), (8, 6), (8, 8)}. These parameter

settings result into 5 · 2 · 32 = 90 instances. Table 7.1 summarizes the input parameter settings used in the

small symmetric test bed.

Table 7.1: Parameter settings of small symmetric test bed

Input parameter No. of choices Values
1 Demand intensity, λi 5 0.15, 0.20, 0.25, 0.30, 0.35

2 Solution time threshold, T̂ 2 3, 4
3 Travel cost, γ 3 0.50, 0.75, 1.00
4 Cost penalties, (αi, βi),∀i ∈ N d 3 (8,4), (8,6), (8,8)

In the small asymmetric test bed, we generate the demand intensity for each node i ∈ N d from an uniform

distribution U [0.15; 0.35]. Next, since we cannot perform a full factorial test bed in which we consider

different cost parameters for each demand node, simply due to the time complexity of solving one instance

to optimality, we consider only extremes where we only vary the cost parameters of one demand node.

This test bed can thus be regarded as a pessimistic test bed. To that end, we consider four cost penalty

combinations for demand node 1, that is (α1, β1) ∈ {(4, 2), (8, 4), (12, 6), (20, 10)}, whereas we consider the

same three different combinations for (αi, βi) as in the small symmetric test bed for demand node i ∈ {2, 3, 4}.
These parameter settings result into 1 · 2 · 32 · 4 = 72 instances. Table 7.2 summarizes the input parameter

settings used in the small asymmetric test bed.

Table 7.2: Parameter settings of small asymmetric test bed

Input parameter No. of choices Values
1 Demand intensity, λi 1 U [0.15; 0.35]

2 Solution time threshold, T̂ 2 3, 4
3 Travel cost, γ 3 0.50, 0.75, 1.00
5 Cost penalties, (α1, β1) 4 (4,2), (8,4), (12,6), (20,10)
4 Cost penalties, (αi, βi),∀i ∈ {2, 3, 4} 3 (8,4), (8,6), (8,8)

7.1 Test beds and objectives 41

7.1.2 Large test bed

In the large test bed, we consider real-life networks of industrial size. Due to the size of the networks, we

cannot compare the performance of our heuristics with the optimal cost rate. We therefore compare the

performance of the heuristics with the performance of a benchmark heuristic. The benchmark heuristic can

be seen as what is now common in practice.

As said before, during our interviews with the service engineers planners at our industrial partner, we

observed that they use the closest-idle heuristic for dispatching service engineers and that they send idle

service engineers to dwell points that are determined a priori, where they do not take into account state

information. Moreover, to simplify the planning process, the service engineers planners do not reallocate

service engineers after decisions are made. In essence, this coincides with our first heuristic, the SDSR

heuristic (see Section 6.3).

We can then quantify the value that can be attained in practice when using heuristic n ∈ {2, 3, . . . , 8} instead

of this benchmark. That is

%V AL = −100 · g
n − g1

g1
, (7.2)

where %VAL will indicate how much cost per time unit reductions in percentages can be attained when

using heuristic n instead of the SDSR heuristic.

Analogously to the small test bed, we consider two test beds of large instances, where both are a squared grid

network, one with symmetric cost parameters (where cost parameters are identical for all demand nodes) and

one with asymmetric cost parameters (where demand intensities and cost parameters vary across the demand

nodes). Note that we have asymmetric demand intensities in both test beds, since this is also the case in

practice. Furthermore, since we want to evaluate our heuristics under circumstances that are comparable

to circumstances that are encountered in practice, we have to choose the values for the parameters with

caution. For instance, if we choose a network with 100 demand nodes, then the total number of nodes |N |,
the number of service engineers N and our solution time threshold T̂ , should be different than when we

choose a network with 180 demand nodes, since this will also be the case in practice. To deal with this, we

choose the values for the other parameters relatively to the number of demand nodes in our network since

this is the most important characteristic that determines whether a network is of practical size or not. We

consider two values for the number of demand nodes, that is |N d| ∈ {100, 180}, which is confirmed to be

of of practical size in the interviews at our industrial partner. With regard to the total number of nodes,

we choose two values for the number of nodes in both sides of our grid network: 0.4 · |N d| and 0.6 · |N d|.
Consequently, we have also two values for |N |, that is |N | ∈ {(0.4 · |N d|)2, (0.6 · |N d|)2}. This means that if

a network contains 100 demand nodes, then the total number of nodes is either 1600 or 3600.

42 Chapter 7. Computational study

We also choose to randomly distribute the demand nodes over the squared grid network. We generate

values from a uniform distribution for the demand intensities for each demand node i ∈ N d, that is λi ∈
{U [0.001; 0.01], U [0.01; 0.05]}. For the number of service engineers N , we consider two different values that

are set as an integral fraction N ∈ {b 1
10 · |N d|e, b 1

5 · |N d|e} of the number of demand nodes. In order to

determine solution time thresholds that are representable for practice, we reason along the following lines.

If we have a squared grid with sides of length
√
|N | and hence a surface of |N |, then each service engineer,

if we distribute them evenly, is responsible for a sub-region with surface |N |N . Such a sub-region has sides of

length y =
√
|N |
N , which means that it takes y − 1 time units to cross the whole region, i.e. from one side

to the opposite side of the sub-region. Since the total number of nodes in our network is relatively large,

we neglect minus 1, and consider values for T̂ that are multiples of y rounded to the nearest integer, that is

T̂ ∈ {b1·ye, b1.5·ye}. We test two different values for γ (γ ∈ {1, 4}), two different values for αi (αi ∈ {50, 500})
and we consider two different values that are set as a fraction of αi for βi, i.e. βi ∈ {0.05 · αi, 0.1 · αi} for

each node i ∈ N d. All cost parameters are in euros and during discussions with our industrial partner it

was confirmed that penalty costs of this ratio are realistic. These parameter settings result into 28 = 256

instances. Table 7.3 summarizes the input parameter settings used in the large symmetric test bed.

The parameter settings are chosen in such a way that they reflect realistic situations. For instance, if a service

region in reality is a square with sides of length 320km, then we have the following. With a grid network

with N d and sides of length 0.4 · |N d|, we have that the length of an edge is equal to 8km. If service engineers

are traveling at a speed of 80km/hr (on average, service engineers travel in both rural and urban areas), ∆t

equals 6 minutes. With 20 service engineers and T̂ equal to 9 (which corrsponds to 54 minutes in practice),

we can approximate the average utilization of the service engineers for both the instances with U [0.001; 0.01]

and U [0.01; 0.05] as follows. For U [0.001; 0.01], we have on average 100 · 0.001+0.01
2 = 0.55 failures per time

step. If such a failure needs on average 6 discrete time steps before it is solved, then we approximate the

utilization, denoted by ρ in the whole network as follows: ρ = work offered per time step
capacity = 0.55∗10

20 = 0.275.

Similarly, for U [0.01; 0.05] we have ρ = 3∗10
20 = 0.900. Other instances result in either higher or lower values

for the approximate utilization, and hence our test captures instances that are not only realistic but also

capture a wide continuum for the degree of utilization.

Table 7.3: Parameter settings of large symmetric test bed

Input parameter No. of choices Values
1 Number of demand nodes, |N d| 2 100, 180
2 Number of nodes, |N | 2 (0.4 · |N d|)2, (0.6 · |N d|)2

3 Demand intensity, λi, ∀i ∈ N d 2 U [0.001; 0.01], U [0.01; 0.05]
4 Number of service engineers, N 2 b 1

10 · |N d|e, b 1
5 · |N d|e

5 Solution time threshold, T̂ 2 b1 ·
√
|N |
N e, b1.5 ·

√
|N |
N e

6 Travel cost (euros), γ 2 1, 4
7 Cost penalty (euros), αi, ∀i ∈ N d 2 50, 500
8 Cost penalty (euros), βi, ∀i ∈ N d 2 0.05 · αi, 0.1 · αi

7.2 Numerical results 43

In the asymmetric, we generate the value of αi for each demand node i from a uniform distribution, that is

αi ∈ {U [50; 100], U [100; 500]}. The other parameters are set in the same way as for the first large test bed

and hence, test bed 2 also results in 256 instances. Table 7.4 summarizes the input parameter settings used

in the large asymmetric test bed.

Table 7.4: Parameter settings of large asymmetric test bed

Input parameter No. of choices Values
1 Number of demand nodes, |N d| 2 100, 180
2 Number of nodes, |N | 2 (0.4 · |N d|)2, (0.6 · |N d|)2

3 Demand intensity, λi, ∀i ∈ N d 2 U [0.001; 0.01], U [0.01; 0.05]
4 Number of service engineers, N 2 b 1

10 · |N d|e, b 1
5 · |N d|e

5 Solution time threshold, T̂ 2 b1 ·
√
|N |
N e, b1.5 ·

√
|N |
N e

6 Travel cost, γ 2 1, 4
7 Cost penalty, αi, ∀i ∈ N d 2 U [50; 100], U [100; 500]
8 Cost penalty, βi, ∀i ∈ N d 2 0.05 · αi, 0.1 · αi

7.2 Numerical results

Both the exact approach and the DES study are programmed as single threaded applications in JAVA.

Furthermore, we use a Branch and Cut implementation of the open source package GLPK implemented in

JAVA to solve problem (SRP). All computations were carried out on a PC running Windows (64 bit) with

an Intel Quad Core 2.20 GHz processor and 8 GB RAM. The average computation time to calculate g∗ for

a single instance of the small test bed is on average equal to approximately 100 minutes, which is also an

argument for the limited number of instances and the size of the instances itself in this small test bed.

In the small test bed, we evaluate each heuristic with 10 simulation runs of 30,000 simulated decision epochs,

from which we discard the first 5,000 decision epochs due to the warm-up effect. In the large test bed,

we observe that it takes longer before convergence is reached. Hence, we evaluate each heuristic with 10

simulation runs of 70,000 simulated decision epochs, from which we discard the first 15,000 decision epochs

due to the warm-up effect. Table A.1 to Table A.6 in Appendix A.1 show the 95% confidence intervals of

each instance of both the small and large test bed.

As a final note, since the overarching objective of this thesis is to develop scalable heuristics that perform

well in practice, we discuss the results of the large test bed with networks of industrial size more extensively

than the artificial network in our small test bed.

44 Chapter 7. Computational study

7.2.1 Small test bed

The results of the small symmetric test bed and the small asymmetric test bed are summarized in Table

7.5 and Table 7.6, respectively. In both tables, we present the minimum value, average value and maximum

value of the GAP percents. We first distinguish between subsets of instances with the same value for a

specific input parameter of Table 7.1 and Table 7.2, respectively, and subsequently present the results for all

instances.

The main observations drawn from both tables can be summarized as follows:

• In the symmetric test bed, our most advanced heuristic, the DDDR-R heuristic, performs close to the

optimal policy with an average GAP% of 4.6% and 10.4% at maximum. However, in the asymmetric

test bed, which is rather pessimistic, we observe that the DDDR-R heuristic performs much worse

with optimality gaps of 37.8% and 73.9%, respectively. Notwithstanding, the DDDR-R heuristic still

outperforms the other heuristics. Additionally, if we compare the DDDR-R heuristic to the myopic

SDSR heuristic (which has optimality gaps of 99.9% and 224.5%, respectively), we observe that the

DDDR-R heuristic is still a huge improvement in the asymmetric test bed.

• In both test beds, the optimality gaps are relatively small on average when either a dynamic dispatching

policy is employed or when reallocation is allowed in the policy. Hence, either including dynamic

dispatching or reallocation are cost efficient and the combination of both using a dynamic dispatching

policy and allowing for reallocation results in the smallest optimality gaps.

• In both test beds, for each of the eight heuristics, the range between the minimum gap and maximum

gap are rather larger, indicating that the performance of the heuristics is not very robust to changing

parameters. Nevertheless, the averages are more skewed to the minimum, suggesting that outliers

(in terms of optimality gaps) occur sporadically. However, as this is the case with each of the eight

heuristics in both test beds, we cannot say when this is exactly the case.

• In both test beds, for each of the four heuristics with the static repositioning heuristic, we observe

that the increase of T̂ from 3 to 4 results in the highest increases in optimality gaps across the small

test bed. A closer look at the optimal policy explains why this is the case. When T̂ = 4, the static

repositioning heuristic determines that there is one dwell point, namely at the center of the network,

whereas the optimal policy suggests different locations for the dwell points. By contrast, when T̂ = 3,

the locations of the dwell points determined by the static repositioning heuristic coincide with the

locations of the dwell points of the optimal policy. This observation highlights the importance of

selecting good locations for dwell points.

7.2 Numerical results 45

Table 7.5: Summary of computational results for small symmetric test bed

(a) Heuristic 1-4

%GAP heuristic n

1 2 3 4

SDSR SDSR-R SDDR SDDR-R

Parameter Value Min Avg Max Min Avg Max Min Avg Max Min Avg Max

λi

∀i ∈ Nd

0.15 34.6 154.0 322.6 20.0 82.7 150.0 11.4 38.2 80.7 6.8 24.6 53.4

0.20 35.1 114.1 224.1 20.5 65.0 118.2 13.3 41.2 82.0 7.5 26.4 55.4

0.25 30.9 90.1 172.6 19.5 53.4 97.2 14.2 41.8 82.4 7.9 27.4 57.2

0.30 26.6 74.2 139.9 18.5 45.6 84.1 14.1 40.8 78.3 7.8 27.3 57.5

0.35 22.6 62.6 116.2 16.2 40.0 74.8 13.2 39.1 73.6 7.3 27.0 56.5

T̂
3 22.6 32.6 42.8 16.2 21.8 32.9 11.4 16.6 20.8 6.8 9.1 11.4

4 83.7 165.3 322.6 51.8 92.9 150.0 46.1 63.8 82.4 32.1 44.0 57.5

γ

0.50 22.6 103.6 322.6 16.2 58.2 150.0 11.5 42.6 82.4 6.9 28.2 57.5

0.75 23.3 98.5 296.0 16.7 57.2 147.6 11.4 40.0 76.9 6.8 26.4 54.1

1.00 26.1 94.8 276.1 17.4 56.6 143.0 11.7 37.9 71.4 7.2 25.0 50.8

(αi, βi)

∀i ∈ Nd

(8,4) 22.6 89.7 258.5 16.2 54.0 135.8 11.4 33.6 61.2 6.8 21.8 39.7

(8,6) 25.4 99.1 291.7 16.7 57.2 144.2 14.1 40.4 71.9 7.4 26.7 49.8

(8,8) 27.0 108.3 322.6 17.0 60.8 150.0 15.7 46.6 82.4 8.0 31.2 57.5

Total 22.6 99.0 322.6 16.2 57.3 150.0 11.4 40.2 82.4 6.8 26.5 57.5

(b) Heuristic 5-8

%GAP heuristic n

5 6 7 8

DDSR DDSR-R DDDR DDDR-R

Parameter Value Min Avg Max Min Avg Max Min Avg Max Min Avg Max

λi

∀i ∈ Nd

0.15 27.3 136.3 283.6 14.8 63.6 107.2 8.6 27.4 55.4 1.9 5.2 10.4

0.20 26.6 94.2 182.4 13.8 43.5 70.3 9.0 26.7 51.2 1.9 5.0 10.2

0.25 22.9 69.2 126.7 11.5 31.1 49.4 9.1 24.4 44.3 1.9 4.6 9.0

0.30 19.5 52.8 94.1 9.9 23.1 36.0 8.0 21.6 38.1 2.0 4.3 8.9

0.35 16.2 41.5 71.9 7.9 17.6 27.5 7.1 18.8 32.0 1.7 4.1 8.3

T̂
3 16.2 24.9 38.8 7.9 15.8 30.0 7.1 10.3 13.3 1.7 2.2 5.0

4 60.1 132.7 283.6 22.5 55.7 107.2 25.5 37.3 55.4 4.0 7.0 10.4

γ

0.50 16.2 81.9 283.6 7.9 35.0 107.2 7.1 25.1 55.4 1.7 4.8 10.4

0.75 16.7 78.5 262.0 8.4 35.7 105.5 7.1 23.6 50.4 1.9 4.6 9.8

1.00 17.1 75.9 245.0 8.9 36.6 105.9 8.3 22.6 46.0 1.9 4.5 8.6

(αi, βi)

∀i ∈ Nd

(8,4) 16.3 74.3 231.4 11.2 38.4 107.2 7.1 21.0 42.5 1.8 5.6 10.4

(8,6) 16.4 78.6 257.9 9.3 35.4 105.0 8.7 23.7 49.9 1.9 4.4 8.7

(8,8) 16.2 83.4 283.6 7.9 33.5 104.5 10.3 26.7 55.4 1.7 3.9 8.5

Total 16.2 78.8 283.6 7.9 35.8 107.2 7.1 23.8 55.4 1.7 4.6 10.4

46 Chapter 7. Computational study

Table 7.6: Summary of computational results for small asymmetric test bed

(a) Heuristic 1-4

%GAP heuristic n

1 2 3 4

SDSR SDSR-R SDDR SDDR-R

Parameter Value Min Avg Max Min Avg Max Min Avg Max Min Avg Max

T̂
3 30.5 44.7 73.7 21.1 32.6 52.8 27.8 39.1 61.1 20.7 31.8 50.3

4 97.2 155.2 224.5 60.5 97.1 149.2 70.6 103.3 142.5 57.4 89.7 138.7

γ

0.50 30.5 105.9 224.5 22.6 66.8 149.2 27.8 73.1 142.5 22.1 62.2 138.7

0.75 31.8 98.0 174.5 22.1 63.4 112.4 28.5 70.1 114.0 21.4 59.5 104.3

1.00 32.0 95.9 194.5 21.1 64.4 132.3 28.4 70.3 126.7 20.7 60.5 123.0

(α1, β1)

(4,2) 41.1 112.4 224.5 30.9 75.9 149.2 37.5 80.3 142.5 30.9 71.5 138.7

(8,4) 30.5 85.1 157.9 22.6 54.6 98.4 27.8 61.4 100.0 22.1 51.7 91.8

(12,6) 32.5 98.1 203.9 22.7 62.3 117.5 28.5 67.8 118.1 21.4 57.8 106.9

(20,10) 32.0 104.1 179.1 21.1 66.6 110.3 28.4 75.2 114.8 20.7 61.9 98.4

(αi, βi)

∀i ∈

{2, 3, 4}

(8,4) 30.5 91.8 182.0 22.6 60.5 107.9 27.8 68.0 112.9 22.1 57.0 98.6

(8,6) 32.5 99.1 176.8 22.7 64.1 112.4 28.5 70.7 114.0 21.4 60.1 104.3

(8,8) 32.0 108.9 224.5 21.1 69.9 149.2 28.4 74.8 142.5 20.7 65.2 138.7

Total 30.5 99.9 224.5 21.1 64.9 149.2 27.8 71.2 142.5 20.7 60.7 138.7

(b) Heuristic 5-8

%GAP heuristic n

5 6 7 8

DDSR DDSR-R DDDR DDDR-R

Parameter Value Min Avg Max Min Avg Max Min Avg Max Min Avg Max

T̂
3 22.7 36.1 58.5 13.9 25.8 42.7 19.0 30.7 47.5 13.4 24.8 40.2

4 73.4 122.4 183.1 35.7 59.4 86.9 46.9 72.8 101.7 31.2 50.8 73.9

γ

0.50 24.1 83.7 183.1 16.6 42.6 86.9 21.4 52.6 101.7 15.6 37.5 73.9

0.75 24.3 77.3 141.4 15.3 41.3 70.6 20.2 50.7 82.9 14.7 36.6 60.8

1.00 22.7 76.8 159.6 13.9 43.9 83.0 19.0 52.1 94.2 13.4 39.2 72.3

(α1, β1)

(4,2) 34.4 90.5 183.1 26.4 50.5 86.9 30.9 59.4 101.7 26.0 45.5 73.9

(8,4) 24.1 65.1 116.9 16.6 32.9 54.0 21.4 42.2 66.4 15.4 29.2 46.1

(12,6) 24.3 78.6 162.5 15.6 41.2 71.8 20.2 49.8 83.9 14.7 36.0 62.5

(20,10) 22.7 82.9 144.0 13.9 45.8 71.4 19.0 55.7 82.9 13.4 40.5 58.8

(αi, βi)

∀i ∈

{2, 3, 4}

(8,4) 24.1 75.2 154.7 17.5 43.8 74.9 21.4 52.0 86.8 16.8 39.6 65.8

(8,6) 24.3 78.2 141.4 15.6 41.7 70.6 20.2 51.0 82.3 14.7 36.9 60.8

(8,8) 22.7 84.5 183.1 13.9 42.3 86.9 19.0 52.3 101.7 13.4 36.9 73.9

Total 22.7 79.3 183.1 13.9 42.6 86.9 19.0 51.8 101.7 13.4 37.8 73.9

7.2.2 Large test bed

The results of the large symmetric test bed and the large asymmetric test bed are summarized in Table 7.7

and Table 7.8, respectively. In both tables, we present the average values of the VAL percents, as calculated

7.2 Numerical results 47

by Equation (7.2). We first distinguish between subsets of instances with the same value for a specific input

parameter of Table 7.3 and Table 7.4, respectively, and subsequently present the results for all instances.

Table 7.7: Summary of computational results for large symmetric test bed

Average %V AL heuristic n

Parameter Value
2 3 4 5 6 7 8

SDSR-R SDDR SDDR-R DDSR DDSR-R DDDR DDDR-R

Number of demand

nodes, |N d|
100 31.1 -7.7 17.7 15.0 55.9 10.3 55.7

180 32.2 1.3 29.6 28.2 66.9 31.7 68.0

Number of nodes, |N | (0.4 · |N d|)2 35.4 -5.5 31.5 15.5 55.4 11.7 55.9

(0.6 · |N d|)2 27.9 -0.9 15.7 27.7 67.5 30.3 67.9

Demand intensity,

λi, ∀i ∈ N d
U [0.001; 0.01] 26.5 3.2 27.1 18.8 52.0 21.2 52.4

U [0.01; 0.05] 36.8 -9.7 20.2 24.4 70.8 20.8 71.4

Number of service

engineers, N

b 1
10
· |N d|e 20.0 0.2 6.0 34.5 72.1 37.3 71.5

b 1
5
· |N d|e 43.3 -6.6 41.2 8.7 50.7 4.7 52.3

Solution time

threshold, T̂

b1 ·
√

|N|
N
e 30.2 0.9 20.0 11.8 53.7 15.2 56.2

b1.5 ·
√

|N|
N
e 33.1 -7.3 27.3 31.3 69.1 26.7 67.6

Travel cost, γ
1 32.2 -3.7 26.7 22.1 64.1 21.6 63.6

4 31.1 -2.7 20.5 21.0 58.8 20.4 60.1

Cost penalty,

αi, ∀i ∈ N d
50 30.1 3.6 24.9 20.9 59.2 26.4 60.8

500 33.2 -10.0 22.4 22.3 63.6 15.5 63.0

Cost penalty,

βi, ∀i ∈ N d
0.05 · αi 32.8 -4.4 20.8 30.0 67.7 29.9 68.0

0.1 · αi 30.5 -2.1 26.5 13.2 55.1 12.1 55.8

Total 31.7 -3.2 23.6 21.6 61.4 21.0 61.9

The main observations drawn from both tables can be summarized as follows:

• Huge savings can be obtained by either employing a dynamic dispatching policy or allowing for real-

location in the policy. The combination of both using a dynamic dispatching policy and allowing for

reallocation results in the highest savings that can be attained, compared to the myopic SDSR policy,

namely 61.4% and 61.9% for heuristic DDSR-R and DDDR-R, respectively, in the symmetric test bed

and 58.1% and 60.1%, respectively, in the asymmetric test bed. This is a similar result we observed in

the small test bed, where the optimality gaps of these heuristics were the smallest. Hence, our most

advanced heuristic, the DDDR-R heuristic, outperforms all other heuristics on average across the large

test bed.

• More specifically, allowing reallocation in the heuristic greatly outperforms heuristics where it is not

allowed to reallocate. This can be seen when we directly compare the average %V AL of the heuristics

where it is not allowed to reallocate with their reallocating counterpart. This observation triggered us

to analyze the benefit of each aspect (dynamic dispatching, dynamic repositioning and reallocation)

individually, which we discuss later in this section.

48 Chapter 7. Computational study

Table 7.8: Summary of computational results for large asymmetric test bed

Average %V AL heuristic n

Parameter Value
2 3 4 5 6 7 8

SDSR-R SDDR SDDR-R DDSR DDSR-R DDDR DDDR-R

Number of demand

nodes, |N d|
100 31.9 3.4 28.7 13.9 52.7 18.5 54.4

180 30.7 6.6 29.9 26.7 63.4 34.9 65.8

Number of nodes, |N | (0.4 · |N d|)2 33.8 4.6 34.6 14.8 52.2 20.5 54.6

(0.6 · |N d|)2 28.8 5.4 24.0 25.8 63.9 32.8 65.6

Demand intensity,

λi, ∀i ∈ N d
U [0.001; 0.01] 26.5 6.1 27.1 17.9 50.5 23.3 51.5

U [0.01; 0.05] 36.1 3.9 31.5 22.8 65.6 30.1 68.7

Number of service

engineers, N

b 1
10
· |N d|e 21.0 4.1 16.5 32.7 68.8 37.3 68.6

b 1
5
· |N d|e 41.6 6.0 42.1 8.0 47.3 16.0 51.7

Solution time

threshold, T̂

b1 ·
√

|N|
N
e 31.0 10.3 31.9 11.0 50.3 21.7 55.2

b1.5 ·
√

|N|
N
e 31.6 -0.3 26.8 29.7 65.8 31.7 65.1

Travel cost, γ
1 33.6 5.1 30.2 21.7 61.6 28.3 62.8

4 29.0 4.9 28.4 19.0 54.5 25.1 57.5

Cost penalty,

αi, ∀i ∈ N d
U [50; 100] 29.7 9.1 27.8 19.3 54.6 29.6 57.9

U [100; 500] 32.9 0.9 30.8 21.4 61.5 23.8 62.3

Cost penalty,

βi, ∀i ∈ N d
0.05 · αi 32.9 5.1 30.5 28.1 64.3 34.8 66.6

0.1 · αi 29.7 4.9 28.1 12.6 51.8 18.6 53.6

Total 31.3 5.0 29.3 20.3 58.1 26.7 60.1

• In both the symmetric and asymmetric test bed, the results indicate that savings of all proposed

heuristics (with the exception of heuristic SDSR-R and SDDR-R) tend to increase when networks

become larger (both |N | and |N d|). These are promising results as our heuristics are in particular

focused on network of large size.

• When considering either a dynamic dispatching heuristic or dynamic repositioning heuristic, we observe

that only adopting a dynamic dispatching heuristic greatly outperforms only adopting a dynamic

repositioning heuristic. With the SDDR heuristic savings of -3.2% (symmetric) to 5.0% (asymmetric)

are attained, whereas with the DDSR heuristic savings of 20.3% (asymmetric) to 21.6% (symmetric)

are attained. When allowing reallocation in the heuristic, this difference becomes even larger. With the

SDDR-R heuristic savings of 23.6% (symmetric) to 29.3% (asymmetric) are attained, whereas with the

DDSR-R heuristic huge savings of 58.1% (asymmetric) to 61.4% (symmetric) are attained. This is in

contrast with findings in DAM literature, where it is shown that smarter allocation of idle ambulances

to bases offers greater gains than advanced dispatching rules for ambulances to requests (Yue et al.,

2012). This discrepancy could be explained by the different performance criterion. Whereas models

in DAM literature are mainly focused on the minimization of late-arrivals (where an hour too late is

considered equally as just a mere second too late), our objective is formulated in monetary terms where

7.2 Numerical results 49

penalty costs are incurred when a service engineer is already too late. In our case, dynamic dispatching

rules, where the state of an equipment is taken into account, is then of more value than repositioning

idle service engineers in anticipation of future demand. We come back to this observation when we

discuss the substantial difference between the results of the small and large test bed with respect to

the repositioning heuristic.

• Across all instances, savings tend to decrease for each of the four heuristics with the dynamic dispatch-

ing heuristic when the number of service engineers increases. This can be explained as follows. When

the number of service engineers decreases, it is more likely that a demand node is located remotely

from the nearest service engineer. Then, it could be the case that this demand node, upon failure,

has to wait considerably long before eventually being served, thereby incurring penalty costs. Our

proposed dynamic dispatching heuristic ensures that failed capital goods that are remotely located are

also being served in a timely fashion. However, when the number of service engineers increases, it is less

likely that a demand node is located remotely, thereby diminishing these effects. In other words, when

each demand node is not too distant from the nearest idle service engineer, then our static dispatching

heuristic suffices.

We also investigated the average relative distributions of the cost per time unit (i.e. which part is spent on

α, β and γ). Note that these are relative fractions, which means that they do not say anything about the

absolute values. The absolute values are displayed in Table 7.9 and Table 7.10, respectively. When observing

Figures 7.1 and 7.2, where the average relative distribution of the cost per time unit is displayed for the

symmetric and asymmetric test bed, respectively, we make two other observations:

• Employing the dynamic dispatching heuristic results in relatively lower penalty costs that are incurred

after exceeding the solution time threshold, whereas employing the static counter part results in rela-

tively lower traveling costs.

• Allowing reallocation amplifies the first observation.

Table 7.9: Distribution of average cost per time unit in euros for large symmetric test bed

Heuristic cost due to α cost due to β cost due to γ total cost
1 SDSR 124.1 336.3 36.0 496.4
2 SDSR-R 78.8 268.7 27.0 374.5
3 SDDR 123.8 354.2 34.0 512.0
4 SDDR-R 83.3 304.7 25.8 413.8
5 DDSR 156.9 74.7 34.8 266.4
6 DDSR-R 74.6 12.5 23.9 111.0
7 DDDR 159.7 75.3 32.9 267.9
8 DDDR-R 78.0 13.3 22.3 113.6

50 Chapter 7. Computational study

1
SDSR

2
SDSR-R

3
SDDR

4
SDDR-R

5
DDSR

6
DDSR-R

7
DDDR

8
DDDR-R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Heuristic

D
is
tr

ib
u
ti
on

of
av

er
ag

e
co

st
p
er

ti
m

e
u
n
it

0.19

0.62

0.19

0.06

0.62

0.32

0.19

0.63

0.18

0.06

0.65

0.29

0.38

0.46

0.16

0.31

0.50

0.190.16

0.37

0.47

0.28

0.49

0.23

cost due to ,

cost due to -

cost due to .

Figure 7.1: Distribution of average cost per time unit for large symmetric test bed

D
is
tr

ib
u
ti
on

of
av

er
ag

e
co

st
p
er

ti
m

e
u
n
it

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.33

0.41

0.26

0.28

0.42

0.30

0.17

0.52

0.31

0.05
0.50

0.45

0.16

0.54

0.30

0.05
0.53

0.420.27

0.33

0.40

0.25

0.41

0.34

cost due to ,

cost due to -

cost due to .

1
SDSR

2
SDSR-R

3
SDDR

4
SDDR-R

5
DDSR

6
DDSR-R

7
DDDR

8
DDDR-R

Heuristic

Figure 7.2: Distribution of average cost per time unit for large asymmetric test bed

These observations show the benefit of taking into account the state of equipment. Using a static dispatch

policy (i.e. always sending the ‘closest-idle’ service engineer) indeed results in lower traveling costs, however

it also results in that remote service requests have to wait too long before eventually being served, thereby

incurring penalty costs. In contrast, our proposed dynamic dispatching heuristic ensures that failed capital

goods that are remotely located are also being served in a timely fashion. Reallocation amplifies this effect

7.2 Numerical results 51

Table 7.10: Distribution of average cost per time unit in euros for large asymmetric test bed

Heuristic cost due to α cost due to β cost due to γ total cost
1 SDSR 67.6 180.6 36.2 284.4
2 SDSR-R 43.1 143.3 27.1 213.5
3 SDDR 65.1 185.8 32.6 283.5
4 SDDR-R 44.7 160.2 25.3 230.2
5 DDSR 85.1 39.7 35.0 159.8
6 DDSR-R 40.5 6.6 24.1 71.2
7 DDDR 83.7 37.9 31.4 153.0
8 DDDR-R 42.5 7.3 21.9 71.5

since one can coordinate the dispatching decision at each decision epoch, resulting in that service requests

that are on or close to the route to other service requests can be served, preventing them from incurring

penalty costs.

Next, if we compare the results of the small test bed with the large test bed, we see one substantial difference.

Whereas a heuristic that uses our dynamic repositioning heuristic greatly outperforms its counterpart with

the static repositioning heuristic in the small test bed, this is not the case in the large test bed. This can

be explained by the nature of our proposed dynamic repositioning heuristic. In our dynamic repositioning

heuristic, we perform a local search for each idle service engineer where we calculate the weighted marginal

coverage contribution of each neighboring node. In the small network of the small test bed, this calculation

captures for each node the state of a large part of the whole network since most demand nodes can be reached

within T̂ − 1 from each node. However, in the large network it can be the case that (a substantial part of

all) demand nodes that are still up and running lie further away than T̂ − 1 from the nearest idle service

engineer. If such a situation occurs, then such an area also remains uncovered due to the nature of our local

search method. With our static repositioning heuristic, these areas will be covered as well, albeit without

taking into account whether the demand nodes are actually up and running or not. Consequently, we can

state that our static repositioning heuristic is already advanced enough for practical purposes. Note that a

possible solution to this could be to first determine the distance to the nearest idle service engineer for each

demand node and then take the maximum of these distances as the new value for T̂ − 1 in our local search.

Finally, we can quantify the benefit of either using the dynamic dispatching heuristic, dynamic repositioning

heuristic or allowing reallocation in the policy by comparing each heuristic with its counterpart that differs

on that one aspect and subsequently take the average of these four comparisons. To illustrate this, the

benefit of allowing reallocation in the policy, denoted by %V ALR, is calculated as:

%V ALR =
−100

4
·
(
g2 − g1

g1
+
g4 − g3

g3
+
g6 − g5

g5
+
g8 − g7

g7

)
, (7.3)

where gn is as defined before. The benefit of either using the dynamic dispatching heuristic or dynamic

repositioning heuristic, denoted by %V ALDD and %V ALDR, respectively, are calculated analogously to

52 Chapter 7. Computational study

%V ALR. Hence, these benefits can be interpreted as savings that can be attained on average by either

employing a dynamic instead of a static heuristic or by allowing reallocation (instead of not allowing) in the

policy that is used. These savings are shown in Table 7.11.

Table 7.11: Benefit of either using the dynamic dispatching heuristic, dynamic repositioning heuristic or
allowing reallocation in the policy

Benefit Value
%V ALR 49.2

%V ALDD 27.7
%V ALDR 0.5

From Table 7.11 we observe that substantial savings of close to 50% can be attained by allowing reallocation

in the policy. Current models, both in literature and in practice, limit themselves by imposing the constraint

that once a decision has been made (either to dispatch or to reposition) the vehicle becomes eligible for a

new decision once it has completed its service or has arrived at its final location. This quantification, which

is currently lacking in the literature, shows that it is very beneficial to allow reallocation, regardless of the

policy used, and can therefore be seen as an important contribution of this thesis. Table 7.11 also shows

that significant savings, albeit it to a lesser degree, can be attained by employing the dynamic dispatching

heuristic instead of the widely adopted ‘closest-idle first’-heuristic. Finally, Table 7.11 shows that employing

the dynamic repositioning heuristic performs comparable to the static repositioning heuristic. We discussed

the underlying argument for this before, where we extensively explained the substantial difference between

the results of the small and large test bed.

Chapter 8

Conclusion and discussion

We conclude this thesis by summarizing our main results, discussing and reflecting on the limitations of our

research and pointing out opportunities for future research. We were the first to address the problem of real-

time dispatching and repositioning of service engineers in a service logistics network to realize short solution

times, such that costs (associated with exceeding the solution time threshold, delayed service requests and

traveling of service engineers) are minimized. We formulated the problem as an Markov Decision Process

(MDP) and solved the problem to optimality for a small network. We obtained insights into the structure

of the optimal policy, along which we proposed two repositioning and two dispatching heuristics for both

the reposition and dispatch sub-problem. In both cases we developed a static and dynamic heuristic. Our

static heuristics are characterized by rules of thumbs that are determined a-priori and which are then always

followed. By contrast, our dynamic heuristics are characterized by maximizing a goal function that takes

into account information about the current state of the network. The developed dispatching (repositioning)

heuristics are generic in the sense that they can be combined with any repositioning (dispatching) heuristic.

We also analyzed the benefit of employing reallocation in the policy, i.e. being flexible in deviating from

previous dispatch and reposition decisions.

8.1 Main results

We compared the performance of our proposed heuristics against the optimal policy in a small network

in a small test bed and against a myopic policy, the SDSR heuristic (static dispatching heuristic, static

repositioning heuristic, no reallocation), that is currently used in practice across a large test bed of industrial

size. In the small test bed, we found that the average and the maximum optimality gap over all examined

symmetric problem instances of the DDDR-R heuristic (dynamic dispatching heuristic, dynamic repositioning

heuristic, reallocation), our most advanced heuristic, are 4.6% and 10.4%, respectively. This is a clear

improvement compared to the myopic SDSR heuristic, which has optimality gaps of 99.0% and 322.6%t,

53

54 Chapter 8. Conclusion and discussion

respectively. However, in a rather pessimistic test bed, we found that the same DDDR-R heuristic performed

worse with optimality gaps of of 37.8% and 73.9%, respectively. Nevertheless, in the same test bed we

observed that this was still a clear improvement compared to the myopic SDSR heuristic (optimality gaps

of 99.9% and 224.5%, respectively). As the overarching objective of this thesis was to develop scalable

heuristics that perform well in practice, we conducted a large test bed with networks of industrial size that

we discussed more extensively than the artificial network in our small test bed. In this large test bed, we

found that huge savings can be obtained by either employing a dynamic dispatching policy or allowing for

reallocation in the policy. The combination of both using a dynamic dispatching policy and allowing for

reallocation, where we observed savings of up to 61.9%, results in the highest savings in the real-life service

logistics networks.

Furthermore, we quantified the benefit of individually using either a dynamic dispatching heuristic, a dynamic

repositioning heuristic of allowing reallocation in the policy. We showed that savings of close to 50%can be

attained by letting each service engineer be eligible for dispatch and reposition decisions, regardless of whether

they are on their way to their destination or have already reached their destination. Current models, both

in literature and in practice, limit themselves by imposing the constraint that once a decision has been made

(either to dispatch or to reposition) the vehicle becomes eligible for a new decision once it has completed its

service or has arrived at its final location. This quantification, which is currently lacking in the literature,

shows that it is very beneficial from a cost-perspective to relax this limitation, regardless of the policy used,

and can therefore be seen as an important result of this thesis. Employing the dynamic dispatching heuristic

also results in high savings (27.7%) compared to the static counterpart, the widely adopted ‘closest-idle

first’-heuristic, which tend to increase when the number of service engineers decreases (i.e. when the chance

of remotely located demand nodes increases). Finally, we showed that employing the dynamic repositioning

heuristic results in minimal savings (0.5%) compared to the static repositioning heuristic, which stem from

the fact that areas that are uncovered, remain uncovered due to the nature of the local search method. At

the same time, these minimal savings indicate that our static repositioning heuristic is already advanced

enough for practical purposes.

Although our work is mainly motivated by the dispatch and reposition problem for service engineers in

service logistics networks, it is also relevant for other logistics networks where dispatching and repositioning

decisions have to be made in real-time. Results of our work are of particular interest to the area of emergency

services management and the real-time management of taxis. The models that exist in the literature for the

real-time management of emergency providers do not consider reallocation. However, we show that huge

benefits can be gained from allowing reallocation in the dispatch and repositioning policies. In the real-time

management of taxis, the central decision maker also faces a dispatching problem and reposition problem.

Especially our proposed dynamic reposition heuristic can be easily adapted to the area of taxi management

by translating the state of the equipment into the waiting time of a customer.

8.2 Reflection on limitations 55

8.2 Reflection on limitations

The main, and at the same time most restrictive, assumption in our exact model is that we discretize

both time and space in steps of ∆t. This allowed us to model the problem as an exact MDP problem.

However, as is often the case with higher dimensional MDPs, even this formulation was tractable only in

oversimplified versions of the problem with few service engineers and small service logistics networks. Though

this assumption oversimplified the problem, it helped us to gain insights into the optimal policy with respect

to three aspects, i.e. location strategy for idle service engineers, dispatching strategy of service engineers

that takes into account the state of the system, and reallocation of service engineers. Note that these insights

are solely focused on the movements of service engineers. Likewise, our proposed heuristics are also solely

focused on the movements of service engineers, irrespective of the duration of repairs or even travel times.

Our aim was to use as little information possible, such that the heuristics scale well in practice, and such that

it is implicitly insensitive to choices of the parameters. As a result, the proposed heuristics do not depend

on ∆t but they only need as input where idle service engineers are located, their (expected) travel times to

each demand node, and, if applicable, the arrival times of service requests. Additionally, when reallocation

is allowed in the policy, managers of service organizations only have to choose how often previous dispatch

and reposition decision should be reconsidered.

We can thus state that our exact model is limited by our assumption with regard to ∆t, but that this

assumption has not restricted us from reaching the overarching goal of this thesis, i.e. developing scalable

heuristics that perform well in practice.

8.3 Future research

Suggestions for future research are twofold. First, our research can be extended by looking into the limitations

of this study. In the formulation of our exact model we have assumed that i) travel times are deterministic,

ii) repair times are deterministic and can only take one certain value (∆t) irrespective of the type of the

repair, iii) service engineers are indistinguishable and iv) there is only one solution time threshold for all

customers. From a practical point of view, these assumptions do not always hold. Hence, future research

can focus on relaxing one or more of these assumptions in the exact model. With respect to the second

limitation, we already shortly discussed how deterministic repair times that are a integral multiple of ∆t can

be incorporated. In contrast to the exact model, the first two limitations do not apply to both our dispatching

and repositioning heuristics since they do not rely on these assumptions (as discussed in the previous section).

With regards to assumption iv), our dynamic dispatching and both repositioning heuristics could incorporate

different solution time thresholds by means of a weight factor.

56 Chapter 8. Conclusion and discussion

Second, we suggest to investigate research question 1 and research question 2 that we discussed in Chapter

1, which were related to how many service engineers are needed and how many and which spare parts should

be stored in the local warehouse, respectively. With this research we made a starting point for analyzing our

proposed innovative network design by developing scalable heuristics that assist decision makers in answering

question 3 under given choices for research question 1 and independent from research question 2. This leaves

research question 1 and research question 2 open for further research. Answering all three research questions

will complete the analysis, planning and control of our proposed innovative network. The performance of

this network can then be compared to the performance of traditional service logistics networks. Such a

comparison should be done under a wide range of conditions, but in particularly for a continuum of solution

time targets. Managers of service organizations can then base their choice for the service logistics network

design on the solution time target that they need to attain.

The spare parts problem of research question 2 in isolation falls in the class of multi-item, single-location

inventory models that are subjected to an aggregate fill-rate constraint (which is the service measure).

A single-item version of this model was initially formulated by Feeney and Sherbrooke (1966), which is

later extended to a multi-item formulation (see Sherbrooke (2006), chapter 2). Several exact optimization

methods have been proposed to determine optimal base-stock levels for this problem (see Van Houtum and

Kranenburg (2015), chapter 2), which could be used in this research. One difficulty that arises here is that by

decomposing the spare parts problem and the dispatching and repositioning problem into two sub-problems,

it is implicitly assumed that both problems are independent. However, in practice this will not be the case

as both the service engineer and the spare part need to be at the same place at exactly the same time, which

means that they are dependent on each other.

Next, the trade-off between higher coverage and the costs of additional service engineers on the overall

performance should be studied (e.g., by means of enumeration). Integrating all decisions at each layer

and evaluating the performance of our proposed network design is a difficult problem that is likely to be

intractable using analytical methods. Instead, Simulation-Based Optimization (SBO), which is a way to

solve problems of high computational complexity, could be a promising technique to tackle this problem.

Ghosh et al. (2013) propose to use SBO for complex problems in two parts. First, a tractable analytical

model is solved in order to provide good solutions for the individual decisions. In our case, this will be for

decision 2 and the decision that was under study in this thesis. This solution is then used as input for a

simulation model, which can be solved using local search methods. This approach was refined recently by

Dieker et al. (2016), who use an iterative method between the two stages.

Bibliography

R. Alanis, A. Ingolfsson, and B. Kolfal. A markov chain model for an ems system with repositioning.

Production and Operations Management, 22(1):216–231, 2013.

R.J.I. Basten and G.J.J.A.N. Van Houtum. System-oriented inventory models for spare parts. Surveys in

Operations Research and Management Science, 19(1):34–55, 2014.

R. Bellman. A markovian decision process. Journal of Mathematics and Mechanics, pages 679–684, 1957.

D. Caglar, C.L. Li, and D. Simchi-Levi. Two-echelon spare parts inventory system subject to a service

constraint. IIE Transactions, 36(7):655–666, 2004.

Y. Caseau and F. Laburthe. Heuristics for large constrained vehicle routing problems. Journal of Heuristics,

5(3):281–303, 1999.

M.S. Daskin. A maximum expected covering location model: formulation, properties and heuristic solution.

Transportation Science, 17(1):48–70, 1983.

A.B. Dieker, S. Ghosh, and M.S. Squillante. Optimal resource capacity management for stochastic networks.

Operations Research, 65(1):221–241, 2016.

G.J. Feeney and C.C. Sherbrooke. The (s- 1, s) inventory policy under compound poisson demand. Man-

agement Science, 12(5):391–411, 1966.

S. Ghosh, A.R. Heching, and M.S. Squillante. A two-phase approach for stochastic optimization of complex

business processes. In Simulation Conference (WSC), 2013 Winter, pages 1856–1868. IEEE, 2013.

S.C. Graves. A multi-echelon inventory model for a repairable item with one-for-one replenishment. Man-

agement Science, 31(10):1247–1256, 1985.

S. Ichoua, M. Gendreau, and J.Y. Potvin. Exploiting knowledge about future demands for real-time vehicle

dispatching. Transportation Science, 40(2):211–225, 2006.

C.J. Jagtenberg, S. Bhulai, and R.D. Van der Mei. An efficient heuristic for real-time ambulance redeploy-

ment. Operations Research for Health Care, 4:27–35, 2015.

57

58 BIBLIOGRAPHY

C.J. Jagtenberg, S. Bhulai, and R.D. Van der Mei. Dynamic ambulance dispatching: is the closest-idle policy

always optimal? Health Care Management Science, pages 1–15, 2016.

D. Jungnickel. Graphs, networks and algorithms. Springer, 2008.

G. Laporte. The vehicle routing problem: An overview of exact and approximate algorithms. European

Journal of Operational Research, 59(3):345–358, 1992.

M.S. Maxwell, M. Restrepo, S.G. Henderson, and H. Topaloglu. Approximate dynamic programming for

ambulance redeployment. INFORMS Journal on Computing, 22(2):266–281, 2010.

M.S. Maxwell, E.C. Ni, C. Tong, S.G. Henderson, H. Topaloglu, , and S.R. Hunter. A bound on the

performance of an optimal ambulance redeployment policy. Operations Research, 62(5):1014–1027, 2014.

J. Naoum-Sawaya and S. Elhedhli. A stochastic optimization model for real-time ambulance redeployment.

Computers & Operations Research, 40(8):1972–1978, 2013.

M.C.A. Olde Keizer, R.H. Teunter, and J. Veldman. Joint condition-based maintenance and inventory

optimization for systems with multiple components. European Journal of Operational Research, 257(1):

209–222, 2017.

V. Pillac, M. Gendreau, C. Guéret, and A.L. Medaglia. A review of dynamic vehicle routing problems.

European Journal of Operational Research, 225(1):1–11, 2013.

A. Pinder Jr. Field service data analytics: Connecting the customer, the asset, and the answer. Technical

report, AberdeenGroup, 07 2016.

W.B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality, volume 703. John

Wiley & Sons, 2007.

M.L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons,

2014.

PWC. Sensing the future of the internet of things. Technical report, Price Waterhouse Coopers, 2014.

B. Rouwenhorst, B. Reuter, V. Stockrahm, G.J.J.A.N. Van Houtum, R.J. Mantel, and W.H. Zijm. Warehouse

design and control: Framework and literature review. European Journal of Operational Research, 122(3):

515–533, 2000.

V. Schmid. Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic

programming. European Journal of Operational Research, 219(3):611–621, 2012.

C.C. Sherbrooke. Optimal inventory modeling of systems: multi-echelon techniques, volume 72. Springer

Science & Business Media, 2006.

BIBLIOGRAPHY 59

B.W. Thomas. Waiting strategies for anticipating service requests from known customer locations. Trans-

portation Science, 41(3):319–331, 2007.

B.W. Thomas and C.C. White III. Anticipatory route selection. Transportation Science, 38(4):473–487,

2004.

H.C. Tijms. Stochastic models: an algorithmic approach, volume 303. John Wiley & Sons Inc, 1994.

M.W. Ulmer, J.C. Goodson, D.C. Mattfeld, and M. Hennig. Offline-online approximate dynamic program-

ming for dynamic vehicle routing with stochastic requests. Submitted for publication, 2015.

M.W. Ulmer, D.C. Mattfeld, and F. Köster. Budgeting time for dynamic vehicle routing with stochastic

customer requests. Transportation Science, 2017. URL http://pubsonline.informs.org/doi/abs/10.

1287/trsc.2016.0719. Advance online publication.

T.C. Van Barneveld, S. Bhulai, and R.D. Van der Mei. The effect of ambulance relocations on the performance

of ambulance service providers. European Journal of Operational Research, 252(1):257–269, 2016.

T.C. Van Barneveld, S. Bhulai, and R.D. Van der Mei. A dynamic ambulance management model for rural

areas. Health Care Management Science, 20(2):165–186, 2017.

G.J.J.A.N. Van Houtum and B. Kranenburg. Spare parts inventory control under system availability con-

straints, volume 227. Springer, 2015.

Y. Yue, L. Marla, and R. Krishnan. An efficient simulation-based approach to ambulance fleet allocation

and dynamic redeployment. In AAAI Conference on Artificial Intelligence, 2012. URL https://www.

aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5148.

http://pubsonline.informs.org/doi/abs/10.1287/trsc.2016.0719
http://pubsonline.informs.org/doi/abs/10.1287/trsc.2016.0719
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5148
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5148

Appendix A

Additional information computational

study

A.1 Confidence intervals computational study

Table A.1: Average cost per time unit and 95% confidence interval for each instance of small symmetric
test bed

Average cost per time unit and 95% confidence interval of heuristic n

Instance 1 2 3 4 5 6 7 8

{λ, T̂ , γ, (α, β)} SDSR SDSR-R SDDR SDDR-R DDSR DDSR-R DDDR DDDR-R

1 {0.15,3,0.5,(8,4)} 5.28 ± 0.0103 4.90 ± 0.0108 4.21 ± 0.0094 4.04 ± 0.0098 5.12 ± 0.0102 4.79 ± 0.0107 4.10 ± 0.0092 3.86 ± 0.0096

2 {0.2,3,0.5,(8,4)} 6.67 ± 0.0108 6.20 ± 0.0114 5.57 ± 0.0102 5.28 ± 0.0107 6.39 ± 0.0108 6.00 ± 0.0113 5.36 ± 0.0101 5.04 ± 0.0105

3 {0.25,3,0.5,(8,4)} 7.80 ± 0.0110 7.30 ± 0.0117 6.81 ± 0.0107 6.45 ± 0.0112 7.44 ± 0.0110 7.03 ± 0.0116 6.51 ± 0.0105 6.11 ± 0.0110

4 {0.3,3,0.5,(8,4)} 8.74 ± 0.0110 8.22 ± 0.0117 7.87 ± 0.0109 7.44 ± 0.0114 8.31 ± 0.0111 7.88 ± 0.0117 7.46 ± 0.0107 7.05 ± 0.0112

5 {0.35,3,0.5,(8,4)} 9.48 ± 0.0110 8.99 ± 0.0117 8.75 ± 0.0109 8.30 ± 0.0114 8.99 ± 0.0111 8.60 ± 0.0117 8.28 ± 0.0108 7.87 ± 0.0113

6 {0.15,4,0.5,(8,4)} 3.01 ± 0.0070 1.98 ± 0.0068 1.33 ± 0.0058 1.16 ± 0.0055 2.78 ± 0.0065 1.74 ± 0.0061 1.20 ± 0.0053 0.93 ± 0.0048

7 {0.2,4,0.5,(8,4)} 3.70 ± 0.0082 2.61 ± 0.0078 2.11 ± 0.0073 1.83 ± 0.0069 3.32 ± 0.0075 2.22 ± 0.0070 1.85 ± 0.0066 1.45 ± 0.0060

8 {0.25,4,0.5,(8,4)} 4.33 ± 0.0089 3.23 ± 0.0086 2.90 ± 0.0083 2.54 ± 0.0080 3.81 ± 0.0082 2.68 ± 0.0077 2.47 ± 0.0075 1.98 ± 0.0071

9 {0.3,4,0.5,(8,4)} 4.90 ± 0.0095 3.82 ± 0.0092 3.65 ± 0.0091 3.21 ± 0.0088 4.25 ± 0.0087 3.14 ± 0.0083 3.07 ± 0.0082 2.54 ± 0.0079

10 {0.35,4,0.5,(8,4)} 5.40 ± 0.0098 4.34 ± 0.0096 4.35 ± 0.0096 3.87 ± 0.0093 4.64 ± 0.0090 3.56 ± 0.0088 3.61 ± 0.0087 3.06 ± 0.0085

11 {0.15,3,0.75,(8,4)} 5.53 ± 0.0103 5.15 ± 0.0110 4.35 ± 0.0094 4.17 ± 0.0101 5.36 ± 0.0102 5.02 ± 0.0109 4.26 ± 0.0093 4.00 ± 0.0099

12 {0.2,3,0.75,(8,4)} 6.97 ± 0.0108 6.47 ± 0.0116 5.79 ± 0.0103 5.48 ± 0.0110 6.70 ± 0.0107 6.26 ± 0.0115 5.57 ± 0.0101 5.21 ± 0.0108

13 {0.25,3,0.75,(8,4)} 8.13 ± 0.0110 7.62 ± 0.0119 7.04 ± 0.0108 6.65 ± 0.0114 7.76 ± 0.0109 7.31 ± 0.0118 6.73 ± 0.0106 6.30 ± 0.0113

14 {0.3,3,0.75,(8,4)} 9.06 ± 0.0110 8.55 ± 0.0119 8.13 ± 0.0109 7.70 ± 0.0117 8.63 ± 0.0110 8.19 ± 0.0119 7.70 ± 0.0108 7.30 ± 0.0115

15 {0.35,3,0.75,(8,4)} 9.83 ± 0.0109 9.31 ± 0.0119 9.08 ± 0.0109 8.59 ± 0.0117 9.33 ± 0.0110 8.92 ± 0.0119 8.54 ± 0.0108 8.14 ± 0.0116

16 {0.15,4,0.75,(8,4)} 3.29 ± 0.0071 2.26 ± 0.0069 1.49 ± 0.0059 1.31 ± 0.0057 3.08 ± 0.0066 2.01 ± 0.0063 1.35 ± 0.0054 1.07 ± 0.0049

17 {0.2,4,0.75,(8,4)} 4.01 ± 0.0082 2.93 ± 0.0080 2.30 ± 0.0074 2.02 ± 0.0071 3.64 ± 0.0075 2.52 ± 0.0071 2.03 ± 0.0067 1.62 ± 0.0062

18 {0.25,4,0.75,(8,4)} 4.66 ± 0.0089 3.55 ± 0.0087 3.15 ± 0.0085 2.75 ± 0.0082 4.15 ± 0.0082 3.00 ± 0.0079 2.70 ± 0.0076 2.20 ± 0.0072

19 {0.3,4,0.75,(8,4)} 5.25 ± 0.0094 4.13 ± 0.0093 3.93 ± 0.0092 3.47 ± 0.0090 4.59 ± 0.0086 3.46 ± 0.0085 3.33 ± 0.0083 2.76 ± 0.0080

20 {0.35,4,0.75,(8,4)} 5.75 ± 0.0097 4.69 ± 0.0097 4.64 ± 0.0097 4.15 ± 0.0095 4.97 ± 0.0089 3.90 ± 0.0090 3.90 ± 0.0087 3.33 ± 0.0087

21 {0.15,3,1,(8,4)} 5.77 ± 0.0103 5.38 ± 0.0113 4.52 ± 0.0096 4.33 ± 0.0104 5.61 ± 0.0102 5.25 ± 0.0112 4.39 ± 0.0094 4.13 ± 0.0102

22 {0.2,3,1,(8,4)} 7.27 ± 0.0108 6.75 ± 0.0118 5.97 ± 0.0104 5.68 ± 0.0113 6.98 ± 0.0107 6.54 ± 0.0118 5.75 ± 0.0103 5.40 ± 0.0111

23 {0.25,3,1,(8,4)} 8.45 ± 0.0110 7.90 ± 0.0121 7.29 ± 0.0109 6.89 ± 0.0118 8.07 ± 0.0109 7.61 ± 0.0120 6.94 ± 0.0107 6.53 ± 0.0116

24 {0.3,3,1,(8,4)} 9.40 ± 0.0110 8.86 ± 0.0121 8.39 ± 0.0110 7.96 ± 0.0119 8.95 ± 0.0110 8.50 ± 0.0121 7.97 ± 0.0109 7.53 ± 0.0118

25 {0.35,3,1,(8,4)} 10.15 ± 0.0109 9.64 ± 0.0120 9.35 ± 0.0110 8.86 ± 0.0119 9.65 ± 0.0109 9.24 ± 0.0121 8.81 ± 0.0109 8.40 ± 0.0118

26 {0.15,4,1,(8,4)} 3.59 ± 0.0072 2.54 ± 0.0071 1.63 ± 0.0061 1.47 ± 0.0060 3.36 ± 0.0068 2.29 ± 0.0065 1.50 ± 0.0057 1.21 ± 0.0051

27 {0.2,4,1,(8,4)} 4.35 ± 0.0083 3.24 ± 0.0081 2.50 ± 0.0076 2.21 ± 0.0074 3.96 ± 0.0076 2.82 ± 0.0073 2.23 ± 0.0069 1.79 ± 0.0064

28 {0.25,4,1,(8,4)} 5.00 ± 0.0090 3.88 ± 0.0089 3.39 ± 0.0087 2.98 ± 0.0084 4.49 ± 0.0083 3.33 ± 0.0080 2.93 ± 0.0078 2.40 ± 0.0074

29 {0.3,4,1,(8,4)} 5.60 ± 0.0095 4.49 ± 0.0095 4.20 ± 0.0093 3.72 ± 0.0092 4.93 ± 0.0087 3.79 ± 0.0087 3.59 ± 0.0084 3.00 ± 0.0082

Continued on next page

60

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 61

Table A.1: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instance 1 2 3 4 5 6 7 8

{λ, T̂ , γ, (α, β)} SDSR SDSR-R SDDR SDDR-R DDSR DDSR-R DDDR DDDR-R

30 {0.35,4,1,(8,4)} 6.10 ± 0.0098 5.04 ± 0.0099 4.92 ± 0.0098 4.41 ± 0.0097 5.31 ± 0.0089 4.23 ± 0.0092 4.17 ± 0.0088 3.57 ± 0.0089

31 {0.15,3,0.5,(8,6)} 6.10 ± 0.0116 5.52 ± 0.0118 5.08 ± 0.0110 4.81 ± 0.0112 5.82 ± 0.0113 5.36 ± 0.0115 4.90 ± 0.0107 4.56 ± 0.0109

32 {0.2,3,0.5,(8,6)} 7.93 ± 0.0124 7.18 ± 0.0127 6.85 ± 0.0121 6.35 ± 0.0123 7.48 ± 0.0120 6.86 ± 0.0123 6.50 ± 0.0117 5.98 ± 0.0119

33 {0.25,3,0.5,(8,6)} 9.45 ± 0.0127 8.63 ± 0.0131 8.43 ± 0.0127 7.82 ± 0.0129 8.85 ± 0.0123 8.16 ± 0.0127 7.91 ± 0.0122 7.28 ± 0.0124

34 {0.3,3,0.5,(8,6)} 10.70 ± 0.0128 9.89 ± 0.0133 9.84 ± 0.0129 9.14 ± 0.0132 9.97 ± 0.0124 9.27 ± 0.0129 9.18 ± 0.0124 8.48 ± 0.0127

35 {0.35,3,0.5,(8,6)} 11.75 ± 0.0126 10.94 ± 0.0132 11.02 ± 0.0129 10.28 ± 0.0133 10.91 ± 0.0123 10.25 ± 0.0129 10.21 ± 0.0124 9.55 ± 0.0128

36 {0.15,4,0.5,(8,6)} 3.46 ± 0.0078 2.15 ± 0.0074 1.50 ± 0.0065 1.29 ± 0.0062 3.16 ± 0.0072 1.81 ± 0.0064 1.32 ± 0.0058 0.96 ± 0.0049

37 {0.2,4,0.5,(8,6)} 4.24 ± 0.0091 2.92 ± 0.0087 2.40 ± 0.0082 2.07 ± 0.0078 3.75 ± 0.0082 2.33 ± 0.0073 2.04 ± 0.0072 1.51 ± 0.0063

38 {0.25,4,0.5,(8,6)} 5.01 ± 0.0100 3.68 ± 0.0097 3.34 ± 0.0095 2.94 ± 0.0092 4.30 ± 0.0089 2.86 ± 0.0081 2.75 ± 0.0082 2.10 ± 0.0074

39 {0.3,4,0.5,(8,6)} 5.71 ± 0.0107 4.42 ± 0.0105 4.30 ± 0.0105 3.77 ± 0.0101 4.76 ± 0.0094 3.36 ± 0.0088 3.42 ± 0.0090 2.70 ± 0.0083

40 {0.35,4,0.5,(8,6)} 6.33 ± 0.0111 5.12 ± 0.0110 5.09 ± 0.0110 4.57 ± 0.0108 5.20 ± 0.0098 3.84 ± 0.0093 4.01 ± 0.0094 3.28 ± 0.0089

41 {0.15,3,0.75,(8,6)} 6.33 ± 0.0116 5.77 ± 0.0120 5.24 ± 0.0110 4.92 ± 0.0115 6.06 ± 0.0112 5.57 ± 0.0118 5.08 ± 0.0108 4.69 ± 0.0112

42 {0.2,3,0.75,(8,6)} 8.22 ± 0.0124 7.47 ± 0.0129 7.02 ± 0.0122 6.54 ± 0.0126 7.78 ± 0.0120 7.12 ± 0.0125 6.70 ± 0.0118 6.15 ± 0.0122

43 {0.25,3,0.75,(8,6)} 9.75 ± 0.0126 8.94 ± 0.0133 8.64 ± 0.0127 8.05 ± 0.0133 9.14 ± 0.0122 8.44 ± 0.0129 8.14 ± 0.0123 7.51 ± 0.0127

44 {0.3,3,0.75,(8,6)} 11.04 ± 0.0127 10.22 ± 0.0134 10.08 ± 0.0130 9.38 ± 0.0135 10.29 ± 0.0123 9.58 ± 0.0130 9.39 ± 0.0125 8.72 ± 0.0130

45 {0.35,3,0.75,(8,6)} 12.08 ± 0.0125 11.26 ± 0.0134 11.31 ± 0.0129 10.55 ± 0.0135 11.23 ± 0.0122 10.57 ± 0.0130 10.46 ± 0.0125 9.80 ± 0.0130

46 {0.15,4,0.75,(8,6)} 3.75 ± 0.0079 2.43 ± 0.0076 1.66 ± 0.0066 1.45 ± 0.0064 3.45 ± 0.0072 2.09 ± 0.0065 1.47 ± 0.0059 1.10 ± 0.0051

47 {0.2,4,0.75,(8,6)} 4.58 ± 0.0091 3.24 ± 0.0089 2.60 ± 0.0083 2.28 ± 0.0081 4.07 ± 0.0082 2.64 ± 0.0075 2.23 ± 0.0073 1.68 ± 0.0064

48 {0.25,4,0.75,(8,6)} 5.36 ± 0.0100 4.00 ± 0.0098 3.60 ± 0.0096 3.14 ± 0.0094 4.63 ± 0.0089 3.18 ± 0.0083 2.98 ± 0.0083 2.32 ± 0.0076

49 {0.3,4,0.75,(8,6)} 6.05 ± 0.0106 4.75 ± 0.0106 4.53 ± 0.0105 4.00 ± 0.0103 5.11 ± 0.0093 3.70 ± 0.0090 3.67 ± 0.0090 2.93 ± 0.0084

50 {0.35,4,0.75,(8,6)} 6.68 ± 0.0110 5.46 ± 0.0111 5.39 ± 0.0111 4.83 ± 0.0110 5.56 ± 0.0097 4.17 ± 0.0095 4.30 ± 0.0095 3.54 ± 0.0091

51 {0.15,3,1,(8,6)} 6.61 ± 0.0116 6.00 ± 0.0123 5.39 ± 0.0111 5.08 ± 0.0119 6.34 ± 0.0113 5.81 ± 0.0120 5.23 ± 0.0109 4.83 ± 0.0115

52 {0.2,3,1,(8,6)} 8.53 ± 0.0124 7.74 ± 0.0131 7.23 ± 0.0123 6.74 ± 0.0130 8.04 ± 0.0119 7.39 ± 0.0128 6.89 ± 0.0119 6.34 ± 0.0125

53 {0.25,3,1,(8,6)} 10.06 ± 0.0126 9.22 ± 0.0135 8.90 ± 0.0129 8.26 ± 0.0136 9.46 ± 0.0122 8.74 ± 0.0131 8.38 ± 0.0124 7.71 ± 0.0130

54 {0.3,3,1,(8,6)} 11.38 ± 0.0126 10.50 ± 0.0137 10.36 ± 0.0130 9.63 ± 0.0138 10.61 ± 0.0122 9.91 ± 0.0132 9.65 ± 0.0125 8.97 ± 0.0133

55 {0.35,3,1,(8,6)} 12.44 ± 0.0125 11.58 ± 0.0136 11.58 ± 0.0130 10.82 ± 0.0138 11.58 ± 0.0121 10.88 ± 0.0132 10.76 ± 0.0125 10.06 ± 0.0133

56 {0.15,4,1,(8,6)} 4.05 ± 0.0080 2.72 ± 0.0077 1.80 ± 0.0068 1.58 ± 0.0065 3.74 ± 0.0073 2.36 ± 0.0067 1.61 ± 0.0061 1.24 ± 0.0053

57 {0.2,4,1,(8,6)} 4.90 ± 0.0092 3.54 ± 0.0090 2.80 ± 0.0085 2.45 ± 0.0082 4.37 ± 0.0082 2.95 ± 0.0077 2.42 ± 0.0075 1.86 ± 0.0066

58 {0.25,4,1,(8,6)} 5.69 ± 0.0101 4.35 ± 0.0100 3.82 ± 0.0098 3.37 ± 0.0096 4.96 ± 0.0089 3.48 ± 0.0084 3.23 ± 0.0085 2.52 ± 0.0077

59 {0.3,4,1,(8,6)} 6.40 ± 0.0106 5.09 ± 0.0107 4.79 ± 0.0106 4.26 ± 0.0105 5.47 ± 0.0094 4.02 ± 0.0091 3.94 ± 0.0091 3.16 ± 0.0086

60 {0.35,4,1,(8,6)} 7.03 ± 0.0110 5.80 ± 0.0113 5.68 ± 0.0112 5.09 ± 0.0112 5.88 ± 0.0096 4.51 ± 0.0097 4.57 ± 0.0096 3.79 ± 0.0093

61 {0.15,3,0.5,(8,8)} 6.91 ± 0.0133 6.15 ± 0.0131 5.94 ± 0.0129 5.56 ± 0.0129 6.53 ± 0.0127 5.89 ± 0.0126 5.74 ± 0.0124 5.23 ± 0.0123

62 {0.2,3,0.5,(8,8)} 9.15 ± 0.0145 8.16 ± 0.0144 8.06 ± 0.0143 7.42 ± 0.0143 8.57 ± 0.0137 7.71 ± 0.0137 7.63 ± 0.0137 6.90 ± 0.0135

63 {0.25,3,0.5,(8,8)} 11.08 ± 0.0150 9.94 ± 0.0150 10.01 ± 0.0151 9.21 ± 0.0151 10.22 ± 0.0141 9.27 ± 0.0142 9.37 ± 0.0144 8.47 ± 0.0142

64 {0.3,3,0.5,(8,8)} 12.71 ± 0.0151 11.54 ± 0.0153 11.72 ± 0.0155 10.84 ± 0.0155 11.63 ± 0.0143 10.70 ± 0.0145 10.87 ± 0.0146 9.94 ± 0.0146

65 {0.35,3,0.5,(8,8)} 13.99 ± 0.0150 12.88 ± 0.0154 13.26 ± 0.0154 12.22 ± 0.0156 12.80 ± 0.0142 11.89 ± 0.0145 12.15 ± 0.0146 11.21 ± 0.0146

66 {0.15,4,0.5,(8,8)} 3.90 ± 0.0089 2.30 ± 0.0081 1.67 ± 0.0074 1.41 ± 0.0069 3.54 ± 0.0080 1.89 ± 0.0067 1.43 ± 0.0064 1.00 ± 0.0052

67 {0.2,4,0.5,(8,8)} 4.79 ± 0.0104 3.22 ± 0.0098 2.69 ± 0.0094 2.30 ± 0.0088 4.17 ± 0.0091 2.45 ± 0.0078 2.23 ± 0.0080 1.58 ± 0.0066

68 {0.25,4,0.5,(8,8)} 5.71 ± 0.0115 4.13 ± 0.0111 3.82 ± 0.0110 3.29 ± 0.0105 4.75 ± 0.0099 3.02 ± 0.0087 3.02 ± 0.0091 2.22 ± 0.0078

69 {0.3,4,0.5,(8,8)} 6.55 ± 0.0123 5.03 ± 0.0121 4.87 ± 0.0121 4.30 ± 0.0117 5.30 ± 0.0104 3.58 ± 0.0094 3.77 ± 0.0099 2.88 ± 0.0088

70 {0.35,4,0.5,(8,8)} 7.26 ± 0.0129 5.87 ± 0.0128 5.84 ± 0.0128 5.26 ± 0.0125 5.78 ± 0.0108 4.12 ± 0.0100 4.44 ± 0.0105 3.49 ± 0.0095

71 {0.15,3,0.75,(8,8)} 7.17 ± 0.0133 6.39 ± 0.0134 6.11 ± 0.0129 5.68 ± 0.0132 6.78 ± 0.0127 6.13 ± 0.0129 5.90 ± 0.0125 5.37 ± 0.0126

72 {0.2,3,0.75,(8,8)} 9.48 ± 0.0145 8.44 ± 0.0146 8.24 ± 0.0143 7.65 ± 0.0147 8.81 ± 0.0137 7.97 ± 0.0139 7.82 ± 0.0137 7.11 ± 0.0139

73 {0.25,3,0.75,(8,8)} 11.43 ± 0.0150 10.25 ± 0.0153 10.26 ± 0.0152 9.43 ± 0.0155 10.54 ± 0.0141 9.58 ± 0.0144 9.59 ± 0.0144 8.69 ± 0.0145

74 {0.3,3,0.75,(8,8)} 13.03 ± 0.0150 11.85 ± 0.0155 12.03 ± 0.0155 11.06 ± 0.0158 11.96 ± 0.0142 11.00 ± 0.0147 11.12 ± 0.0146 10.17 ± 0.0148

75 {0.35,3,0.75,(8,8)} 14.36 ± 0.0149 13.23 ± 0.0155 13.55 ± 0.0154 12.52 ± 0.0159 13.14 ± 0.0141 12.21 ± 0.0147 12.42 ± 0.0146 11.48 ± 0.0149

76 {0.15,4,0.75,(8,8)} 4.19 ± 0.0089 2.62 ± 0.0084 1.82 ± 0.0075 1.57 ± 0.0071 3.83 ± 0.0080 2.16 ± 0.0069 1.59 ± 0.0066 1.13 ± 0.0053

77 {0.2,4,0.75,(8,8)} 5.12 ± 0.0104 3.52 ± 0.0099 2.92 ± 0.0095 2.50 ± 0.0091 4.48 ± 0.0091 2.75 ± 0.0079 2.43 ± 0.0081 1.76 ± 0.0068

78 {0.25,4,0.75,(8,8)} 6.02 ± 0.0115 4.46 ± 0.0112 4.01 ± 0.0110 3.52 ± 0.0107 5.09 ± 0.0098 3.35 ± 0.0088 3.26 ± 0.0092 2.43 ± 0.0080

79 {0.3,4,0.75,(8,8)} 6.87 ± 0.0122 5.33 ± 0.0122 5.15 ± 0.0121 4.54 ± 0.0119 5.63 ± 0.0104 3.91 ± 0.0096 4.02 ± 0.0100 3.10 ± 0.0090

80 {0.35,4,0.75,(8,8)} 7.62 ± 0.0128 6.22 ± 0.0129 6.13 ± 0.0129 5.56 ± 0.0128 6.12 ± 0.0107 4.46 ± 0.0102 4.72 ± 0.0105 3.76 ± 0.0097

81 {0.15,3,1,(8,8)} 7.43 ± 0.0133 6.61 ± 0.0137 6.26 ± 0.0130 5.84 ± 0.0136 7.01 ± 0.0127 6.35 ± 0.0131 6.04 ± 0.0126 5.50 ± 0.0130

82 {0.2,3,1,(8,8)} 9.74 ± 0.0144 8.70 ± 0.0149 8.51 ± 0.0145 7.83 ± 0.0150 9.11 ± 0.0136 8.23 ± 0.0141 8.06 ± 0.0139 7.26 ± 0.0142

83 {0.25,3,1,(8,8)} 11.73 ± 0.0149 10.56 ± 0.0155 10.49 ± 0.0153 9.67 ± 0.0158 10.84 ± 0.0140 9.85 ± 0.0147 9.83 ± 0.0145 8.93 ± 0.0148

84 {0.3,3,1,(8,8)} 13.38 ± 0.0149 12.18 ± 0.0158 12.28 ± 0.0155 11.29 ± 0.0161 12.26 ± 0.0141 11.31 ± 0.0149 11.38 ± 0.0147 10.39 ± 0.0151

85 {0.35,3,1,(8,8)} 14.72 ± 0.0148 13.53 ± 0.0158 13.82 ± 0.0155 12.79 ± 0.0162 13.48 ± 0.0139 12.53 ± 0.0149 12.69 ± 0.0146 11.72 ± 0.0152

86 {0.15,4,1,(8,8)} 4.50 ± 0.0090 2.91 ± 0.0085 1.97 ± 0.0076 1.71 ± 0.0073 4.13 ± 0.0081 2.44 ± 0.0070 1.75 ± 0.0067 1.28 ± 0.0055

87 {0.2,4,1,(8,8)} 5.46 ± 0.0104 3.84 ± 0.0101 3.10 ± 0.0096 2.68 ± 0.0093 4.80 ± 0.0091 3.07 ± 0.0081 2.62 ± 0.0082 1.93 ± 0.0070

88 {0.25,4,1,(8,8)} 6.37 ± 0.0115 4.79 ± 0.0114 4.28 ± 0.0112 3.75 ± 0.0109 5.42 ± 0.0098 3.67 ± 0.0090 3.49 ± 0.0093 2.63 ± 0.0082

89 {0.3,4,1,(8,8)} 7.23 ± 0.0122 5.69 ± 0.0123 5.41 ± 0.0122 4.80 ± 0.0121 5.97 ± 0.0103 4.24 ± 0.0097 4.29 ± 0.0101 3.34 ± 0.0091

90 {0.35,4,1,(8,8)} 7.99 ± 0.0127 6.55 ± 0.0130 6.43 ± 0.0130 5.80 ± 0.0129 6.47 ± 0.0107 4.78 ± 0.0103 4.98 ± 0.0106 4.02 ± 0.0099

62 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.2: Average cost per time unit and 95% confidence interval for each instance of small asymmetric
test bed

Average cost per time unit and 95% confidence interval of heuristic n

Instance 1 2 3 4 5 6 7 8

{T̂ , γ, (α1, β1), (αi, βi)} SDSR SDSR-R SDDR SDDR-R DDSR DDSR-R DDDR DDDR-R

1 {3,0.5,(4,2),(8,4)} 6.09 ± 0.0101 5.66 ± 0.0107 6.02 ± 0.0100 5.76 ± 0.0106 5.82 ± 0.0100 5.49 ± 0.0106 5.78 ± 0.0100 5.54 ± 0.0105

2 {4,0.5,(4,2),(8,4)} 3.74 ± 0.0086 2.75 ± 0.0078 2.81 ± 0.0077 2.72 ± 0.0077 3.40 ± 0.0080 2.35 ± 0.0071 2.52 ± 0.0069 2.22 ± 0.0068

3 {3,0.75,(4,2),(8,4)} 6.04 ± 0.0100 5.64 ± 0.0108 6.03 ± 0.0098 5.77 ± 0.0106 5.79 ± 0.0099 5.43 ± 0.0106 5.76 ± 0.0097 5.57 ± 0.0105

4 {4,0.75,(4,2),(8,4)} 4.20 ± 0.0086 3.38 ± 0.0084 3.49 ± 0.0081 3.39 ± 0.0083 3.72 ± 0.0080 2.82 ± 0.0075 3.04 ± 0.0072 2.78 ± 0.0074

5 {3,1,(4,2),(8,4)} 6.44 ± 0.0101 6.02 ± 0.0111 6.41 ± 0.0098 6.17 ± 0.0109 6.20 ± 0.0099 5.87 ± 0.0110 6.17 ± 0.0097 5.99 ± 0.0109

6 {4,1,(4,2),(8,4)} 4.33 ± 0.0086 3.46 ± 0.0083 3.59 ± 0.0079 3.48 ± 0.0081 3.91 ± 0.0080 2.96 ± 0.0074 3.18 ± 0.0070 2.95 ± 0.0072

7 {3,0.5,(8,4),(8,4)} 8.34 ± 0.0114 7.82 ± 0.0121 8.18 ± 0.0114 7.89 ± 0.0120 7.92 ± 0.0114 7.45 ± 0.0121 7.83 ± 0.0113 7.52 ± 0.0120

8 {4,0.5,(8,4),(8,4)} 4.63 ± 0.0098 3.62 ± 0.0093 3.85 ± 0.0093 3.58 ± 0.0091 4.05 ± 0.0090 3.00 ± 0.0084 3.30 ± 0.0083 2.94 ± 0.0082

9 {3,0.75,(8,4),(8,4)} 8.73 ± 0.0113 8.14 ± 0.0123 8.57 ± 0.0112 8.28 ± 0.0122 8.30 ± 0.0113 7.80 ± 0.0123 8.20 ± 0.0112 7.89 ± 0.0122

10 {4,0.75,(8,4),(8,4)} 4.36 ± 0.0093 3.53 ± 0.0090 3.63 ± 0.0087 3.44 ± 0.0088 3.92 ± 0.0086 2.91 ± 0.0080 3.17 ± 0.0078 2.87 ± 0.0079

11 {3,1,(8,4),(8,4)} 7.36 ± 0.0112 6.84 ± 0.0123 7.28 ± 0.0109 7.09 ± 0.0121 7.07 ± 0.0111 6.61 ± 0.0122 7.07 ± 0.0108 6.80 ± 0.0120

12 {4,1,(8,4),(8,4)} 5.55 ± 0.0099 4.54 ± 0.0099 4.79 ± 0.0095 4.55 ± 0.0097 4.86 ± 0.0091 3.81 ± 0.0089 4.17 ± 0.0085 3.78 ± 0.0087

13 {3,0.5,(12,6),(8,4)} 9.10 ± 0.0130 8.47 ± 0.0136 8.88 ± 0.0129 8.54 ± 0.0136 8.61 ± 0.0130 8.13 ± 0.0136 8.44 ± 0.0128 8.25 ± 0.0136

14 {4,0.5,(12,6),(8,4)} 4.22 ± 0.0102 3.18 ± 0.0094 3.37 ± 0.0094 3.14 ± 0.0092 3.73 ± 0.0094 2.67 ± 0.0085 2.95 ± 0.0085 2.61 ± 0.0082

15 {3,0.75,(12,6),(8,4)} 8.12 ± 0.0127 7.54 ± 0.0136 8.02 ± 0.0126 7.69 ± 0.0134 7.73 ± 0.0126 7.30 ± 0.0135 7.68 ± 0.0124 7.42 ± 0.0133

16 {4,0.75,(12,6),(8,4)} 4.26 ± 0.0100 3.31 ± 0.0093 3.46 ± 0.0091 3.30 ± 0.0091 3.81 ± 0.0091 2.85 ± 0.0084 3.05 ± 0.0082 2.78 ± 0.0081

17 {3,1,(12,6),(8,4)} 8.64 ± 0.0128 8.12 ± 0.0139 8.56 ± 0.0125 8.22 ± 0.0137 8.22 ± 0.0127 7.80 ± 0.0138 8.21 ± 0.0123 7.94 ± 0.0136

18 {4,1,(12,6),(8,4)} 4.27 ± 0.0098 3.37 ± 0.0091 3.49 ± 0.0089 3.38 ± 0.0089 3.85 ± 0.0090 2.94 ± 0.0083 3.18 ± 0.0080 2.94 ± 0.0080

19 {3,0.5,(20,10),(8,4)} 10.61 ± 0.0172 9.90 ± 0.0177 10.48 ± 0.0171 9.94 ± 0.0177 10.15 ± 0.0171 9.51 ± 0.0177 9.91 ± 0.0171 9.61 ± 0.0176

20 {4,0.5,(20,10),(8,4)} 5.26 ± 0.0134 3.99 ± 0.0124 4.22 ± 0.0126 3.85 ± 0.0119 4.54 ± 0.0123 3.37 ± 0.0115 3.64 ± 0.0114 3.18 ± 0.0109

21 {3,0.75,(20,10),(8,4)} 10.88 ± 0.0172 10.12 ± 0.0180 10.66 ± 0.0171 10.11 ± 0.0179 10.37 ± 0.0171 9.75 ± 0.0180 10.19 ± 0.0170 9.82 ± 0.0179

22 {4,0.75,(20,10),(8,4)} 5.50 ± 0.0138 4.13 ± 0.0125 4.50 ± 0.0128 4.06 ± 0.0122 4.77 ± 0.0126 3.56 ± 0.0117 3.92 ± 0.0116 3.49 ± 0.0113

23 {3,1,(20,10),(8,4)} 10.20 ± 0.0170 9.29 ± 0.0179 9.73 ± 0.0169 9.28 ± 0.0179 9.69 ± 0.0170 8.99 ± 0.0178 9.34 ± 0.0167 9.03 ± 0.0178

24 {4,1,(20,10),(8,4)} 6.25 ± 0.0140 5.01 ± 0.0134 5.34 ± 0.0134 4.92 ± 0.0130 5.47 ± 0.0130 4.29 ± 0.0125 4.63 ± 0.0122 4.20 ± 0.0122

25 {3,0.5,(4,2),(8,6)} 9.63 ± 0.0117 8.69 ± 0.0123 9.11 ± 0.0117 8.59 ± 0.0122 8.91 ± 0.0115 8.12 ± 0.0119 8.45 ± 0.0113 7.99 ± 0.0118

26 {4,0.5,(4,2),(8,6)} 5.06 ± 0.0102 4.06 ± 0.0098 4.25 ± 0.0096 4.04 ± 0.0098 4.26 ± 0.0091 3.09 ± 0.0083 3.43 ± 0.0082 2.99 ± 0.0081

27 {3,0.75,(4,2),(8,6)} 9.19 ± 0.0118 8.20 ± 0.0124 8.77 ± 0.0116 8.25 ± 0.0123 8.52 ± 0.0115 7.84 ± 0.0121 8.10 ± 0.0112 7.75 ± 0.0120

28 {4,0.75,(4,2),(8,6)} 4.39 ± 0.0094 3.43 ± 0.0090 3.47 ± 0.0085 3.36 ± 0.0088 3.88 ± 0.0085 2.75 ± 0.0076 2.95 ± 0.0073 2.65 ± 0.0073

29 {3,1,(4,2),(8,6)} 10.37 ± 0.0117 9.36 ± 0.0126 9.88 ± 0.0115 9.34 ± 0.0126 9.63 ± 0.0115 8.82 ± 0.0123 9.10 ± 0.0111 8.75 ± 0.0122

30 {4,1,(4,2),(8,6)} 5.13 ± 0.0098 4.20 ± 0.0097 4.32 ± 0.0091 4.20 ± 0.0096 4.43 ± 0.0087 3.33 ± 0.0081 3.66 ± 0.0078 3.29 ± 0.0079

31 {3,0.5,(8,4),(8,6)} 9.78 ± 0.0127 8.97 ± 0.0132 9.53 ± 0.0126 9.03 ± 0.0131 9.12 ± 0.0124 8.50 ± 0.0129 8.88 ± 0.0123 8.48 ± 0.0129

32 {4,0.5,(8,4),(8,6)} 4.92 ± 0.0106 3.75 ± 0.0099 3.89 ± 0.0098 3.74 ± 0.0099 4.20 ± 0.0094 2.95 ± 0.0085 3.21 ± 0.0084 2.81 ± 0.0082

33 {3,0.75,(8,4),(8,6)} 8.33 ± 0.0124 7.59 ± 0.0131 8.12 ± 0.0121 7.75 ± 0.0129 7.91 ± 0.0121 7.31 ± 0.0128 7.68 ± 0.0117 7.34 ± 0.0126

34 {4,0.75,(8,4),(8,6)} 4.79 ± 0.0102 3.77 ± 0.0098 3.79 ± 0.0092 3.74 ± 0.0095 4.20 ± 0.0091 2.99 ± 0.0082 3.32 ± 0.0081 2.93 ± 0.0079

35 {3,1,(8,4),(8,6)} 9.26 ± 0.0125 8.53 ± 0.0135 9.10 ± 0.0120 8.62 ± 0.0132 8.66 ± 0.0122 8.07 ± 0.0132 8.61 ± 0.0117 8.22 ± 0.0128

36 {4,1,(8,4),(8,6)} 5.46 ± 0.0105 4.46 ± 0.0103 4.61 ± 0.0099 4.44 ± 0.0102 4.71 ± 0.0093 3.57 ± 0.0088 3.88 ± 0.0085 3.53 ± 0.0085

37 {3,0.5,(12,6),(8,6)} 9.36 ± 0.0142 8.61 ± 0.0146 9.22 ± 0.0142 8.71 ± 0.0147 8.86 ± 0.0139 8.21 ± 0.0143 8.58 ± 0.0137 8.21 ± 0.0144

38 {4,0.5,(12,6),(8,6)} 4.66 ± 0.0110 3.40 ± 0.0101 3.48 ± 0.0099 3.27 ± 0.0097 4.10 ± 0.0099 2.71 ± 0.0086 2.96 ± 0.0086 2.62 ± 0.0083

39 {3,0.75,(12,6),(8,6)} 10.89 ± 0.0142 10.05 ± 0.0149 10.61 ± 0.0139 10.09 ± 0.0148 10.23 ± 0.0138 9.51 ± 0.0146 10.01 ± 0.0136 9.48 ± 0.0145

40 {4,0.75,(12,6),(8,6)} 5.03 ± 0.0110 3.82 ± 0.0103 3.96 ± 0.0100 3.75 ± 0.0100 4.39 ± 0.0099 3.12 ± 0.0089 3.40 ± 0.0087 3.04 ± 0.0086

41 {3,1,(12,6),(8,6)} 9.85 ± 0.0139 9.06 ± 0.0149 9.71 ± 0.0136 9.22 ± 0.0147 9.23 ± 0.0135 8.62 ± 0.0146 9.11 ± 0.0131 8.79 ± 0.0143

42 {4,1,(12,6),(8,6)} 4.64 ± 0.0105 3.66 ± 0.0099 3.73 ± 0.0095 3.59 ± 0.0096 4.12 ± 0.0094 3.05 ± 0.0086 3.28 ± 0.0084 2.98 ± 0.0082

43 {3,0.5,(20,10),(8,6)} 12.43 ± 0.0189 11.33 ± 0.0195 11.76 ± 0.0188 11.18 ± 0.0194 11.79 ± 0.0188 10.79 ± 0.0193 11.11 ± 0.0186 10.56 ± 0.0192

44 {4,0.5,(20,10),(8,6)} 5.36 ± 0.0137 3.81 ± 0.0123 4.03 ± 0.0125 3.71 ± 0.0119 4.60 ± 0.0124 3.12 ± 0.0110 3.48 ± 0.0112 2.97 ± 0.0105

45 {3,0.75,(20,10),(8,6)} 10.45 ± 0.0176 9.48 ± 0.0181 10.12 ± 0.0174 9.62 ± 0.0180 9.79 ± 0.0172 9.10 ± 0.0178 9.63 ± 0.0171 9.15 ± 0.0177

46 {4,0.75,(20,10),(8,6)} 5.27 ± 0.0133 3.96 ± 0.0122 4.11 ± 0.0122 3.84 ± 0.0118 4.55 ± 0.0120 3.30 ± 0.0110 3.57 ± 0.0109 3.14 ± 0.0105

47 {3,1,(20,10),(8,6)} 12.00 ± 0.0182 11.05 ± 0.0193 11.78 ± 0.0180 11.20 ± 0.0191 11.29 ± 0.0179 10.49 ± 0.0189 11.15 ± 0.0177 10.65 ± 0.0188

48 {4,1,(20,10),(8,6)} 6.19 ± 0.0142 4.79 ± 0.0133 5.13 ± 0.0132 4.80 ± 0.0129 5.46 ± 0.0130 4.02 ± 0.0120 4.41 ± 0.0118 3.90 ± 0.0115

49 {3,0.5,(4,2),(8,8)} 8.84 ± 0.0136 7.72 ± 0.0134 8.09 ± 0.0131 7.55 ± 0.0133 8.18 ± 0.0129 7.23 ± 0.0128 7.55 ± 0.0124 7.06 ± 0.0127

50 {4,0.5,(4,2),(8,8)} 3.97 ± 0.0100 3.07 ± 0.0095 2.89 ± 0.0086 2.97 ± 0.0092 3.43 ± 0.0089 2.25 ± 0.0073 2.45 ± 0.0074 2.15 ± 0.0070

51 {3,0.75,(4,2),(8,8)} 10.52 ± 0.0137 9.26 ± 0.0140 9.74 ± 0.0134 9.08 ± 0.0139 9.58 ± 0.0130 8.52 ± 0.0133 8.99 ± 0.0127 8.47 ± 0.0133

52 {4,0.75,(4,2),(8,8)} 5.71 ± 0.0113 4.51 ± 0.0110 4.58 ± 0.0104 4.50 ± 0.0109 4.76 ± 0.0098 3.36 ± 0.0087 3.76 ± 0.0087 3.23 ± 0.0084

53 {3,1,(4,2),(8,8)} 10.31 ± 0.0137 9.17 ± 0.0142 9.77 ± 0.0132 9.05 ± 0.0140 9.53 ± 0.0130 8.53 ± 0.0135 9.01 ± 0.0125 8.48 ± 0.0134

54 {4,1,(4,2),(8,8)} 4.77 ± 0.0103 3.79 ± 0.0099 3.72 ± 0.0089 3.82 ± 0.0098 4.23 ± 0.0091 2.97 ± 0.0078 3.19 ± 0.0076 2.91 ± 0.0075

55 {3,0.5,(8,4),(8,8)} 9.62 ± 0.0144 8.70 ± 0.0145 9.18 ± 0.0140 8.59 ± 0.0143 8.95 ± 0.0137 8.19 ± 0.0138 8.50 ± 0.0133 8.10 ± 0.0136

56 {4,0.5,(8,4),(8,8)} 5.62 ± 0.0120 4.26 ± 0.0112 4.27 ± 0.0108 4.20 ± 0.0111 4.71 ± 0.0104 3.15 ± 0.0090 3.51 ± 0.0091 3.01 ± 0.0086

57 {3,0.75,(8,4),(8,8)} 11.12 ± 0.0145 10.22 ± 0.0151 10.86 ± 0.0142 10.15 ± 0.0148 10.30 ± 0.0138 9.42 ± 0.0144 9.94 ± 0.0135 9.35 ± 0.0141

58 {4,0.75,(8,4),(8,8)} 5.94 ± 0.0118 4.60 ± 0.0114 4.71 ± 0.0109 4.49 ± 0.0111 5.07 ± 0.0103 3.50 ± 0.0091 3.91 ± 0.0091 3.35 ± 0.0088

59 {3,1,(8,4),(8,8)} 9.28 ± 0.0140 8.42 ± 0.0147 9.15 ± 0.0135 8.79 ± 0.0146 8.62 ± 0.0133 7.93 ± 0.0141 8.48 ± 0.0128 8.17 ± 0.0139

60 {4,1,(8,4),(8,8)} 5.50 ± 0.0114 4.38 ± 0.0110 4.47 ± 0.0102 4.44 ± 0.0108 4.69 ± 0.0098 3.45 ± 0.0089 3.79 ± 0.0086 3.43 ± 0.0086

61 {3,0.5,(12,6),(8,8)} 11.84 ± 0.0161 10.89 ± 0.0164 11.31 ± 0.0159 10.61 ± 0.0162 11.00 ± 0.0154 10.03 ± 0.0158 10.33 ± 0.0152 9.88 ± 0.0157

Continued on next page

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 63

Table A.2: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instance 1 2 3 4 5 6 7 8

{T̂ , γ, (α1, β1), (αi, βi)} SDSR SDSR-R SDDR SDDR-R DDSR DDSR-R DDDR DDDR-R

62 {4,0.5,(12,6),(8,8)} 4.51 ± 0.0115 3.23 ± 0.0103 3.24 ± 0.0099 3.20 ± 0.0101 3.95 ± 0.0102 2.56 ± 0.0085 2.77 ± 0.0085 2.41 ± 0.0081

63 {3,0.75,(12,6),(8,8)} 11.88 ± 0.0158 10.82 ± 0.0163 11.62 ± 0.0156 11.01 ± 0.0163 11.04 ± 0.0151 10.20 ± 0.0157 10.77 ± 0.0149 10.28 ± 0.0156

64 {4,0.75,(12,6),(8,8)} 5.62 ± 0.0124 4.40 ± 0.0119 4.47 ± 0.0113 4.36 ± 0.0116 4.84 ± 0.0109 3.35 ± 0.0096 3.77 ± 0.0096 3.30 ± 0.0093

65 {3,1,(12,6),(8,8)} 10.87 ± 0.0156 9.86 ± 0.0164 10.83 ± 0.0153 10.20 ± 0.0164 10.21 ± 0.0150 9.25 ± 0.0158 10.05 ± 0.0145 9.52 ± 0.0156

66 {4,1,(12,6),(8,8)} 5.37 ± 0.0119 4.25 ± 0.0114 4.27 ± 0.0106 4.24 ± 0.0111 4.68 ± 0.0104 3.39 ± 0.0093 3.66 ± 0.0091 3.29 ± 0.0089

67 {3,0.5,(20,10),(8,8)} 10.99 ± 0.0193 10.01 ± 0.0195 10.73 ± 0.0191 10.18 ± 0.0195 10.31 ± 0.0188 9.51 ± 0.0190 10.05 ± 0.0187 9.57 ± 0.0190

68 {4,0.5,(20,10),(8,8)} 5.13 ± 0.0141 3.84 ± 0.0128 3.94 ± 0.0128 3.69 ± 0.0124 4.35 ± 0.0125 2.97 ± 0.0109 3.27 ± 0.0112 2.80 ± 0.0104

69 {3,0.75,(20,10),(8,8)} 13.08 ± 0.0192 11.87 ± 0.0196 12.77 ± 0.0190 12.06 ± 0.0197 12.18 ± 0.0185 11.17 ± 0.0190 11.97 ± 0.0183 11.32 ± 0.0190

70 {4,0.75,(20,10),(8,8)} 5.87 ± 0.0141 4.49 ± 0.0133 4.57 ± 0.0129 4.33 ± 0.0127 5.03 ± 0.0126 3.49 ± 0.0112 3.84 ± 0.0112 3.33 ± 0.0106

71 {3,1,(20,10),(8,8)} 14.93 ± 0.0196 13.76 ± 0.0206 14.66 ± 0.0194 13.87 ± 0.0205 13.96 ± 0.0190 12.89 ± 0.0200 13.66 ± 0.0188 12.90 ± 0.0199

72 {4,1,(20,10),(8,8)} 5.61 ± 0.0135 4.25 ± 0.0126 4.29 ± 0.0121 4.09 ± 0.0121 4.97 ± 0.0121 3.44 ± 0.0107 3.69 ± 0.0106 3.32 ± 0.0103

Table A.3: Average cost per time unit and 95% confidence interval for each instance of large symmetric
test bed: heuristic 1-4

Average cost per time unit and 95% confidence interval of heuristic n

Instance 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

1 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 45.94 ± 0.188 29.08 ± 0.201 40.62 ± 0.223 27.96 ± 0.207

2 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 138.20 ± 0.484 59.57 ± 0.262 126.02 ± 0.844 57.46 ± 0.345

3 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 75.69 ± 0.333 50.12 ± 0.205 72.74 ± 0.407 41.03 ± 0.172

4 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 208.91 ± 1.086 238.58 ± 1.479 212.52 ± 1.148 244.66 ± 1.590

5 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 28.96 ± 0.145 12.46 ± 0.067 24.61 ± 0.118 12.03 ± 0.058

6 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 124.99 ± 0.525 32.76 ± 0.144 108.62 ± 0.532 35.37 ± 0.230

7 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 57.04 ± 0.285 25.09 ± 0.166 51.88 ± 0.259 20.56 ± 0.078

8 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 194.37 ± 1.108 238.18 ± 1.453 200.44 ± 1.363 236.35 ± 1.300

9 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 24.93 ± 0.130 23.63 ± 0.087 27.56 ± 0.146 24.10 ± 0.094

10 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 54.68 ± 0.405 49.27 ± 0.251 55.67 ± 0.217 50.77 ± 0.228

11 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 24.63 ± 0.106 21.96 ± 0.121 25.93 ± 0.124 22.45 ± 0.144

12 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 58.49 ± 0.263 37.69 ± 0.253 48.73 ± 0.239 36.74 ± 0.151

13 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 21.63 ± 0.082 13.87 ± 0.060 15.02 ± 0.068 10.50 ± 0.077

14 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 37.02 ± 0.248 24.36 ± 0.168 29.17 ± 0.120 22.14 ± 0.080

15 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 19.89 ± 0.070 12.57 ± 0.065 15.42 ± 0.082 11.60 ± 0.074

16 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 46.46 ± 0.204 22.41 ± 0.078 30.79 ± 0.139 19.54 ± 0.068

17 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 165.91 ± 0.863 153.87 ± 0.954 167.73 ± 0.906 155.71 ± 0.607

18 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 330.70 ± 1.753 308.16 ± 2.311 330.73 ± 2.249 308.01 ± 2.156

19 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 184.69 ± 1.090 184.63 ± 0.923 182.71 ± 0.987 184.43 ± 1.125

20 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 343.39 ± 1.889 340.27 ± 1.837 344.74 ± 1.655 340.58 ± 2.384

21 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 167.37 ± 0.619 153.74 ± 0.630 165.95 ± 1.079 163.75 ± 1.146

22 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 324.08 ± 2.236 299.98 ± 2.100 322.57 ± 1.161 300.76 ± 1.594

23 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 175.67 ± 0.949 178.01 ± 0.890 177.75 ± 1.333 176.97 ± 1.256

24 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 336.66 ± 2.491 332.99 ± 1.965 338.71 ± 2.168 333.30 ± 2.466

25 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 90.86 ± 0.618 69.22 ± 0.249 104.80 ± 0.639 70.32 ± 0.464

26 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 267.05 ± 1.736 140.82 ± 0.732 199.28 ± 0.737 140.37 ± 0.898

27 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 156.34 ± 1.048 69.62 ± 0.299 121.76 ± 0.828 68.60 ± 0.398

28 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 335.01 ± 1.642 139.42 ± 0.530 336.39 ± 1.716 132.25 ± 0.939

29 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 35.31 ± 0.247 19.16 ± 0.077 52.18 ± 0.245 21.55 ± 0.144

30 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 255.47 ± 1.405 53.87 ± 0.323 309.13 ± 1.855 82.57 ± 0.570

31 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 148.47 ± 0.713 39.21 ± 0.200 155.19 ± 0.869 65.41 ± 0.399

Continued on next page

64 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.3: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instance 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

32 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 326.43 ± 1.502 84.66 ± 0.423 332.72 ± 1.730 226.30 ± 0.996

33 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 59.17 ± 0.408 39.08 ± 0.164 53.95 ± 0.329 38.39 ± 0.184

34 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 174.82 ± 1.049 82.44 ± 0.437 139.73 ± 0.671 77.36 ± 0.387

35 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 102.62 ± 0.616 56.52 ± 0.300 94.72 ± 0.436 53.99 ± 0.329

36 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 260.93 ± 1.748 289.07 ± 1.503 255.72 ± 1.764 290.80 ± 1.541

37 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 71.36 ± 0.528 33.07 ± 0.165 63.88 ± 0.377 35.82 ± 0.251

38 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 162.99 ± 0.717 54.72 ± 0.356 142.89 ± 0.972 61.91 ± 0.322

39 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 94.57 ± 0.643 44.44 ± 0.213 115.42 ± 0.600 159.14 ± 1.194

40 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 275.50 ± 1.157 306.24 ± 1.929 271.49 ± 1.140 312.35 ± 1.718

41 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 30.67 ± 0.113 29.36 ± 0.103 33.12 ± 0.235 31.00 ± 0.130

42 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 63.05 ± 0.366 58.32 ± 0.239 67.11 ± 0.282 58.59 ± 0.434

43 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 33.27 ± 0.230 28.22 ± 0.172 32.16 ± 0.148 27.09 ± 0.176

44 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 100.25 ± 0.521 66.58 ± 0.493 84.80 ± 0.568 61.84 ± 0.315

45 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 42.56 ± 0.285 41.56 ± 0.254 21.63 ± 0.102 17.46 ± 0.075

46 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 54.80 ± 0.236 41.12 ± 0.206 45.43 ± 0.277 32.67 ± 0.229

47 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 25.62 ± 0.164 23.38 ± 0.171 28.37 ± 0.204 21.58 ± 0.112

48 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 88.57 ± 0.478 58.47 ± 0.286 66.67 ± 0.320 47.97 ± 0.259

49 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 196.80 ± 0.787 180.70 ± 1.211 200.20 ± 0.881 173.86 ± 0.852

50 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 385.15 ± 1.464 368.23 ± 2.393 385.84 ± 2.739 366.57 ± 1.320

51 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 209.27 ± 1.172 211.03 ± 1.351 212.10 ± 1.421 211.63 ± 1.016

52 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 394.96 ± 1.422 394.51 ± 2.959 396.92 ± 2.898 395.27 ± 2.411

53 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 189.28 ± 1.382 159.64 ± 0.846 189.64 ± 1.365 159.69 ± 0.623

54 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 376.77 ± 2.336 349.94 ± 2.065 378.61 ± 1.779 350.89 ± 2.316

55 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 203.00 ± 0.954 204.25 ± 1.287 201.73 ± 1.473 203.62 ± 0.794

56 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 389.90 ± 2.729 384.44 ± 1.730 388.67 ± 2.682 383.50 ± 1.496

57 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 109.04 ± 0.545 85.70 ± 0.583 106.98 ± 0.749 83.38 ± 0.375

58 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 322.77 ± 2.292 177.30 ± 0.887 262.51 ± 1.208 176.05 ± 1.268

59 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 220.66 ± 0.794 100.35 ± 0.692 184.59 ± 0.720 100.20 ± 0.731

60 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 437.18 ± 2.448 212.53 ± 0.978 442.69 ± 1.638 200.68 ± 0.863

61 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 87.69 ± 0.588 50.30 ± 0.201 84.40 ± 0.346 53.31 ± 0.304

62 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 364.13 ± 1.675 105.11 ± 0.683 396.33 ± 1.665 113.97 ± 0.467

63 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 206.40 ± 0.743 77.90 ± 0.436 198.05 ± 0.852 116.81 ± 0.841

64 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 428.03 ± 1.669 157.94 ± 0.805 422.16 ± 2.111 359.17 ± 1.724

65 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 99.36 ± 0.656 59.45 ± 0.398 89.42 ± 0.635 59.52 ± 0.208

66 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 308.24 ± 2.127 126.82 ± 0.558 270.29 ± 1.757 118.73 ± 0.606

67 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 156.08 ± 0.921 76.91 ± 0.300 146.43 ± 1.010 71.59 ± 0.458

68 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 485.84 ± 3.547 594.73 ± 3.271 494.12 ± 3.360 594.78 ± 3.450

69 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 83.47 ± 0.442 30.52 ± 0.201 98.07 ± 0.598 35.40 ± 0.248

70 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 300.41 ± 2.223 63.59 ± 0.324 361.64 ± 2.314 103.75 ± 0.477

71 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 147.88 ± 0.739 75.35 ± 0.520 169.16 ± 0.913 283.89 ± 1.561

72 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 445.53 ± 2.673 466.66 ± 2.240 441.81 ± 2.960 550.02 ± 2.200

73 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 67.64 ± 0.352 63.43 ± 0.463 70.36 ± 0.338 64.54 ± 0.297

74 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 115.76 ± 0.544 101.46 ± 0.436 117.89 ± 0.613 102.18 ± 0.562

75 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 78.74 ± 0.457 64.47 ± 0.309 75.58 ± 0.348 64.11 ± 0.468

76 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 128.44 ± 0.938 84.42 ± 0.591 118.30 ± 0.438 86.38 ± 0.579

77 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 20.52 ± 0.101 16.52 ± 0.114 30.65 ± 0.132 15.09 ± 0.100

Continued on next page

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 65

Table A.3: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instance 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

78 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 44.35 ± 0.182 26.38 ± 0.161 49.05 ± 0.368 25.06 ± 0.148

79 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 14.14 ± 0.103 11.97 ± 0.059 23.23 ± 0.132 12.56 ± 0.058

80 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 96.06 ± 0.557 34.37 ± 0.134 75.45 ± 0.332 38.63 ± 0.209

81 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 401.64 ± 2.530 351.57 ± 2.039 405.70 ± 2.759 344.46 ± 2.480

82 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 792.90 ± 5.788 763.22 ± 5.266 795.03 ± 4.929 750.66 ± 3.979

83 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 435.21 ± 1.915 437.78 ± 1.839 441.12 ± 3.264 434.71 ± 2.695

84 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 835.97 ± 6.019 813.55 ± 4.312 835.38 ± 4.010 817.02 ± 3.105

85 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 385.68 ± 2.353 340.96 ± 2.523 406.88 ± 2.319 372.92 ± 1.529

86 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 794.14 ± 4.209 739.58 ± 2.810 794.39 ± 3.734 736.79 ± 2.947

87 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 421.01 ± 2.484 422.69 ± 2.325 420.01 ± 3.150 420.37 ± 1.766

88 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 817.43 ± 5.967 796.05 ± 5.652 811.14 ± 3.893 797.48 ± 4.386

89 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 226.43 ± 0.928 154.74 ± 0.805 257.57 ± 1.030 155.68 ± 0.545

90 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 631.75 ± 4.296 329.25 ± 2.107 686.59 ± 4.600 326.53 ± 2.057

91 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 367.42 ± 2.315 162.59 ± 0.829 358.91 ± 2.010 154.01 ± 0.755

92 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 790.78 ± 4.270 308.00 ± 2.187 790.58 ± 4.506 319.11 ± 1.500

93 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 153.01 ± 0.612 65.24 ± 0.424 203.14 ± 1.361 79.84 ± 0.471

94 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 496.46 ± 2.631 111.08 ± 0.655 667.17 ± 3.269 141.69 ± 0.808

95 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 334.62 ± 2.008 76.46 ± 0.336 369.36 ± 1.440 101.80 ± 0.407

96 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 770.51 ± 4.469 191.29 ± 1.396 783.37 ± 5.014 212.96 ± 1.278

97 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 125.24 ± 0.676 69.84 ± 0.314 107.21 ± 0.740 70.58 ± 0.374

98 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 355.80 ± 2.277 153.36 ± 1.150 320.07 ± 1.504 151.35 ± 0.938

99 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 182.44 ± 0.912 96.05 ± 0.624 170.68 ± 1.075 93.90 ± 0.366

100 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 551.52 ± 3.144 641.38 ± 3.271 540.23 ± 3.241 645.15 ± 2.387

101 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 126.27 ± 0.859 52.32 ± 0.303 117.96 ± 0.672 55.94 ± 0.213

102 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 293.60 ± 1.174 86.68 ± 0.338 264.46 ± 1.587 86.53 ± 0.623

103 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 159.21 ± 0.892 58.83 ± 0.329 167.18 ± 0.752 301.39 ± 1.386

104 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 550.75 ± 3.084 628.48 ± 3.268 555.57 ± 3.722 629.61 ± 4.281

105 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 71.16 ± 0.306 64.26 ± 0.360 76.30 ± 0.366 65.88 ± 0.349

106 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 142.72 ± 0.571 128.11 ± 0.512 146.81 ± 0.646 129.36 ± 0.699

107 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 85.00 ± 0.484 65.54 ± 0.380 79.71 ± 0.399 63.95 ± 0.339

108 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 156.17 ± 1.062 109.84 ± 0.604 159.30 ± 0.701 110.00 ± 0.649

109 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 37.55 ± 0.244 30.82 ± 0.114 74.35 ± 0.283 24.11 ± 0.123

110 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 66.89 ± 0.334 50.62 ± 0.339 75.80 ± 0.341 42.86 ± 0.201

111 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 50.21 ± 0.306 31.52 ± 0.195 70.12 ± 0.280 31.50 ± 0.176

112 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 294.19 ± 1.147 109.98 ± 0.671 210.92 ± 1.582 103.78 ± 0.446

113 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 439.99 ± 3.168 402.80 ± 2.095 437.44 ± 2.625 387.83 ± 2.443

114 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 857.52 ± 4.802 807.99 ± 5.737 856.52 ± 3.597 812.99 ± 3.089

115 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 464.53 ± 2.741 474.48 ± 2.515 464.68 ± 2.927 474.58 ± 3.464

116 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 890.81 ± 6.414 887.62 ± 6.036 895.21 ± 4.476 890.30 ± 6.143

117 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 408.22 ± 2.082 288.60 ± 1.039 432.17 ± 2.420 414.26 ± 2.361

118 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 834.56 ± 4.006 775.50 ± 3.102 839.03 ± 4.027 781.30 ± 4.766

119 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 444.41 ± 3.244 449.98 ± 2.430 441.49 ± 1.854 452.56 ± 2.896

120 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 873.94 ± 4.020 866.58 ± 3.380 875.25 ± 6.389 867.14 ± 4.509

121 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 221.03 ± 1.105 170.73 ± 1.093 341.29 ± 1.365 172.85 ± 1.020

122 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 628.62 ± 3.646 354.27 ± 1.382 602.71 ± 2.531 353.86 ± 1.486

123 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 438.65 ± 2.281 197.56 ± 1.126 433.62 ± 2.949 200.14 ± 0.801

Continued on next page

66 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.3: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instance 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

124 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 888.47 ± 3.465 374.17 ± 2.731 882.25 ± 5.205 378.01 ± 1.625

125 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 122.24 ± 0.501 70.23 ± 0.471 298.63 ± 1.851 75.20 ± 0.481

126 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 597.48 ± 3.047 150.03 ± 1.065 759.68 ± 5.622 191.37 ± 0.670

127 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 377.58 ± 2.832 113.38 ± 0.703 385.71 ± 2.083 118.69 ± 0.653

128 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 854.57 ± 4.358 248.48 ± 1.590 861.13 ± 6.458 320.78 ± 1.251

129 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 52.81 ± 0.380 31.98 ± 0.154 48.54 ± 0.209 31.35 ± 0.125

130 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 238.52 ± 1.527 63.96 ± 0.307 139.15 ± 0.668 62.72 ± 0.270

131 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 145.55 ± 0.771 48.20 ± 0.217 125.53 ± 0.916 43.57 ± 0.309

132 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 724.28 ± 3.621 980.39 ± 5.294 730.73 ± 4.311 981.15 ± 4.023

133 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 66.80 ± 0.254 19.29 ± 0.091 68.39 ± 0.376 29.49 ± 0.124

134 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 182.52 ± 1.059 34.53 ± 0.242 208.10 ± 1.041 47.82 ± 0.201

135 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 136.01 ± 1.020 250.22 ± 1.676 205.29 ± 1.109 469.14 ± 3.519

136 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 694.89 ± 3.891 933.38 ± 5.974 694.31 ± 4.652 938.39 ± 5.443

137 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 31.21 ± 0.197 28.63 ± 0.163 30.28 ± 0.145 28.83 ± 0.150

138 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 55.31 ± 0.409 48.28 ± 0.256 53.62 ± 0.349 47.09 ± 0.353

139 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 38.91 ± 0.280 27.19 ± 0.193 36.53 ± 0.252 28.37 ± 0.108

140 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 54.63 ± 0.202 38.33 ± 0.192 51.57 ± 0.232 37.70 ± 0.147

141 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 12.27 ± 0.043 9.48 ± 0.068 10.09 ± 0.066 7.36 ± 0.055

142 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 42.03 ± 0.273 26.62 ± 0.109 29.46 ± 0.209 21.78 ± 0.150

143 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 9.78 ± 0.058 8.75 ± 0.040 10.47 ± 0.071 8.47 ± 0.036

144 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 44.73 ± 0.300 23.78 ± 0.083 33.40 ± 0.150 24.12 ± 0.106

145 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 385.33 ± 1.541 344.78 ± 1.793 375.43 ± 2.440 337.63 ± 1.756

146 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 1169.63 ± 5.380 1018.14 ± 3.564 1178.95 ± 4.480 1018.10 ± 3.563

147 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 662.50 ± 4.505 698.26 ± 3.980 662.48 ± 4.240 706.11 ± 4.590

148 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 1417.57 ± 7.938 1467.47 ± 9.098 1427.90 ± 10.424 1460.26 ± 5.111

149 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 390.55 ± 1.953 211.85 ± 1.229 388.52 ± 2.875 404.43 ± 1.496

150 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 1117.43 ± 6.258 1011.51 ± 3.540 1130.80 ± 7.689 1002.29 ± 5.312

151 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 611.93 ± 4.345 690.81 ± 3.799 685.92 ± 2.538 777.43 ± 5.753

152 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 1392.08 ± 6.960 1403.55 ± 7.720 1394.12 ± 7.807 1406.39 ± 6.469

153 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 95.29 ± 0.343 71.77 ± 0.517 98.90 ± 0.405 71.90 ± 0.395

154 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 301.19 ± 1.596 149.33 ± 0.762 211.97 ± 1.060 146.05 ± 1.022

155 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 281.98 ± 1.241 81.54 ± 0.318 205.63 ± 1.172 80.07 ± 0.336

156 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 990.33 ± 3.961 178.76 ± 1.287 982.26 ± 4.911 167.26 ± 0.853

157 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 72.28 ± 0.376 24.88 ± 0.097 62.67 ± 0.370 28.89 ± 0.205

158 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 430.40 ± 1.894 62.70 ± 0.238 638.80 ± 3.769 78.66 ± 0.488

159 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 224.00 ± 1.411 45.12 ± 0.284 268.86 ± 1.506 61.71 ± 0.383

160 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 962.91 ± 3.948 114.36 ± 0.686 1055.30 ± 4.643 836.65 ± 5.020

161 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 68.63 ± 0.357 37.72 ± 0.140 55.19 ± 0.287 35.47 ± 0.259

162 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 239.80 ± 1.487 78.83 ± 0.292 139.08 ± 0.862 75.77 ± 0.386

163 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 141.40 ± 0.877 60.50 ± 0.454 117.55 ± 0.670 55.75 ± 0.290

164 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 809.92 ± 4.617 1007.99 ± 5.242 786.28 ± 2.831 1020.50 ± 7.552

165 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 86.21 ± 0.431 32.76 ± 0.131 75.92 ± 0.296 38.54 ± 0.177

166 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 281.15 ± 2.052 63.65 ± 0.369 253.12 ± 1.797 71.98 ± 0.367

167 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 142.27 ± 0.683 54.11 ± 0.298 180.02 ± 1.224 362.81 ± 2.612

168 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 795.39 ± 4.534 1038.92 ± 6.857 768.01 ± 5.607 1057.65 ± 5.182

169 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 45.99 ± 0.304 41.05 ± 0.205 39.19 ± 0.219 34.81 ± 0.132

Continued on next page

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 67

Table A.3: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instance 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

170 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 68.44 ± 0.404 59.46 ± 0.440 68.31 ± 0.307 57.97 ± 0.435

171 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 37.47 ± 0.274 31.87 ± 0.233 38.25 ± 0.245 31.15 ± 0.168

172 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 109.56 ± 0.614 73.31 ± 0.352 87.04 ± 0.505 64.44 ± 0.400

173 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 13.28 ± 0.057 12.12 ± 0.045 16.14 ± 0.092 12.24 ± 0.072

174 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 83.09 ± 0.523 65.14 ± 0.313 53.59 ± 0.198 37.70 ± 0.158

175 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 42.17 ± 0.236 29.92 ± 0.117 29.96 ± 0.105 23.35 ± 0.145

176 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 95.44 ± 0.544 59.85 ± 0.419 76.41 ± 0.481 53.79 ± 0.307

177 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 427.94 ± 1.626 383.55 ± 2.685 405.79 ± 2.191 355.62 ± 2.418

178 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 1208.26 ± 6.887 1121.59 ± 5.832 1217.26 ± 6.208 1118.78 ± 3.916

179 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 679.95 ± 3.264 730.34 ± 3.140 676.39 ± 4.802 737.30 ± 4.276

180 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 1470.05 ± 8.673 1477.32 ± 9.603 1476.94 ± 8.419 1475.78 ± 7.379

181 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 379.48 ± 2.846 256.97 ± 1.490 500.11 ± 1.750 563.99 ± 2.538

182 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 1186.84 ± 7.477 1056.36 ± 7.606 1191.89 ± 8.105 1062.04 ± 4.673

183 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 638.84 ± 2.300 686.28 ± 4.255 678.88 ± 3.462 733.93 ± 3.009

184 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 1406.14 ± 8.296 1435.17 ± 8.037 1410.38 ± 5.783 1439.87 ± 6.911

185 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 107.70 ± 0.528 78.94 ± 0.300 106.67 ± 0.405 78.81 ± 0.449

186 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 399.16 ± 1.597 184.93 ± 0.758 279.90 ± 1.567 180.23 ± 1.334

187 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 292.57 ± 1.375 93.10 ± 0.633 195.67 ± 1.213 92.66 ± 0.482

188 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 1135.32 ± 8.401 233.03 ± 1.678 1196.73 ± 6.582 257.04 ± 0.951

189 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 63.69 ± 0.312 41.89 ± 0.214 77.80 ± 0.467 44.51 ± 0.160

190 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 551.85 ± 3.421 112.65 ± 0.653 721.22 ± 3.101 125.18 ± 0.926

191 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 285.22 ± 1.626 72.16 ± 0.534 331.90 ± 1.361 84.11 ± 0.395

192 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 1054.79 ± 4.008 183.19 ± 1.319 1083.06 ± 7.690 188.07 ± 0.733

193 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 143.83 ± 0.762 84.76 ± 0.458 126.42 ± 0.796 81.88 ± 0.426

194 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 481.39 ± 2.600 140.41 ± 0.969 300.48 ± 1.262 136.89 ± 0.671

195 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 293.79 ± 2.057 113.58 ± 0.818 274.13 ± 1.316 104.16 ± 0.760

196 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 1702.08 ± 7.489 2379.55 ± 15.943 1728.19 ± 10.369 2268.85 ± 12.932

197 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 63.07 ± 0.322 20.08 ± 0.082 76.10 ± 0.350 19.31 ± 0.120

198 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 596.78 ± 3.461 71.60 ± 0.501 771.74 ± 5.248 84.90 ± 0.637

199 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 263.42 ± 1.870 177.60 ± 1.190 263.76 ± 1.451 106.81 ± 0.694

200 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 1726.08 ± 8.458 2275.49 ± 15.246 1745.13 ± 6.108 2220.01 ± 14.208

201 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 56.35 ± 0.197 52.30 ± 0.230 60.30 ± 0.217 54.81 ± 0.291

202 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 144.11 ± 0.533 121.38 ± 0.510 142.98 ± 0.729 125.70 ± 0.804

203 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 52.59 ± 0.205 42.54 ± 0.268 56.12 ± 0.314 44.43 ± 0.182

204 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 136.55 ± 0.560 90.02 ± 0.351 133.86 ± 0.924 91.18 ± 0.447

205 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 28.09 ± 0.183 20.17 ± 0.141 36.41 ± 0.149 20.64 ± 0.078

206 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 47.41 ± 0.284 30.48 ± 0.219 69.92 ± 0.273 32.18 ± 0.190

207 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 34.63 ± 0.229 21.16 ± 0.106 53.96 ± 0.405 22.72 ± 0.082

208 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 94.56 ± 0.577 41.70 ± 0.200 82.90 ± 0.307 44.28 ± 0.279

209 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 960.20 ± 6.337 966.64 ± 6.477 965.29 ± 6.757 923.89 ± 5.174

210 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 2913.10 ± 18.061 2646.67 ± 18.262 2900.67 ± 21.175 2611.62 ± 15.147

211 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 1599.02 ± 6.236 1725.86 ± 7.249 1600.28 ± 8.962 1722.69 ± 12.920

212 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 3499.89 ± 20.299 3544.58 ± 23.749 3497.80 ± 22.386 3564.19 ± 18.534

213 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 811.50 ± 4.301 762.67 ± 2.974 839.00 ± 3.272 1093.99 ± 7.002

214 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 2839.21 ± 10.505 2418.95 ± 10.885 2862.43 ± 20.323 2402.17 ± 17.296

215 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 1542.87 ± 7.097 1647.59 ± 7.414 1561.45 ± 7.339 1647.54 ± 10.709

Continued on next page

68 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.3: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instance 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

216 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 3386.14 ± 16.931 3380.74 ± 20.284 3371.04 ± 22.923 3366.76 ± 17.507

217 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 222.32 ± 1.112 150.43 ± 0.978 342.87 ± 1.303 158.49 ± 0.650

218 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 713.36 ± 4.137 318.34 ± 1.687 1059.11 ± 5.190 324.25 ± 2.335

219 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 666.60 ± 3.400 177.52 ± 0.710 691.54 ± 4.772 183.61 ± 1.249

220 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 2457.19 ± 13.515 404.37 ± 2.911 2421.75 ± 15.741 395.48 ± 2.847

221 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 155.02 ± 0.651 58.03 ± 0.366 239.06 ± 1.650 75.60 ± 0.544

222 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 949.02 ± 4.176 118.21 ± 0.757 1540.57 ± 5.700 183.39 ± 1.009

223 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 632.82 ± 4.493 90.29 ± 0.433 910.62 ± 5.919 161.26 ± 1.048

224 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 2382.44 ± 9.768 242.74 ± 1.408 3003.03 ± 15.315 2819.88 ± 19.175

225 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 135.69 ± 0.651 76.39 ± 0.489 127.00 ± 0.521 73.00 ± 0.263

226 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 587.55 ± 2.997 184.95 ± 1.054 421.48 ± 2.276 182.76 ± 0.713

227 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 360.61 ± 1.947 141.18 ± 0.918 321.28 ± 1.221 143.00 ± 0.644

228 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 1834.08 ± 9.904 2429.47 ± 17.249 1806.94 ± 12.468 2440.92 ± 16.842

229 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 181.62 ± 1.308 59.06 ± 0.266 245.85 ± 1.106 732.88 ± 4.031

230 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 548.57 ± 2.469 98.65 ± 0.385 561.29 ± 2.863 95.52 ± 0.707

231 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 312.39 ± 1.156 98.29 ± 0.718 613.82 ± 3.990 1353.59 ± 6.362

232 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 1573.65 ± 6.137 2340.29 ± 15.914 1833.55 ± 8.801 2516.16 ± 17.865

233 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 66.12 ± 0.304 57.54 ± 0.207 73.21 ± 0.439 61.78 ± 0.216

234 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 147.12 ± 0.750 130.45 ± 0.952 148.19 ± 0.963 127.59 ± 0.536

235 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 82.94 ± 0.605 72.49 ± 0.536 82.39 ± 0.363 71.71 ± 0.516

236 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 220.76 ± 1.435 141.45 ± 0.665 202.68 ± 0.993 143.56 ± 1.019

237 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 48.12 ± 0.183 37.83 ± 0.257 43.73 ± 0.201 31.13 ± 0.140

238 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 74.06 ± 0.400 54.08 ± 0.357 83.53 ± 0.301 45.40 ± 0.250

239 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 45.95 ± 0.234 32.52 ± 0.205 53.93 ± 0.361 29.01 ± 0.215

240 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 276.61 ± 1.853 105.81 ± 0.466 199.70 ± 1.138 95.88 ± 0.537

241 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 1129.28 ± 8.470 1006.37 ± 4.730 1122.32 ± 5.050 1030.31 ± 3.812

242 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 2958.05 ± 17.453 2624.42 ± 15.222 2933.59 ± 20.535 2637.22 ± 19.252

243 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 1589.72 ± 6.995 1759.77 ± 12.142 1592.03 ± 8.756 1713.29 ± 9.594

244 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 3538.16 ± 22.290 3554.37 ± 22.393 3535.74 ± 18.386 3551.38 ± 17.402

245 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 987.85 ± 4.742 907.83 ± 5.992 961.03 ± 3.460 906.30 ± 3.806

246 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 2866.40 ± 10.606 2500.02 ± 14.750 2826.18 ± 11.587 2446.77 ± 18.351

247 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 1493.81 ± 8.515 1694.04 ± 6.437 1494.06 ± 5.976 1692.03 ± 7.953

248 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 3483.03 ± 13.236 3581.17 ± 22.561 3501.78 ± 17.859 3568.38 ± 17.842

249 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 263.22 ± 1.790 192.99 ± 0.830 334.60 ± 1.405 196.11 ± 1.039

250 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 1130.43 ± 6.217 357.94 ± 1.826 861.67 ± 4.308 386.65 ± 2.668

251 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 647.27 ± 2.848 213.74 ± 1.475 622.99 ± 3.551 216.20 ± 1.254

252 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 2557.59 ± 8.952 465.63 ± 3.259 2592.87 ± 10.371 483.01 ± 2.657

253 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 177.15 ± 0.974 77.96 ± 0.405 395.56 ± 1.740 82.30 ± 0.354

254 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 843.83 ± 5.907 159.08 ± 1.098 1341.95 ± 8.052 205.51 ± 1.151

255 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 702.08 ± 2.949 133.46 ± 0.587 939.98 ± 5.828 232.70 ± 1.396

256 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 2427.68 ± 9.225 304.55 ± 1.370 2590.73 ± 17.617 2065.43 ± 13.838

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 69

Table A.4: Average cost per time unit and 95% confidence interval for each instance of large symmetric
test bed: heuristic 5-8

Average cost per time unit and 95% confidence interval of heuristic n

Instance 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

1 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 48.11 ± 0.260 25.63 ± 0.118 39.02 ± 0.258 24.76 ± 0.156

2 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 125.84 ± 0.478 49.99 ± 0.290 104.21 ± 0.511 49.24 ± 0.207

3 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 70.42 ± 0.444 31.62 ± 0.221 65.93 ± 0.323 29.89 ± 0.111

4 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 132.59 ± 0.862 56.00 ± 0.353 130.48 ± 0.926 51.23 ± 0.205

5 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 26.96 ± 0.097 8.57 ± 0.058 23.20 ± 0.172 8.69 ± 0.047

6 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 106.30 ± 0.723 19.52 ± 0.080 86.92 ± 0.626 20.20 ± 0.117

7 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 49.58 ± 0.238 10.06 ± 0.066 45.37 ± 0.231 9.79 ± 0.048

8 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 107.70 ± 0.646 23.72 ± 0.157 106.31 ± 0.521 21.78 ± 0.076

9 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 25.98 ± 0.166 23.68 ± 0.135 27.53 ± 0.173 23.34 ± 0.100

10 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 54.11 ± 0.379 47.83 ± 0.282 54.19 ± 0.266 48.65 ± 0.190

11 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 25.85 ± 0.103 20.44 ± 0.096 26.03 ± 0.167 20.62 ± 0.111

12 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 57.64 ± 0.329 33.56 ± 0.178 51.67 ± 0.186 32.93 ± 0.234

13 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 21.62 ± 0.154 13.23 ± 0.077 14.88 ± 0.058 8.82 ± 0.034

14 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 37.91 ± 0.190 20.88 ± 0.121 30.56 ± 0.177 18.14 ± 0.125

15 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 19.87 ± 0.125 10.65 ± 0.067 15.20 ± 0.076 9.27 ± 0.065

16 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 42.66 ± 0.316 17.68 ± 0.131 32.72 ± 0.229 13.54 ± 0.083

17 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 144.21 ± 0.851 83.01 ± 0.382 145.88 ± 0.686 81.03 ± 0.340

18 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 262.23 ± 1.364 167.73 ± 1.241 261.50 ± 1.281 166.36 ± 0.799

19 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 146.50 ± 0.996 109.68 ± 0.592 147.39 ± 0.722 109.54 ± 0.822

20 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 252.16 ± 1.790 199.19 ± 1.394 251.39 ± 0.880 200.78 ± 1.365

21 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 125.80 ± 0.742 44.40 ± 0.333 128.00 ± 0.538 59.57 ± 0.226

22 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 209.17 ± 1.109 89.80 ± 0.404 210.29 ± 1.304 87.16 ± 0.523

23 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 115.79 ± 0.452 57.54 ± 0.236 114.52 ± 0.802 56.80 ± 0.267

24 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 202.52 ± 1.377 126.05 ± 0.920 217.31 ± 0.934 124.74 ± 0.574

25 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 89.32 ± 0.625 67.04 ± 0.429 101.50 ± 0.670 69.47 ± 0.347

26 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 238.65 ± 1.456 133.90 ± 0.683 197.32 ± 0.967 131.86 ± 0.633

27 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 147.08 ± 0.706 58.55 ± 0.351 117.05 ± 0.609 55.91 ± 0.268

28 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 287.13 ± 1.809 102.90 ± 0.617 287.70 ± 1.007 101.87 ± 0.621

29 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 34.90 ± 0.188 14.87 ± 0.062 51.57 ± 0.315 16.42 ± 0.092

30 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 229.26 ± 1.100 39.67 ± 0.159 223.41 ± 1.050 52.72 ± 0.274

31 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 132.37 ± 0.675 24.44 ± 0.093 130.58 ± 0.979 33.38 ± 0.130

32 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 248.64 ± 1.740 46.01 ± 0.235 243.13 ± 1.070 49.13 ± 0.300

33 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 55.58 ± 0.200 36.29 ± 0.265 54.70 ± 0.367 35.16 ± 0.239

34 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 161.12 ± 0.773 69.98 ± 0.462 125.20 ± 0.651 67.20 ± 0.249

35 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 95.49 ± 0.382 41.65 ± 0.275 88.37 ± 0.451 39.78 ± 0.199

36 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 181.49 ± 1.107 79.90 ± 0.304 181.90 ± 1.000 76.48 ± 0.497

37 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 66.04 ± 0.231 29.24 ± 0.158 62.43 ± 0.381 27.55 ± 0.201

38 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 149.72 ± 1.003 43.30 ± 0.234 123.85 ± 0.533 42.54 ± 0.217

39 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 83.46 ± 0.292 33.21 ± 0.156 77.05 ± 0.539 37.05 ± 0.267

40 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 163.17 ± 1.061 62.83 ± 0.302 158.55 ± 1.015 62.57 ± 0.419

41 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 31.40 ± 0.176 29.47 ± 0.121 34.01 ± 0.248 29.19 ± 0.155

42 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 62.21 ± 0.230 56.60 ± 0.402 66.28 ± 0.411 56.56 ± 0.249

43 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 33.57 ± 0.148 26.67 ± 0.147 34.54 ± 0.256 25.21 ± 0.141

44 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 97.25 ± 0.467 61.47 ± 0.234 81.80 ± 0.352 56.52 ± 0.322

45 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 42.58 ± 0.226 40.42 ± 0.158 22.47 ± 0.106 16.52 ± 0.088

Continued on next page

70 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.4: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instance 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

46 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 54.72 ± 0.263 38.12 ± 0.175 43.46 ± 0.178 29.80 ± 0.200

47 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 27.63 ± 0.111 19.66 ± 0.088 28.23 ± 0.102 19.48 ± 0.068

48 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 85.91 ± 0.369 52.53 ± 0.305 67.17 ± 0.322 39.53 ± 0.261

49 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 174.41 ± 0.977 107.10 ± 0.461 172.23 ± 1.206 102.36 ± 0.583

50 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 312.81 ± 2.158 214.12 ± 1.071 315.30 ± 1.387 217.73 ± 1.633

51 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 172.07 ± 0.602 133.24 ± 0.746 172.22 ± 1.137 130.37 ± 0.574

52 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 297.49 ± 1.874 247.73 ± 1.263 299.31 ± 2.005 248.53 ± 1.640

53 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 146.69 ± 0.865 58.37 ± 0.350 142.71 ± 0.756 56.44 ± 0.344

54 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 261.66 ± 1.099 129.53 ± 0.959 262.73 ± 1.340 131.10 ± 0.642

55 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 140.55 ± 0.520 82.07 ± 0.558 141.80 ± 0.567 83.79 ± 0.352

56 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 252.71 ± 1.440 175.69 ± 1.283 262.68 ± 1.944 178.51 ± 1.250

57 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 105.78 ± 0.635 81.91 ± 0.401 104.72 ± 0.482 81.78 ± 0.343

58 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 304.68 ± 2.102 163.53 ± 0.899 264.43 ± 1.666 161.31 ± 0.807

59 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 205.46 ± 1.418 86.88 ± 0.348 184.49 ± 1.125 86.54 ± 0.623

60 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 388.85 ± 2.800 164.79 ± 0.676 389.12 ± 1.401 159.65 ± 0.974

61 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 86.08 ± 0.344 43.72 ± 0.262 83.83 ± 0.578 46.49 ± 0.200

62 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 309.87 ± 2.045 86.10 ± 0.370 290.92 ± 1.949 87.84 ± 0.509

63 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 187.22 ± 1.311 63.68 ± 0.287 178.18 ± 1.283 67.26 ± 0.256

64 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 353.25 ± 2.296 105.87 ± 0.413 333.78 ± 1.903 105.97 ± 0.657

65 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 97.89 ± 0.578 54.55 ± 0.398 86.56 ± 0.467 53.68 ± 0.252

66 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 268.09 ± 0.992 105.91 ± 0.561 229.10 ± 1.123 102.55 ± 0.615

67 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 141.21 ± 0.579 54.49 ± 0.229 129.52 ± 0.479 52.76 ± 0.216

68 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 304.55 ± 1.157 118.52 ± 0.640 304.08 ± 2.068 114.24 ± 0.457

69 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 81.97 ± 0.369 20.98 ± 0.076 94.51 ± 0.510 24.21 ± 0.155

70 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 242.16 ± 1.308 34.96 ± 0.220 250.57 ± 0.902 52.30 ± 0.194

71 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 121.25 ± 0.800 19.44 ± 0.140 114.35 ± 0.423 25.70 ± 0.093

72 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 232.82 ± 0.815 33.66 ± 0.121 230.94 ± 1.547 30.44 ± 0.174

73 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 68.73 ± 0.289 64.06 ± 0.429 71.46 ± 0.536 63.41 ± 0.342

74 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 113.67 ± 0.693 100.50 ± 0.613 116.27 ± 0.860 98.68 ± 0.454

75 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 76.12 ± 0.472 57.70 ± 0.421 75.55 ± 0.325 60.50 ± 0.254

76 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 128.58 ± 0.489 76.76 ± 0.422 106.55 ± 0.757 74.18 ± 0.341

77 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 23.22 ± 0.118 12.71 ± 0.078 31.02 ± 0.112 13.82 ± 0.087

78 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 43.12 ± 0.164 21.34 ± 0.092 43.46 ± 0.261 18.39 ± 0.066

79 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 13.67 ± 0.049 7.69 ± 0.031 22.63 ± 0.091 8.88 ± 0.065

80 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 91.41 ± 0.658 24.37 ± 0.085 69.51 ± 0.500 22.60 ± 0.133

81 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 342.57 ± 1.644 198.45 ± 0.992 346.86 ± 1.249 199.12 ± 0.916

82 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 629.01 ± 4.277 405.21 ± 2.999 629.78 ± 3.779 401.77 ± 2.049

83 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 346.24 ± 2.458 249.55 ± 0.998 347.29 ± 2.084 246.20 ± 1.797

84 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 603.83 ± 2.355 472.57 ± 1.938 594.94 ± 3.986 472.13 ± 3.258

85 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 294.07 ± 1.294 97.99 ± 0.676 291.67 ± 2.012 160.72 ± 0.739

86 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 510.22 ± 2.092 221.18 ± 0.995 518.60 ± 2.697 219.11 ± 0.876

87 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 262.86 ± 1.314 122.62 ± 0.748 264.11 ± 1.426 115.04 ± 0.495

88 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 462.89 ± 3.194 265.31 ± 1.194 471.47 ± 3.159 267.95 ± 1.125

89 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 215.95 ± 1.555 143.02 ± 1.015 256.63 ± 1.745 154.32 ± 1.003

90 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 566.73 ± 4.194 300.50 ± 1.232 634.03 ± 3.107 305.28 ± 2.106

91 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 334.72 ± 2.209 140.84 ± 0.915 331.24 ± 1.259 135.67 ± 0.787

Continued on next page

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 71

Table A.4: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instance 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

92 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 666.27 ± 4.531 219.93 ± 0.858 663.04 ± 2.785 226.77 ± 1.111

93 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 153.51 ± 0.768 51.96 ± 0.358 236.32 ± 1.512 62.96 ± 0.346

94 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 427.81 ± 2.567 66.01 ± 0.277 593.73 ± 2.731 93.06 ± 0.503

95 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 292.28 ± 1.169 42.89 ± 0.287 310.29 ± 1.614 59.92 ± 0.288

96 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 580.29 ± 2.495 73.54 ± 0.316 575.95 ± 2.880 91.92 ± 0.331

97 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 124.89 ± 0.674 64.91 ± 0.422 109.52 ± 0.745 63.54 ± 0.311

98 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 325.43 ± 2.083 135.61 ± 0.502 301.66 ± 1.237 131.45 ± 0.960

99 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 172.17 ± 0.826 69.28 ± 0.360 157.09 ± 0.958 66.44 ± 0.492

100 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 354.34 ± 2.587 147.94 ± 0.828 353.60 ± 1.839 140.18 ± 0.897

101 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 122.14 ± 0.684 38.45 ± 0.269 118.49 ± 0.746 41.10 ± 0.222

102 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 250.31 ± 1.552 54.26 ± 0.358 234.59 ± 1.290 57.24 ± 0.355

103 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 136.78 ± 0.602 33.64 ± 0.145 136.04 ± 0.748 37.89 ± 0.231

104 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 301.31 ± 2.109 73.75 ± 0.324 301.79 ± 1.630 73.57 ± 0.441

105 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 69.87 ± 0.279 64.39 ± 0.477 75.36 ± 0.535 66.15 ± 0.324

106 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 141.69 ± 0.581 124.51 ± 0.523 144.14 ± 0.793 125.84 ± 0.654

107 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 88.15 ± 0.309 63.34 ± 0.310 77.74 ± 0.498 59.46 ± 0.262

108 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 158.85 ± 0.921 102.54 ± 0.564 157.44 ± 0.819 103.96 ± 0.665

109 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 36.84 ± 0.225 28.31 ± 0.113 72.49 ± 0.486 21.38 ± 0.081

110 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 66.95 ± 0.449 46.09 ± 0.244 74.20 ± 0.527 36.14 ± 0.260

111 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 46.98 ± 0.188 26.23 ± 0.163 70.50 ± 0.458 25.94 ± 0.182

112 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 292.61 ± 1.492 90.27 ± 0.487 224.57 ± 1.145 70.24 ± 0.372

113 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 379.40 ± 1.631 221.33 ± 1.107 374.27 ± 2.133 225.73 ± 1.467

114 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 681.59 ± 3.135 459.55 ± 2.528 680.90 ± 4.630 464.13 ± 1.671

115 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 371.66 ± 2.639 262.26 ± 1.338 371.45 ± 2.117 262.30 ± 1.784

116 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 656.96 ± 4.205 533.68 ± 1.975 657.84 ± 2.763 533.45 ± 2.454

117 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 306.16 ± 1.837 103.97 ± 0.655 313.63 ± 1.380 161.68 ± 0.711

118 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 553.51 ± 3.155 232.46 ± 1.348 553.41 ± 2.490 240.27 ± 1.586

119 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 290.26 ± 1.829 149.91 ± 0.600 292.04 ± 1.577 146.72 ± 0.983

120 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 541.85 ± 3.089 357.30 ± 2.394 540.29 ± 1.891 360.74 ± 1.623

121 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 207.31 ± 0.995 160.63 ± 0.916 337.56 ± 1.654 165.37 ± 1.174

122 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 600.88 ± 2.163 325.28 ± 2.310 588.56 ± 4.414 329.97 ± 1.485

123 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 402.11 ± 2.815 177.34 ± 1.117 387.98 ± 2.832 175.47 ± 1.281

124 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 764.92 ± 5.354 282.32 ± 1.440 762.25 ± 3.278 283.20 ± 1.586

125 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 118.53 ± 0.818 58.25 ± 0.239 282.35 ± 1.722 62.32 ± 0.355

126 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 513.66 ± 2.825 113.56 ± 0.693 674.69 ± 5.060 137.39 ± 0.866

127 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 341.76 ± 1.845 71.50 ± 0.472 349.44 ± 1.223 80.81 ± 0.388

128 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 669.67 ± 3.817 136.81 ± 0.903 649.77 ± 4.743 148.99 ± 0.849

129 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 54.32 ± 0.375 27.68 ± 0.116 47.80 ± 0.325 27.84 ± 0.200

130 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 178.79 ± 1.180 49.04 ± 0.201 123.33 ± 0.444 47.45 ± 0.294

131 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 109.28 ± 0.787 28.81 ± 0.124 96.79 ± 0.465 28.52 ± 0.100

132 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 239.44 ± 1.413 56.65 ± 0.266 239.95 ± 1.032 55.74 ± 0.268

133 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 62.96 ± 0.472 13.60 ± 0.057 61.48 ± 0.418 18.29 ± 0.073

134 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 147.45 ± 0.575 18.78 ± 0.109 124.46 ± 0.784 21.31 ± 0.121

135 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 91.36 ± 0.566 15.11 ± 0.107 89.52 ± 0.358 18.02 ± 0.068

136 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 181.95 ± 0.637 24.45 ± 0.176 182.01 ± 1.074 24.68 ± 0.168

137 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 29.77 ± 0.199 27.68 ± 0.180 30.72 ± 0.144 28.51 ± 0.154

Continued on next page

72 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.4: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instance 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

138 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 52.81 ± 0.312 44.75 ± 0.161 56.02 ± 0.202 45.53 ± 0.219

139 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 39.77 ± 0.183 26.60 ± 0.184 34.22 ± 0.222 25.51 ± 0.094

140 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 52.62 ± 0.284 32.07 ± 0.218 49.92 ± 0.265 31.81 ± 0.204

141 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 12.38 ± 0.063 8.32 ± 0.035 9.36 ± 0.049 5.67 ± 0.042

142 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 42.28 ± 0.266 22.39 ± 0.150 31.50 ± 0.220 15.95 ± 0.083

143 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 10.45 ± 0.073 6.67 ± 0.039 10.91 ± 0.082 6.17 ± 0.043

144 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 44.47 ± 0.311 15.37 ± 0.088 31.11 ± 0.140 14.17 ± 0.105

145 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 196.22 ± 0.883 90.98 ± 0.646 194.43 ± 0.933 89.38 ± 0.518

146 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 392.37 ± 2.825 212.95 ± 1.129 393.45 ± 2.518 203.11 ± 0.853

147 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 233.66 ± 1.636 148.80 ± 0.655 234.27 ± 1.570 146.60 ± 0.718

148 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 435.68 ± 2.658 322.72 ± 2.259 437.26 ± 2.580 317.55 ± 2.350

149 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 156.35 ± 0.876 40.49 ± 0.190 156.20 ± 1.015 53.15 ± 0.260

150 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 292.81 ± 1.552 92.58 ± 0.398 293.68 ± 1.762 93.23 ± 0.475

151 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 170.74 ± 1.281 71.74 ± 0.337 198.53 ± 0.814 98.51 ± 0.729

152 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 338.49 ± 2.065 191.94 ± 0.960 334.01 ± 1.637 195.67 ± 1.057

153 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 95.68 ± 0.679 67.71 ± 0.318 97.54 ± 0.585 69.53 ± 0.521

154 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 272.22 ± 1.307 133.50 ± 0.681 213.44 ± 1.537 132.13 ± 0.687

155 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 228.11 ± 1.209 68.94 ± 0.421 161.40 ± 1.178 67.08 ± 0.463

156 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 502.35 ± 2.462 116.01 ± 0.789 499.79 ± 2.199 112.33 ± 0.472

157 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 65.52 ± 0.373 17.98 ± 0.070 62.45 ± 0.375 22.33 ± 0.143

158 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 290.99 ± 1.775 40.93 ± 0.147 276.04 ± 1.021 49.10 ± 0.280

159 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 183.58 ± 1.285 26.28 ± 0.187 181.75 ± 1.181 33.89 ± 0.227

160 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 416.07 ± 1.498 47.61 ± 0.309 398.12 ± 1.792 57.50 ± 0.288

161 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 67.64 ± 0.440 32.30 ± 0.126 57.07 ± 0.348 32.03 ± 0.144

162 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 207.46 ± 1.328 64.47 ± 0.361 140.40 ± 0.660 62.47 ± 0.362

163 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 123.22 ± 0.567 42.13 ± 0.211 106.92 ± 0.428 40.99 ± 0.205

164 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 293.03 ± 1.788 91.10 ± 0.683 295.24 ± 1.033 87.31 ± 0.471

165 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 79.22 ± 0.404 27.76 ± 0.136 70.27 ± 0.513 26.31 ± 0.103

166 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 213.68 ± 1.047 45.09 ± 0.171 198.00 ± 1.089 43.39 ± 0.282

167 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 107.40 ± 0.795 29.08 ± 0.183 103.26 ± 0.372 31.33 ± 0.160

168 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 239.91 ± 1.176 63.32 ± 0.393 237.86 ± 1.023 60.48 ± 0.242

169 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 45.21 ± 0.231 38.97 ± 0.238 38.90 ± 0.194 35.89 ± 0.133

170 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 65.73 ± 0.394 56.62 ± 0.209 70.58 ± 0.423 56.21 ± 0.225

171 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 36.06 ± 0.206 29.39 ± 0.215 37.43 ± 0.191 29.66 ± 0.154

172 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 109.30 ± 0.590 62.64 ± 0.370 85.17 ± 0.383 53.93 ± 0.237

173 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 13.27 ± 0.082 11.10 ± 0.051 16.02 ± 0.093 10.96 ± 0.069

174 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 83.53 ± 0.376 62.89 ± 0.459 52.73 ± 0.295 32.35 ± 0.181

175 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 39.80 ± 0.251 27.84 ± 0.142 29.92 ± 0.168 18.80 ± 0.115

176 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 94.19 ± 0.593 50.70 ± 0.218 76.55 ± 0.452 41.10 ± 0.251

177 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 223.38 ± 0.782 111.20 ± 0.589 223.70 ± 0.828 113.18 ± 0.453

178 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 444.36 ± 2.977 264.99 ± 1.537 441.69 ± 2.341 264.87 ± 1.086

179 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 256.18 ± 1.921 165.86 ± 1.178 259.05 ± 1.243 171.96 ± 0.671

180 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 478.19 ± 1.769 352.63 ± 1.622 478.58 ± 2.632 355.84 ± 1.886

181 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 179.89 ± 0.953 60.05 ± 0.360 184.94 ± 0.962 110.19 ± 0.408

182 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 343.89 ± 1.754 148.69 ± 0.743 346.28 ± 1.835 148.89 ± 0.759

183 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 194.83 ± 1.188 92.98 ± 0.604 204.85 ± 0.983 156.14 ± 0.609

Continued on next page

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 73

Table A.4: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instance 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

184 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 376.32 ± 2.559 231.68 ± 0.880 380.96 ± 2.743 229.08 ± 0.985

185 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 101.16 ± 0.364 75.83 ± 0.349 105.43 ± 0.696 75.75 ± 0.439

186 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 367.83 ± 2.464 168.99 ± 0.997 271.84 ± 2.012 168.14 ± 0.639

187 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 255.26 ± 1.302 80.26 ± 0.417 179.80 ± 1.295 76.37 ± 0.512

188 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 612.46 ± 2.940 173.30 ± 0.797 589.27 ± 3.241 174.84 ± 1.119

189 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 64.60 ± 0.297 35.28 ± 0.152 76.63 ± 0.330 40.23 ± 0.237

190 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 405.36 ± 2.351 89.20 ± 0.660 444.92 ± 2.625 91.61 ± 0.330

191 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 235.71 ± 1.202 52.97 ± 0.254 233.12 ± 1.282 53.64 ± 0.290

192 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 518.25 ± 3.887 110.06 ± 0.605 495.14 ± 2.971 110.00 ± 0.693

193 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 143.51 ± 0.517 73.33 ± 0.477 126.78 ± 0.710 72.84 ± 0.408

194 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 398.21 ± 2.389 107.12 ± 0.557 258.27 ± 1.240 102.96 ± 0.607

195 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 252.07 ± 1.714 68.46 ± 0.486 210.82 ± 1.328 66.95 ± 0.355

196 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 562.46 ± 3.037 131.90 ± 0.699 557.66 ± 1.952 124.78 ± 0.811

197 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 56.60 ± 0.283 12.19 ± 0.051 74.25 ± 0.401 11.99 ± 0.068

198 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 379.37 ± 1.745 30.35 ± 0.106 370.31 ± 2.037 36.62 ± 0.238

199 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 187.46 ± 1.237 24.29 ± 0.172 186.03 ± 1.172 23.20 ± 0.123

200 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 425.60 ± 2.128 42.93 ± 0.275 420.80 ± 2.946 39.36 ± 0.216

201 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 57.69 ± 0.306 51.14 ± 0.292 61.92 ± 0.223 50.63 ± 0.329

202 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 138.50 ± 0.734 118.23 ± 0.698 140.36 ± 0.926 118.81 ± 0.547

203 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 50.49 ± 0.237 39.18 ± 0.208 53.01 ± 0.223 40.15 ± 0.281

204 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 137.78 ± 0.951 77.23 ± 0.502 127.88 ± 0.857 78.27 ± 0.485

205 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 26.17 ± 0.126 16.16 ± 0.116 34.76 ± 0.212 17.23 ± 0.098

206 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 49.92 ± 0.329 23.91 ± 0.148 68.47 ± 0.288 25.22 ± 0.126

207 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 33.85 ± 0.213 14.47 ± 0.071 53.57 ± 0.332 14.99 ± 0.060

208 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 101.32 ± 0.476 22.07 ± 0.150 77.35 ± 0.503 22.62 ± 0.120

209 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 483.91 ± 2.129 220.60 ± 1.103 481.24 ± 1.732 214.49 ± 0.922

210 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 952.37 ± 3.333 506.76 ± 3.446 952.09 ± 5.713 509.44 ± 2.904

211 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 556.89 ± 3.954 339.43 ± 1.290 558.44 ± 2.513 331.87 ± 2.091

212 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 1015.36 ± 6.803 714.08 ± 3.356 1036.72 ± 7.568 709.92 ± 4.402

213 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 369.86 ± 2.589 88.85 ± 0.560 381.67 ± 1.756 122.23 ± 0.794

214 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 726.20 ± 3.631 224.07 ± 1.681 721.52 ± 5.267 225.17 ± 1.689

215 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 417.95 ± 1.546 179.15 ± 0.734 465.45 ± 2.607 252.45 ± 1.136

216 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 744.55 ± 2.829 383.71 ± 2.417 794.67 ± 4.132 374.37 ± 1.535

217 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 215.38 ± 0.797 143.23 ± 1.003 326.80 ± 1.144 150.36 ± 0.647

218 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 669.00 ± 4.884 289.76 ± 2.173 856.94 ± 3.171 295.03 ± 1.623

219 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 550.84 ± 3.085 139.27 ± 0.836 577.89 ± 2.658 149.20 ± 1.059

220 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 1209.81 ± 5.202 261.73 ± 1.152 1198.37 ± 6.951 255.01 ± 1.811

221 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 151.79 ± 0.911 42.68 ± 0.213 238.24 ± 0.953 58.94 ± 0.224

222 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 680.42 ± 3.062 70.20 ± 0.498 895.33 ± 4.119 102.36 ± 0.543

223 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 470.16 ± 2.492 49.08 ± 0.260 492.91 ± 3.549 72.95 ± 0.445

224 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 995.65 ± 7.368 93.32 ± 0.532 901.45 ± 4.417 203.06 ± 1.320

225 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 136.73 ± 0.697 62.10 ± 0.286 129.74 ± 0.830 61.90 ± 0.279

226 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 466.03 ± 2.004 149.13 ± 1.044 390.54 ± 1.523 143.18 ± 0.745

227 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 287.00 ± 1.292 91.86 ± 0.340 265.26 ± 1.989 84.31 ± 0.304

228 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 631.38 ± 2.273 175.62 ± 1.089 620.02 ± 4.278 165.96 ± 1.195

229 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 166.89 ± 0.668 47.58 ± 0.257 183.54 ± 0.771 65.17 ± 0.332

Continued on next page

74 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.4: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instance 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

230 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 404.16 ± 2.061 52.38 ± 0.251 347.79 ± 1.739 54.02 ± 0.297

231 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 220.12 ± 1.321 46.49 ± 0.246 229.89 ± 1.632 61.57 ± 0.252

232 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 466.78 ± 2.381 75.13 ± 0.398 454.53 ± 2.227 93.33 ± 0.504

233 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 64.99 ± 0.266 57.44 ± 0.236 76.31 ± 0.305 60.18 ± 0.439

234 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 143.14 ± 0.601 119.32 ± 0.752 149.56 ± 0.987 123.08 ± 0.886

235 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 81.05 ± 0.559 66.18 ± 0.351 82.34 ± 0.305 65.99 ± 0.271

236 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 218.19 ± 1.418 124.40 ± 0.610 192.66 ± 0.828 119.59 ± 0.706

237 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 47.73 ± 0.167 33.94 ± 0.139 42.95 ± 0.159 26.86 ± 0.175

238 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 71.34 ± 0.321 47.21 ± 0.194 81.34 ± 0.455 37.51 ± 0.154

239 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 49.10 ± 0.363 24.32 ± 0.136 50.99 ± 0.331 22.17 ± 0.126

240 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 242.87 ± 1.579 89.26 ± 0.544 181.69 ± 1.072 62.30 ± 0.424

241 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 533.54 ± 3.628 253.58 ± 0.964 531.93 ± 2.660 254.47 ± 1.221

242 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 998.80 ± 5.693 534.41 ± 3.474 999.15 ± 5.096 525.76 ± 3.155

243 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 577.45 ± 2.483 348.36 ± 2.543 574.21 ± 4.249 350.50 ± 1.437

244 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 1064.26 ± 6.173 744.29 ± 5.508 1071.99 ± 6.432 749.02 ± 4.869

245 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 408.53 ± 1.552 105.85 ± 0.476 406.78 ± 2.278 114.88 ± 0.448

246 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 762.97 ± 2.747 265.72 ± 1.541 767.17 ± 4.373 264.24 ± 1.744

247 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 427.40 ± 2.906 182.71 ± 0.932 422.47 ± 2.915 172.26 ± 1.292

248 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 895.43 ± 5.283 529.47 ± 2.065 883.47 ± 4.594 513.36 ± 3.799

249 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 255.54 ± 1.789 183.17 ± 1.007 330.17 ± 2.245 187.82 ± 1.089

250 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 862.27 ± 3.104 334.48 ± 2.274 737.16 ± 4.644 345.99 ± 1.903

251 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 576.21 ± 3.169 171.60 ± 0.961 544.61 ± 2.396 171.54 ± 0.841

252 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 1312.57 ± 7.088 302.26 ± 1.662 1312.71 ± 6.957 306.44 ± 1.073

253 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 176.47 ± 0.635 60.69 ± 0.449 372.17 ± 2.010 65.78 ± 0.283

254 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 615.95 ± 4.004 114.20 ± 0.856 977.31 ± 5.180 143.89 ± 0.676

255 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 522.50 ± 2.717 89.57 ± 0.493 542.86 ± 2.280 120.40 ± 0.710

256 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 1078.46 ± 5.500 149.60 ± 0.898 1051.05 ± 3.784 193.10 ± 0.734

Table A.5: Average cost per time unit and 95% confidence interval for each instance of large asymmetric
test bed: heuristic 1-4

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

1 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 22.12 ± 0.086 12.09 ± 0.091 17.85 ± 0.130 12.39 ± 0.066

2 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 59.24 ± 0.243 23.84 ± 0.162 47.82 ± 0.273 23.09 ± 0.152

3 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 32.99 ± 0.208 18.70 ± 0.071 30.85 ± 0.213 19.76 ± 0.122

4 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 88.72 ± 0.435 104.96 ± 0.577 90.95 ± 0.437 105.96 ± 0.689

5 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 16.59 ± 0.105 7.42 ± 0.055 12.93 ± 0.066 7.19 ± 0.047

6 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 48.55 ± 0.252 14.04 ± 0.105 32.37 ± 0.214 13.02 ± 0.090

7 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 28.48 ± 0.205 12.92 ± 0.089 40.42 ± 0.299 58.54 ± 0.340

8 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 84.19 ± 0.446 101.44 ± 0.680 83.35 ± 0.475 101.10 ± 0.677

9 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 10.85 ± 0.049 10.24 ± 0.065 11.16 ± 0.057 10.06 ± 0.057

10 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 22.37 ± 0.078 20.32 ± 0.089 22.52 ± 0.095 20.75 ± 0.131

11 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 11.71 ± 0.052 9.38 ± 0.070 11.65 ± 0.052 9.35 ± 0.056

12 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 29.69 ± 0.146 20.02 ± 0.114 25.86 ± 0.186 18.70 ± 0.138

Continued on next page

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 75

Table A.5: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

13 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 7.03 ± 0.034 5.69 ± 0.023 5.16 ± 0.037 4.42 ± 0.019

14 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 17.06 ± 0.073 12.43 ± 0.060 12.26 ± 0.053 9.13 ± 0.038

15 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 13.82 ± 0.084 8.69 ± 0.033 11.12 ± 0.079 7.41 ± 0.027

16 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 30.63 ± 0.126 17.33 ± 0.121 21.58 ± 0.086 14.25 ± 0.100

17 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 67.87 ± 0.394 61.74 ± 0.389 67.73 ± 0.440 59.83 ± 0.233

18 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 133.04 ± 0.865 127.06 ± 0.661 131.70 ± 0.843 126.07 ± 0.782

19 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 71.53 ± 0.472 72.15 ± 0.469 71.31 ± 0.492 71.99 ± 0.482

20 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 142.94 ± 0.643 140.86 ± 0.507 142.35 ± 1.053 141.15 ± 1.016

21 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 65.99 ± 0.475 52.75 ± 0.285 65.76 ± 0.355 55.08 ± 0.369

22 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 133.40 ± 0.760 123.19 ± 0.751 134.97 ± 0.567 126.07 ± 0.567

23 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 74.09 ± 0.289 74.31 ± 0.394 74.40 ± 0.298 74.47 ± 0.410

24 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 139.71 ± 0.880 136.67 ± 0.574 139.47 ± 0.879 137.12 ± 0.740

25 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 40.99 ± 0.213 31.55 ± 0.145 37.77 ± 0.212 31.04 ± 0.214

26 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 132.55 ± 0.464 58.94 ± 0.342 82.74 ± 0.364 58.18 ± 0.221

27 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 74.74 ± 0.448 33.08 ± 0.202 69.69 ± 0.467 34.61 ± 0.225

28 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 149.18 ± 0.746 69.27 ± 0.339 147.84 ± 1.094 69.35 ± 0.478

29 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 26.40 ± 0.182 13.32 ± 0.077 21.76 ± 0.118 13.17 ± 0.059

30 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 119.26 ± 0.751 32.34 ± 0.136 131.94 ± 0.528 34.85 ± 0.237

31 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 69.69 ± 0.272 23.07 ± 0.145 73.47 ± 0.470 58.27 ± 0.245

32 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 142.16 ± 0.668 46.34 ± 0.227 142.14 ± 1.023 52.27 ± 0.382

33 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 42.40 ± 0.212 21.36 ± 0.096 33.69 ± 0.212 20.62 ± 0.099

34 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 110.83 ± 0.809 50.45 ± 0.187 91.81 ± 0.367 48.26 ± 0.212

35 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 59.68 ± 0.340 33.93 ± 0.234 55.08 ± 0.292 33.39 ± 0.200

36 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 145.76 ± 0.598 158.28 ± 0.696 147.02 ± 0.956 158.04 ± 0.553

37 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 29.90 ± 0.129 17.44 ± 0.127 24.86 ± 0.139 17.28 ± 0.062

38 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 103.63 ± 0.653 45.07 ± 0.212 85.31 ± 0.495 43.16 ± 0.285

39 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 57.96 ± 0.417 33.71 ± 0.199 58.71 ± 0.247 70.69 ± 0.269

40 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 141.47 ± 0.962 156.11 ± 1.124 142.64 ± 0.999 152.99 ± 1.056

41 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 14.90 ± 0.067 14.42 ± 0.088 16.16 ± 0.120 14.79 ± 0.108

42 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 37.87 ± 0.280 33.87 ± 0.159 40.54 ± 0.219 34.23 ± 0.164

43 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 23.14 ± 0.086 19.57 ± 0.135 22.65 ± 0.113 19.46 ± 0.086

44 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 82.55 ± 0.297 56.16 ± 0.399 60.60 ± 0.394 45.48 ± 0.291

45 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 17.60 ± 0.111 15.86 ± 0.113 12.52 ± 0.055 10.98 ± 0.067

46 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 43.99 ± 0.312 37.40 ± 0.131 33.39 ± 0.134 28.49 ± 0.182

47 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 29.69 ± 0.119 22.18 ± 0.087 23.67 ± 0.178 18.50 ± 0.083

48 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 141.93 ± 0.908 91.48 ± 0.366 117.85 ± 0.754 56.51 ± 0.362

49 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 98.70 ± 0.701 91.87 ± 0.441 98.15 ± 0.667 89.65 ± 0.493

50 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 184.97 ± 0.906 178.95 ± 1.163 185.82 ± 1.115 179.21 ± 1.147

51 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 103.50 ± 0.724 104.01 ± 0.603 103.31 ± 0.362 103.64 ± 0.363

52 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 194.85 ± 1.247 192.26 ± 0.865 194.56 ± 0.934 192.18 ± 1.211

53 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 92.66 ± 0.361 78.34 ± 0.423 93.41 ± 0.654 79.81 ± 0.327

54 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 181.14 ± 0.942 171.73 ± 1.219 181.57 ± 1.126 171.37 ± 0.857

55 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 97.12 ± 0.437 99.68 ± 0.568 97.63 ± 0.596 94.18 ± 0.678

56 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 187.80 ± 1.221 185.26 ± 0.778 187.31 ± 0.693 184.83 ± 1.127

57 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 62.68 ± 0.301 42.61 ± 0.222 56.76 ± 0.358 43.13 ± 0.173

58 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 178.29 ± 0.660 96.86 ± 0.436 131.17 ± 0.944 94.12 ± 0.574

Continued on next page

76 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.5: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

59 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 122.89 ± 0.627 58.25 ± 0.256 91.77 ± 0.578 55.58 ± 0.300

60 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 252.80 ± 1.036 125.71 ± 0.817 253.38 ± 1.875 130.51 ± 0.966

61 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 47.01 ± 0.235 29.25 ± 0.167 42.23 ± 0.165 28.92 ± 0.124

62 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 225.13 ± 1.261 87.47 ± 0.490 223.32 ± 0.782 84.08 ± 0.496

63 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 127.06 ± 0.572 55.07 ± 0.380 124.36 ± 0.783 53.77 ± 0.242

64 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 248.81 ± 1.070 130.57 ± 0.496 226.86 ± 1.316 220.64 ± 1.258

65 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 71.16 ± 0.377 42.78 ± 0.218 62.75 ± 0.314 42.42 ± 0.161

66 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 184.88 ± 0.998 80.87 ± 0.485 144.13 ± 0.937 78.33 ± 0.470

67 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 98.26 ± 0.521 53.70 ± 0.295 93.57 ± 0.702 48.46 ± 0.170

68 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 325.84 ± 1.597 390.78 ± 2.579 334.44 ± 2.207 391.74 ± 2.742

69 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 49.33 ± 0.340 22.17 ± 0.113 47.63 ± 0.243 21.73 ± 0.091

70 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 174.44 ± 0.959 38.72 ± 0.205 135.51 ± 0.542 41.82 ± 0.151

71 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 91.65 ± 0.348 31.54 ± 0.192 80.83 ± 0.558 32.36 ± 0.220

72 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 319.15 ± 1.596 361.09 ± 1.950 323.24 ± 1.293 359.44 ± 2.085

73 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 35.87 ± 0.226 31.78 ± 0.175 37.52 ± 0.236 33.69 ± 0.179

74 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 90.78 ± 0.390 79.55 ± 0.374 91.15 ± 0.401 79.46 ± 0.397

75 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 40.42 ± 0.267 32.59 ± 0.124 39.71 ± 0.210 33.45 ± 0.137

76 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 95.15 ± 0.561 58.74 ± 0.235 82.26 ± 0.494 59.45 ± 0.434

77 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 13.47 ± 0.096 10.51 ± 0.054 11.52 ± 0.073 8.65 ± 0.032

78 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 65.12 ± 0.339 39.40 ± 0.197 42.80 ± 0.317 29.19 ± 0.149

79 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 24.29 ± 0.102 14.26 ± 0.081 21.56 ± 0.151 14.02 ± 0.065

80 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 70.99 ± 0.419 29.25 ± 0.184 54.26 ± 0.195 32.86 ± 0.214

81 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 243.07 ± 0.875 225.58 ± 1.647 241.91 ± 0.871 217.52 ± 1.240

82 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 493.60 ± 3.159 463.88 ± 3.433 497.47 ± 2.686 462.07 ± 2.357

83 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 276.26 ± 1.740 277.53 ± 1.776 274.24 ± 1.508 277.08 ± 1.662

84 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 530.21 ± 3.022 522.00 ± 2.088 528.47 ± 2.695 523.62 ± 3.456

85 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 249.14 ± 1.395 229.98 ± 1.311 251.97 ± 1.235 230.62 ± 1.107

86 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 464.87 ± 3.440 420.57 ± 1.682 469.56 ± 3.381 436.58 ± 1.659

87 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 270.30 ± 1.270 269.84 ± 1.160 264.88 ± 0.927 265.95 ± 1.755

88 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 530.33 ± 3.500 515.04 ± 2.009 530.91 ± 2.177 519.65 ± 2.131

89 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 136.37 ± 0.614 108.08 ± 0.400 143.93 ± 0.979 111.41 ± 0.624

90 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 362.90 ± 2.032 210.53 ± 1.516 296.43 ± 1.897 204.85 ± 1.434

91 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 229.40 ± 1.353 98.36 ± 0.452 232.69 ± 1.303 100.91 ± 0.656

92 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 471.67 ± 2.406 194.15 ± 1.068 478.28 ± 3.491 184.88 ± 1.146

93 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 162.68 ± 0.732 53.35 ± 0.331 200.43 ± 1.343 83.01 ± 0.315

94 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 375.03 ± 2.100 78.19 ± 0.414 450.49 ± 2.883 100.52 ± 0.392

95 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 197.63 ± 1.047 44.73 ± 0.309 171.50 ± 0.960 44.78 ± 0.215

96 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 460.50 ± 2.487 107.38 ± 0.387 459.95 ± 2.254 101.76 ± 0.448

97 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 90.61 ± 0.670 55.97 ± 0.196 81.03 ± 0.486 53.08 ± 0.387

98 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 271.50 ± 1.466 119.02 ± 0.607 239.51 ± 1.365 116.09 ± 0.836

99 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 141.00 ± 0.564 85.71 ± 0.523 141.04 ± 0.592 90.05 ± 0.567

100 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 375.72 ± 2.179 421.73 ± 1.856 378.86 ± 2.500 426.49 ± 2.303

101 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 77.87 ± 0.288 33.98 ± 0.238 83.96 ± 0.470 35.60 ± 0.242

102 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 229.76 ± 1.310 68.24 ± 0.423 201.77 ± 0.807 68.05 ± 0.327

103 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 105.94 ± 0.593 41.81 ± 0.238 96.68 ± 0.358 40.43 ± 0.158

104 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 339.67 ± 1.630 386.71 ± 2.630 346.28 ± 1.212 388.03 ± 2.483

Continued on next page

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 77

Table A.5: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

105 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 38.35 ± 0.165 36.51 ± 0.193 41.79 ± 0.267 37.54 ± 0.248

106 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 100.65 ± 0.473 92.65 ± 0.593 102.23 ± 0.705 93.63 ± 0.571

107 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 42.31 ± 0.271 36.46 ± 0.179 45.63 ± 0.274 37.07 ± 0.267

108 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 119.69 ± 0.598 77.13 ± 0.363 101.57 ± 0.630 73.87 ± 0.443

109 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 17.25 ± 0.116 14.60 ± 0.095 27.35 ± 0.161 17.07 ± 0.102

110 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 67.16 ± 0.477 48.10 ± 0.303 59.65 ± 0.388 37.30 ± 0.272

111 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 49.47 ± 0.322 33.47 ± 0.244 40.91 ± 0.176 28.07 ± 0.202

112 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 99.31 ± 0.457 57.98 ± 0.267 75.04 ± 0.488 51.42 ± 0.242

113 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 269.33 ± 1.023 244.93 ± 1.053 268.26 ± 0.939 235.10 ± 1.129

114 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 522.14 ± 3.759 498.04 ± 3.735 523.20 ± 2.145 504.64 ± 1.867

115 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 298.45 ± 1.910 300.42 ± 2.013 300.11 ± 1.831 299.10 ± 1.854

116 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 552.59 ± 3.481 550.42 ± 2.147 552.95 ± 1.935 549.51 ± 2.418

117 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 269.88 ± 1.565 245.24 ± 1.692 267.10 ± 1.950 264.89 ± 1.695

118 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 531.41 ± 2.551 496.03 ± 3.175 529.42 ± 1.959 494.34 ± 2.373

119 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 281.02 ± 2.051 282.91 ± 1.895 279.34 ± 2.011 281.17 ± 1.462

120 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 538.33 ± 2.315 519.18 ± 3.115 534.98 ± 2.889 519.74 ± 3.534

121 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 151.86 ± 1.124 118.19 ± 0.496 187.49 ± 1.294 120.25 ± 0.445

122 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 439.71 ± 2.902 248.43 ± 1.739 364.90 ± 1.496 244.65 ± 1.199

123 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 286.80 ± 1.491 131.08 ± 0.773 267.10 ± 1.977 126.21 ± 0.480

124 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 581.82 ± 2.967 266.49 ± 1.412 582.92 ± 3.672 258.49 ± 1.628

125 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 184.37 ± 1.272 81.46 ± 0.375 221.66 ± 1.020 85.69 ± 0.531

126 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 465.22 ± 1.861 122.00 ± 0.732 523.08 ± 2.406 144.26 ± 1.010

127 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 279.64 ± 1.622 97.34 ± 0.399 292.24 ± 1.490 133.64 ± 0.508

128 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 578.78 ± 3.183 203.82 ± 1.121 570.52 ± 3.480 527.65 ± 3.324

129 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 20.20 ± 0.091 11.82 ± 0.050 17.55 ± 0.100 11.81 ± 0.054

130 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 92.31 ± 0.535 29.16 ± 0.125 61.75 ± 0.266 28.47 ± 0.122

131 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 45.03 ± 0.324 16.37 ± 0.087 35.17 ± 0.246 16.42 ± 0.085

132 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 308.82 ± 1.637 383.63 ± 1.650 309.69 ± 2.323 385.21 ± 1.810

133 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 24.71 ± 0.178 9.65 ± 0.065 23.15 ± 0.132 12.05 ± 0.059

134 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 83.18 ± 0.574 18.03 ± 0.070 53.14 ± 0.314 18.95 ± 0.074

135 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 42.02 ± 0.155 14.46 ± 0.074 37.57 ± 0.195 13.02 ± 0.079

136 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 283.51 ± 1.474 385.61 ± 1.851 333.53 ± 1.734 433.20 ± 1.646

137 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 11.00 ± 0.043 10.22 ± 0.045 11.07 ± 0.078 10.57 ± 0.071

138 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 22.88 ± 0.142 20.36 ± 0.122 23.16 ± 0.111 19.98 ± 0.120

139 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 12.77 ± 0.092 10.55 ± 0.057 12.38 ± 0.088 10.27 ± 0.071

140 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 44.66 ± 0.255 24.81 ± 0.127 32.50 ± 0.123 23.46 ± 0.127

141 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 13.01 ± 0.062 11.76 ± 0.082 7.16 ± 0.047 5.68 ± 0.043

142 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 15.22 ± 0.062 11.95 ± 0.051 10.32 ± 0.043 8.57 ± 0.032

143 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 11.64 ± 0.076 8.11 ± 0.039 9.53 ± 0.055 7.41 ± 0.039

144 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 52.56 ± 0.336 22.69 ± 0.111 40.69 ± 0.285 22.77 ± 0.132

145 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 151.09 ± 0.725 113.78 ± 0.853 151.94 ± 1.094 117.66 ± 0.777

146 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 449.65 ± 3.372 392.70 ± 2.749 448.21 ± 3.182 391.01 ± 1.877

147 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 234.84 ± 1.362 256.25 ± 1.179 239.78 ± 1.031 257.12 ± 0.977

148 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 548.93 ± 2.909 551.13 ± 2.480 547.69 ± 4.053 546.80 ± 3.828

149 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 153.77 ± 0.876 87.49 ± 0.560 177.94 ± 0.694 223.51 ± 1.118

150 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 416.75 ± 1.875 379.10 ± 2.464 445.24 ± 1.603 395.40 ± 1.661

Continued on next page

78 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.5: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

151 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 239.37 ± 1.029 264.07 ± 1.373 242.83 ± 1.287 261.04 ± 1.671

152 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 537.44 ± 3.762 538.45 ± 3.985 548.50 ± 3.181 555.33 ± 3.388

153 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 37.66 ± 0.233 26.86 ± 0.094 34.53 ± 0.245 27.09 ± 0.157

154 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 156.92 ± 0.879 68.01 ± 0.408 94.83 ± 0.417 65.59 ± 0.485

155 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 106.50 ± 0.394 33.09 ± 0.185 63.22 ± 0.228 32.27 ± 0.142

156 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 419.00 ± 2.640 80.77 ± 0.541 416.37 ± 2.831 76.61 ± 0.444

157 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 30.75 ± 0.175 15.56 ± 0.110 26.12 ± 0.193 15.92 ± 0.105

158 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 165.17 ± 1.173 31.67 ± 0.139 220.34 ± 0.881 35.22 ± 0.250

159 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 92.57 ± 0.481 21.49 ± 0.088 63.92 ± 0.371 24.40 ± 0.142

160 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 385.20 ± 2.735 62.74 ± 0.452 427.12 ± 1.623 181.13 ± 0.869

161 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 36.32 ± 0.243 21.86 ± 0.081 30.99 ± 0.121 21.08 ± 0.120

162 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 150.99 ± 1.072 51.11 ± 0.383 101.03 ± 0.465 49.03 ± 0.343

163 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 88.41 ± 0.619 42.18 ± 0.257 77.18 ± 0.540 39.00 ± 0.269

164 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 348.40 ± 2.021 445.05 ± 2.359 354.61 ± 2.305 439.15 ± 1.757

165 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 51.41 ± 0.350 25.20 ± 0.141 42.85 ± 0.274 22.03 ± 0.117

166 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 149.13 ± 1.029 46.58 ± 0.224 111.10 ± 0.589 43.02 ± 0.168

167 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 73.05 ± 0.343 33.23 ± 0.126 74.88 ± 0.329 128.72 ± 0.901

168 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 337.23 ± 2.293 423.53 ± 2.160 376.06 ± 2.745 442.40 ± 2.300

169 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 15.87 ± 0.105 14.97 ± 0.066 17.40 ± 0.099 14.97 ± 0.079

170 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 34.87 ± 0.206 30.34 ± 0.134 36.92 ± 0.244 30.27 ± 0.106

171 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 24.70 ± 0.116 21.11 ± 0.095 24.53 ± 0.093 19.86 ± 0.085

172 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 80.67 ± 0.557 52.65 ± 0.390 64.49 ± 0.252 48.08 ± 0.250

173 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 21.86 ± 0.114 20.64 ± 0.144 12.79 ± 0.086 10.17 ± 0.045

174 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 41.95 ± 0.298 33.43 ± 0.177 31.88 ± 0.217 24.62 ± 0.158

175 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 27.59 ± 0.130 21.40 ± 0.075 22.32 ± 0.087 17.50 ± 0.077

176 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 135.21 ± 0.879 80.47 ± 0.604 88.64 ± 0.612 55.40 ± 0.404

177 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 179.82 ± 0.899 179.68 ± 0.988 178.69 ± 1.126 180.51 ± 1.119

178 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 488.64 ± 1.906 448.66 ± 1.840 490.65 ± 2.895 453.33 ± 3.309

179 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 267.43 ± 1.310 300.67 ± 1.293 268.17 ± 0.965 299.96 ± 1.470

180 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 576.40 ± 3.343 592.29 ± 2.606 578.44 ± 3.991 595.85 ± 4.231

181 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 168.60 ± 1.096 165.55 ± 0.927 209.57 ± 1.425 222.50 ± 1.268

182 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 483.87 ± 3.581 429.75 ± 1.934 488.46 ± 3.077 444.04 ± 3.019

183 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 250.05 ± 1.100 281.29 ± 1.941 248.61 ± 1.467 281.32 ± 0.985

184 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 581.48 ± 2.733 591.10 ± 3.192 585.66 ± 2.694 591.89 ± 4.380

185 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 73.13 ± 0.293 48.76 ± 0.254 61.56 ± 0.369 45.67 ± 0.320

186 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 224.06 ± 1.546 102.45 ± 0.625 142.50 ± 0.513 98.93 ± 0.584

187 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 163.50 ± 0.736 58.51 ± 0.298 112.02 ± 0.683 57.44 ± 0.373

188 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 496.37 ± 2.184 141.02 ± 0.973 498.50 ± 3.589 135.16 ± 0.635

189 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 66.03 ± 0.304 36.65 ± 0.187 51.67 ± 0.382 32.59 ± 0.169

190 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 199.11 ± 0.916 75.64 ± 0.325 115.90 ± 0.626 71.08 ± 0.405

191 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 138.00 ± 0.938 48.95 ± 0.289 97.79 ± 0.685 46.38 ± 0.306

192 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 484.24 ± 3.099 136.79 ± 0.711 496.79 ± 3.527 139.75 ± 0.936

193 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 108.73 ± 0.696 52.32 ± 0.340 88.37 ± 0.530 50.68 ± 0.213

194 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 311.27 ± 1.681 87.32 ± 0.629 223.31 ± 1.474 86.17 ± 0.310

195 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 175.49 ± 1.035 60.17 ± 0.325 162.27 ± 0.876 62.83 ± 0.352

196 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 982.71 ± 3.734 1394.87 ± 7.811 956.18 ± 4.972 1418.34 ± 6.241

Continued on next page

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 79

Table A.5: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

197 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 71.50 ± 0.379 21.97 ± 0.088 80.73 ± 0.460 33.59 ± 0.144

198 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 326.23 ± 2.414 46.89 ± 0.249 264.38 ± 1.692 42.39 ± 0.309

199 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 133.05 ± 0.772 30.92 ± 0.127 101.22 ± 0.597 32.14 ± 0.193

200 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 1066.27 ± 5.438 1469.92 ± 9.848 1045.37 ± 3.763 1597.44 ± 7.827

201 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 45.03 ± 0.288 42.11 ± 0.240 49.19 ± 0.285 42.56 ± 0.277

202 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 83.16 ± 0.549 77.50 ± 0.403 85.45 ± 0.521 73.14 ± 0.285

203 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 45.88 ± 0.193 34.12 ± 0.154 43.68 ± 0.266 33.66 ± 0.219

204 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 86.07 ± 0.491 56.48 ± 0.316 80.13 ± 0.465 55.34 ± 0.271

205 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 23.50 ± 0.169 16.01 ± 0.114 20.89 ± 0.075 15.53 ± 0.113

206 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 31.14 ± 0.193 21.26 ± 0.074 26.81 ± 0.174 18.24 ± 0.097

207 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 33.76 ± 0.132 19.13 ± 0.082 28.68 ± 0.212 19.71 ± 0.095

208 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 84.92 ± 0.552 36.62 ± 0.146 71.14 ± 0.320 41.64 ± 0.267

209 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 615.20 ± 2.153 547.73 ± 2.848 632.00 ± 4.045 584.82 ± 2.456

210 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 1702.15 ± 12.085 1448.66 ± 8.837 1703.45 ± 8.006 1449.99 ± 7.250

211 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 929.34 ± 4.833 1020.59 ± 6.736 932.77 ± 5.876 1020.79 ± 5.104

212 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 2097.73 ± 10.279 2114.64 ± 13.745 2104.82 ± 7.788 2109.96 ± 11.394

213 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 661.14 ± 4.099 535.10 ± 2.194 654.09 ± 3.663 765.63 ± 3.216

214 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 1708.65 ± 9.739 1476.67 ± 9.303 1748.75 ± 11.017 1465.31 ± 7.913

215 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 833.57 ± 4.918 930.42 ± 3.908 954.12 ± 6.679 1092.90 ± 4.699

216 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 2117.18 ± 15.667 2167.14 ± 9.535 2123.90 ± 14.230 2150.04 ± 11.180

217 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 144.36 ± 0.606 105.53 ± 0.454 184.84 ± 0.906 106.55 ± 0.746

218 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 451.34 ± 2.708 196.80 ± 0.984 369.72 ± 2.699 195.87 ± 1.469

219 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 411.43 ± 1.934 125.08 ± 0.500 305.72 ± 1.376 130.30 ± 0.782

220 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 1597.58 ± 7.349 256.22 ± 1.614 1629.44 ± 7.658 245.04 ± 1.103

221 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 89.73 ± 0.314 42.37 ± 0.208 170.39 ± 0.818 51.20 ± 0.266

222 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 482.73 ± 3.476 74.67 ± 0.560 818.75 ± 4.094 92.38 ± 0.508

223 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 355.25 ± 2.060 58.65 ± 0.346 350.53 ± 2.138 111.73 ± 0.704

224 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 1455.02 ± 9.312 166.50 ± 1.099 1724.33 ± 6.897 1637.71 ± 11.464

225 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 99.73 ± 0.718 53.45 ± 0.337 78.55 ± 0.346 51.17 ± 0.348

226 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 431.09 ± 1.811 116.14 ± 0.859 325.17 ± 1.853 112.23 ± 0.438

227 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 193.18 ± 0.927 72.83 ± 0.291 162.61 ± 0.748 78.36 ± 0.525

228 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 1083.32 ± 8.125 1389.21 ± 6.390 1069.65 ± 4.279 1371.70 ± 9.328

229 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 72.23 ± 0.267 29.49 ± 0.127 81.25 ± 0.406 31.40 ± 0.185

230 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 397.03 ± 2.541 76.94 ± 0.346 342.53 ± 2.089 70.92 ± 0.454

231 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 177.39 ± 0.958 55.91 ± 0.285 163.80 ± 0.966 52.29 ± 0.308

232 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 1109.51 ± 5.326 1541.72 ± 6.938 1102.16 ± 7.274 1492.16 ± 9.251

233 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 55.59 ± 0.345 53.09 ± 0.271 51.88 ± 0.389 45.77 ± 0.165

234 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 97.42 ± 0.682 86.01 ± 0.456 97.33 ± 0.613 87.97 ± 0.449

235 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 78.99 ± 0.371 58.30 ± 0.257 72.20 ± 0.368 55.92 ± 0.207

236 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 127.32 ± 0.611 89.42 ± 0.617 116.93 ± 0.491 82.67 ± 0.546

237 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 32.58 ± 0.130 27.52 ± 0.190 28.65 ± 0.149 18.85 ± 0.104

238 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 102.82 ± 0.442 74.82 ± 0.554 72.61 ± 0.378 48.95 ± 0.367

239 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 47.95 ± 0.292 34.54 ± 0.197 41.56 ± 0.208 25.80 ± 0.144

240 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 134.78 ± 0.795 71.27 ± 0.271 109.19 ± 0.601 65.83 ± 0.270

241 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 645.34 ± 2.969 630.75 ± 3.469 664.09 ± 3.387 644.76 ± 3.224

242 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 1830.18 ± 8.053 1602.94 ± 7.694 1819.18 ± 9.096 1584.92 ± 7.766

Continued on next page

80 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.5: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 1 2 3 4

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} SDSR SDSR-R SDDR SDDR-R

243 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 1012.06 ± 7.489 1140.24 ± 8.552 1006.10 ± 6.640 1142.09 ± 4.568

244 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 2133.81 ± 15.790 2071.99 ± 8.910 2126.74 ± 9.145 2069.60 ± 10.555

245 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 603.07 ± 2.533 449.18 ± 2.785 598.47 ± 2.214 456.07 ± 1.916

246 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 1710.02 ± 8.721 1531.01 ± 8.727 1707.55 ± 7.342 1504.59 ± 9.930

247 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 960.21 ± 5.281 1062.78 ± 6.377 961.02 ± 5.190 1078.47 ± 5.932

248 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 2048.46 ± 11.471 2131.39 ± 10.444 2059.13 ± 14.826 2130.37 ± 11.078

249 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 163.69 ± 0.769 115.25 ± 0.703 215.61 ± 1.488 121.79 ± 0.743

250 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 506.06 ± 2.378 265.11 ± 1.935 405.98 ± 3.045 259.64 ± 1.428

251 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 407.41 ± 1.630 124.86 ± 0.737 354.79 ± 1.632 121.10 ± 0.799

252 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 1643.96 ± 5.754 343.81 ± 1.341 1655.72 ± 10.431 312.59 ± 2.282

253 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 95.06 ± 0.352 59.37 ± 0.338 184.65 ± 1.016 60.92 ± 0.366

254 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 677.72 ± 2.779 143.13 ± 0.615 964.93 ± 6.658 185.57 ± 0.724

255 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 353.74 ± 1.415 80.28 ± 0.586 327.48 ± 1.572 90.36 ± 0.651

256 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 1627.15 ± 9.600 250.96 ± 1.355 1923.82 ± 14.044 1600.92 ± 7.524

aHere, αi = 50 means U [50; 100] and αi = 500 means U [100; 500].

Table A.6: Average cost per time unit and 95% confidence interval for each instance of large asymmetric
test bed: heuristic 5-8

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

1 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 21.37 ± 0.120 10.91 ± 0.073 17.14 ± 0.113 11.01 ± 0.075

2 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 53.51 ± 0.321 20.21 ± 0.103 42.14 ± 0.257 18.80 ± 0.137

3 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 29.75 ± 0.143 13.65 ± 0.086 28.97 ± 0.211 12.94 ± 0.050

4 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 60.44 ± 0.266 28.48 ± 0.145 60.05 ± 0.252 27.03 ± 0.165

5 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 14.83 ± 0.110 5.66 ± 0.042 12.38 ± 0.051 5.55 ± 0.032

6 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 42.93 ± 0.189 8.96 ± 0.058 27.77 ± 0.139 9.08 ± 0.064

7 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 25.20 ± 0.096 10.29 ± 0.038 23.81 ± 0.141 13.26 ± 0.072

8 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 50.69 ± 0.289 15.04 ± 0.092 50.50 ± 0.258 13.86 ± 0.086

9 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 10.95 ± 0.072 9.99 ± 0.054 10.67 ± 0.078 9.72 ± 0.043

10 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 22.44 ± 0.094 20.36 ± 0.102 22.92 ± 0.133 20.15 ± 0.077

11 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 11.76 ± 0.059 9.36 ± 0.067 11.62 ± 0.071 8.80 ± 0.040

12 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 30.22 ± 0.148 18.02 ± 0.074 26.36 ± 0.153 17.18 ± 0.091

13 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 6.67 ± 0.027 4.98 ± 0.019 5.44 ± 0.036 4.13 ± 0.015

14 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 16.22 ± 0.071 11.50 ± 0.056 12.19 ± 0.091 8.09 ± 0.042

15 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 14.61 ± 0.079 7.68 ± 0.040 11.56 ± 0.062 6.07 ± 0.043

16 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.05 · αi} 29.35 ± 0.191 14.90 ± 0.088 22.31 ± 0.143 11.27 ± 0.068

17 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 59.51 ± 0.428 34.54 ± 0.162 58.87 ± 0.300 34.75 ± 0.215

18 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 105.93 ± 0.678 72.52 ± 0.297 104.84 ± 0.629 70.56 ± 0.416

19 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 57.56 ± 0.201 44.49 ± 0.191 57.78 ± 0.364 42.79 ± 0.180

20 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 106.31 ± 0.521 87.50 ± 0.324 105.22 ± 0.400 87.96 ± 0.484

21 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 50.05 ± 0.210 18.33 ± 0.128 49.82 ± 0.264 18.41 ± 0.074

22 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 90.55 ± 0.498 40.80 ± 0.204 90.48 ± 0.326 46.12 ± 0.295

23 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 51.33 ± 0.298 30.30 ± 0.200 51.53 ± 0.227 29.51 ± 0.148

Continued on next page

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 81

Table A.6: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

24 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 87.06 ± 0.522 58.13 ± 0.424 87.98 ± 0.563 65.43 ± 0.262

25 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 40.58 ± 0.158 31.25 ± 0.213 38.27 ± 0.188 30.42 ± 0.149

26 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 111.72 ± 0.749 55.00 ± 0.324 81.37 ± 0.399 54.61 ± 0.251

27 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 69.83 ± 0.405 29.69 ± 0.125 61.19 ± 0.233 29.95 ± 0.144

28 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 130.19 ± 0.820 53.01 ± 0.228 127.49 ± 0.714 51.76 ± 0.362

29 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 24.31 ± 0.168 11.15 ± 0.046 21.06 ± 0.154 11.03 ± 0.043

30 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 101.82 ± 0.509 24.38 ± 0.141 56.48 ± 0.254 25.08 ± 0.095

31 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 62.77 ± 0.370 17.51 ± 0.077 60.12 ± 0.397 20.29 ± 0.081

32 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.05 · αi} 113.03 ± 0.441 28.10 ± 0.141 111.42 ± 0.501 29.31 ± 0.211

33 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 40.73 ± 0.289 18.88 ± 0.123 32.12 ± 0.202 19.28 ± 0.085

34 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 101.01 ± 0.455 43.44 ± 0.213 78.42 ± 0.290 40.39 ± 0.166

35 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 56.22 ± 0.360 27.10 ± 0.098 52.48 ± 0.210 25.62 ± 0.097

36 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 112.90 ± 0.440 60.57 ± 0.273 113.26 ± 0.770 56.51 ± 0.328

37 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 29.77 ± 0.167 15.22 ± 0.059 25.28 ± 0.121 15.17 ± 0.114

38 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 94.97 ± 0.342 38.29 ± 0.172 77.66 ± 0.318 34.80 ± 0.177

39 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 53.61 ± 0.214 27.13 ± 0.095 46.44 ± 0.348 25.27 ± 0.154

40 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 103.95 ± 0.468 50.91 ± 0.356 103.32 ± 0.362 49.51 ± 0.208

41 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 14.65 ± 0.073 14.10 ± 0.080 16.41 ± 0.085 13.97 ± 0.059

42 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 36.84 ± 0.133 33.47 ± 0.244 40.87 ± 0.155 34.14 ± 0.191

43 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 22.78 ± 0.121 18.41 ± 0.105 22.82 ± 0.082 18.15 ± 0.114

44 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 82.32 ± 0.486 51.93 ± 0.203 61.22 ± 0.294 41.80 ± 0.226

45 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 17.45 ± 0.112 15.46 ± 0.104 12.26 ± 0.075 10.75 ± 0.080

46 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 43.50 ± 0.261 35.85 ± 0.265 33.48 ± 0.161 26.43 ± 0.190

47 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 30.44 ± 0.213 21.52 ± 0.105 24.24 ± 0.085 17.76 ± 0.101

48 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.05 · αi} 139.46 ± 1.004 87.98 ± 0.625 92.97 ± 0.493 46.97 ± 0.169

49 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 88.74 ± 0.426 55.79 ± 0.273 88.66 ± 0.665 54.18 ± 0.406

50 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 157.52 ± 0.551 121.05 ± 0.654 158.68 ± 0.793 119.53 ± 0.777

51 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 87.73 ± 0.316 71.14 ± 0.285 87.98 ± 0.414 71.30 ± 0.364

52 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 157.20 ± 0.692 137.64 ± 0.688 156.78 ± 0.721 137.50 ± 0.852

53 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 76.27 ± 0.313 40.07 ± 0.300 76.13 ± 0.548 39.20 ± 0.271

54 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 137.53 ± 0.523 87.59 ± 0.342 137.24 ± 0.714 86.38 ± 0.441

55 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 74.35 ± 0.335 53.92 ± 0.367 71.29 ± 0.499 60.94 ± 0.268

56 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 134.60 ± 0.808 106.64 ± 0.757 135.44 ± 0.772 105.50 ± 0.686

57 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 60.13 ± 0.295 42.01 ± 0.298 54.18 ± 0.347 40.74 ± 0.191

58 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 164.05 ± 0.771 90.76 ± 0.445 126.74 ± 0.798 89.25 ± 0.544

59 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 113.60 ± 0.829 52.26 ± 0.324 86.96 ± 0.600 50.49 ± 0.177

60 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 232.90 ± 1.700 105.34 ± 0.421 227.61 ± 0.797 99.49 ± 0.617

61 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 45.93 ± 0.197 27.13 ± 0.195 41.12 ± 0.300 26.74 ± 0.193

62 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 197.34 ± 0.967 77.74 ± 0.536 153.81 ± 0.892 69.99 ± 0.350

63 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 114.69 ± 0.837 44.69 ± 0.223 103.67 ± 0.560 43.75 ± 0.284

64 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.05 · αi} 220.18 ± 1.233 102.13 ± 0.449 194.66 ± 0.934 96.07 ± 0.375

65 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 70.28 ± 0.372 38.21 ± 0.191 63.67 ± 0.325 38.82 ± 0.163

66 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 166.80 ± 0.617 66.55 ± 0.319 132.93 ± 0.811 63.55 ± 0.369

67 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 89.70 ± 0.457 38.72 ± 0.174 82.20 ± 0.592 35.81 ± 0.251

68 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 202.98 ± 0.771 88.80 ± 0.471 206.01 ± 1.318 80.87 ± 0.307

69 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 48.95 ± 0.343 15.82 ± 0.071 47.61 ± 0.190 15.45 ± 0.063

Continued on next page

82 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.6: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

70 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 142.13 ± 0.853 19.26 ± 0.110 127.02 ± 0.749 22.03 ± 0.110

71 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 71.63 ± 0.380 12.46 ± 0.066 65.76 ± 0.270 12.27 ± 0.080

72 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 160.03 ± 0.864 30.29 ± 0.121 158.79 ± 0.746 35.91 ± 0.165

73 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 36.05 ± 0.227 32.36 ± 0.165 36.29 ± 0.261 31.73 ± 0.140

74 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 90.92 ± 0.482 78.46 ± 0.518 86.52 ± 0.545 78.95 ± 0.466

75 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 39.21 ± 0.286 32.23 ± 0.187 39.31 ± 0.279 31.48 ± 0.161

76 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 90.14 ± 0.658 52.91 ± 0.254 82.07 ± 0.476 52.80 ± 0.264

77 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 13.89 ± 0.049 9.66 ± 0.071 12.15 ± 0.060 7.28 ± 0.028

78 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 63.31 ± 0.418 35.30 ± 0.159 44.92 ± 0.243 23.92 ± 0.093

79 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 24.84 ± 0.114 11.68 ± 0.051 21.34 ± 0.126 11.44 ± 0.059

80 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.05 · αi} 69.45 ± 0.438 21.52 ± 0.114 55.94 ± 0.308 19.98 ± 0.122

81 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 207.90 ± 1.143 122.11 ± 0.488 209.34 ± 1.298 119.28 ± 0.513

82 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 389.57 ± 1.909 252.50 ± 1.515 390.85 ± 1.954 250.66 ± 1.454

83 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 217.64 ± 1.480 163.10 ± 1.158 216.45 ± 1.493 163.68 ± 0.737

84 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 377.71 ± 2.833 296.93 ± 2.168 378.28 ± 1.929 294.14 ± 2.147

85 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 187.02 ± 1.029 64.70 ± 0.278 185.75 ± 1.077 81.20 ± 0.487

86 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 299.48 ± 1.138 113.18 ± 0.804 309.75 ± 1.951 136.45 ± 0.955

87 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 174.48 ± 0.837 91.40 ± 0.521 174.19 ± 1.202 93.42 ± 0.448

88 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 306.38 ± 2.083 178.69 ± 1.322 310.52 ± 1.118 180.66 ± 1.102

89 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 135.45 ± 0.610 106.40 ± 0.458 142.50 ± 0.955 107.35 ± 0.526

90 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 356.19 ± 1.354 196.63 ± 0.728 300.87 ± 1.986 195.20 ± 0.800

91 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 214.89 ± 0.988 80.60 ± 0.282 205.78 ± 1.296 85.79 ± 0.635

92 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 400.12 ± 1.480 143.84 ± 0.604 401.75 ± 1.728 142.47 ± 0.969

93 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 162.90 ± 0.880 44.50 ± 0.276 182.62 ± 0.822 59.45 ± 0.262

94 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 312.51 ± 1.938 49.72 ± 0.293 361.44 ± 1.735 66.03 ± 0.258

95 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 167.05 ± 0.885 26.63 ± 0.154 137.39 ± 1.017 24.66 ± 0.101

96 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.05 · αi} 352.36 ± 2.255 47.79 ± 0.306 348.44 ± 2.125 50.40 ± 0.192

97 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 91.79 ± 0.542 51.32 ± 0.195 78.00 ± 0.413 49.03 ± 0.353

98 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 239.32 ± 1.005 97.34 ± 0.399 210.89 ± 1.434 93.79 ± 0.328

99 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 132.27 ± 0.860 58.68 ± 0.381 122.65 ± 0.429 54.79 ± 0.389

100 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 252.81 ± 1.567 116.89 ± 0.818 253.50 ± 1.344 109.66 ± 0.570

101 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 75.76 ± 0.568 27.12 ± 0.119 81.12 ± 0.487 27.82 ± 0.100

102 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 195.87 ± 0.881 46.41 ± 0.283 183.21 ± 1.008 46.71 ± 0.308

103 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 85.50 ± 0.445 26.63 ± 0.141 81.85 ± 0.598 25.48 ± 0.171

104 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 198.53 ± 1.290 62.77 ± 0.395 198.60 ± 1.072 59.69 ± 0.430

105 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 37.57 ± 0.244 34.46 ± 0.248 41.51 ± 0.241 36.00 ± 0.130

106 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 100.71 ± 0.735 91.43 ± 0.448 104.28 ± 0.553 89.05 ± 0.606

107 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 40.15 ± 0.165 34.95 ± 0.196 44.48 ± 0.298 34.70 ± 0.163

108 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 118.89 ± 0.773 70.86 ± 0.432 98.69 ± 0.395 64.37 ± 0.380

109 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 16.43 ± 0.066 13.62 ± 0.060 26.05 ± 0.151 15.64 ± 0.100

110 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 68.35 ± 0.273 46.14 ± 0.254 57.38 ± 0.252 34.23 ± 0.144

111 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 53.00 ± 0.276 29.98 ± 0.147 41.53 ± 0.228 23.08 ± 0.168

112 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.05 · αi} 98.52 ± 0.404 49.40 ± 0.296 75.52 ± 0.446 41.19 ± 0.185

113 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 237.62 ± 1.735 145.37 ± 0.552 234.70 ± 1.713 142.36 ± 1.068

114 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 425.42 ± 2.127 288.16 ± 1.844 424.15 ± 2.333 281.10 ± 1.911

115 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 235.94 ± 1.133 175.92 ± 1.091 234.10 ± 1.171 174.04 ± 1.044

Continued on next page

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 83

Table A.6: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

116 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 409.78 ± 1.762 336.88 ± 1.718 415.24 ± 1.993 338.69 ± 2.134

117 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 202.78 ± 0.953 78.42 ± 0.282 204.35 ± 1.512 119.48 ± 0.514

118 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 358.67 ± 1.255 161.93 ± 0.761 363.60 ± 2.654 162.21 ± 1.054

119 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 187.98 ± 1.297 99.42 ± 0.467 186.55 ± 0.858 98.97 ± 0.435

120 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 336.20 ± 1.446 220.78 ± 0.949 333.29 ± 1.866 223.21 ± 0.826

121 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 148.69 ± 0.907 115.63 ± 0.740 181.88 ± 1.055 116.84 ± 0.432

122 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 408.03 ± 2.367 230.85 ± 1.339 364.89 ± 1.824 232.35 ± 1.417

123 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 264.27 ± 1.031 110.21 ± 0.727 224.33 ± 1.301 110.05 ± 0.418

124 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 513.91 ± 3.803 202.57 ± 1.458 510.83 ± 3.780 202.04 ± 1.394

125 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 178.60 ± 0.643 73.58 ± 0.390 181.42 ± 0.907 69.62 ± 0.459

126 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 386.81 ± 2.282 98.18 ± 0.668 422.41 ± 2.366 107.71 ± 0.539

127 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 252.82 ± 1.466 73.44 ± 0.264 247.44 ± 1.683 85.86 ± 0.352

128 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.05 · αi} 460.59 ± 3.178 131.43 ± 0.631 425.19 ± 1.828 148.27 ± 1.023

129 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 19.94 ± 0.136 10.66 ± 0.078 17.06 ± 0.128 10.59 ± 0.060

130 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 77.22 ± 0.363 23.49 ± 0.139 53.96 ± 0.367 21.90 ± 0.107

131 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 39.15 ± 0.141 11.66 ± 0.063 32.36 ± 0.197 11.34 ± 0.051

132 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 104.69 ± 0.660 31.97 ± 0.125 105.38 ± 0.400 30.14 ± 0.211

133 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 24.51 ± 0.142 7.48 ± 0.026 22.13 ± 0.108 7.76 ± 0.049

134 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 63.39 ± 0.431 11.67 ± 0.082 40.37 ± 0.206 11.34 ± 0.050

135 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 32.95 ± 0.247 7.64 ± 0.054 30.80 ± 0.157 7.17 ± 0.051

136 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 81.86 ± 0.450 16.94 ± 0.122 78.91 ± 0.410 20.05 ± 0.098

137 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 10.62 ± 0.045 10.30 ± 0.040 11.32 ± 0.067 10.30 ± 0.061

138 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 22.56 ± 0.086 20.15 ± 0.141 23.48 ± 0.110 19.83 ± 0.091

139 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 12.25 ± 0.073 10.00 ± 0.068 11.93 ± 0.084 9.52 ± 0.063

140 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 44.42 ± 0.262 22.25 ± 0.091 32.67 ± 0.170 18.81 ± 0.105

141 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 13.12 ± 0.070 11.11 ± 0.049 7.85 ± 0.042 4.89 ± 0.024

142 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 15.04 ± 0.066 11.06 ± 0.040 10.56 ± 0.067 7.48 ± 0.030

143 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 11.57 ± 0.065 6.98 ± 0.045 9.34 ± 0.033 5.94 ± 0.029

144 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 50, 0.1 · αi} 50.51 ± 0.379 19.46 ± 0.095 33.67 ± 0.219 14.89 ± 0.074

145 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 81.08 ± 0.543 38.85 ± 0.218 81.35 ± 0.537 37.55 ± 0.161

146 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 156.26 ± 0.859 83.27 ± 0.300 156.07 ± 0.780 83.14 ± 0.582

147 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 88.66 ± 0.372 55.10 ± 0.198 87.79 ± 0.518 53.99 ± 0.378

148 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 168.32 ± 0.606 120.14 ± 0.577 171.38 ± 0.703 122.54 ± 0.711

149 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 66.36 ± 0.292 19.60 ± 0.092 69.13 ± 0.346 41.82 ± 0.159

150 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 117.44 ± 0.787 45.48 ± 0.318 118.13 ± 0.721 60.58 ± 0.394

151 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 72.23 ± 0.347 37.89 ± 0.250 73.49 ± 0.323 36.68 ± 0.136

152 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 135.93 ± 0.612 83.15 ± 0.491 144.45 ± 1.040 95.60 ± 0.335

153 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 36.79 ± 0.199 25.31 ± 0.177 33.71 ± 0.152 25.54 ± 0.161

154 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 128.29 ± 0.539 62.65 ± 0.457 93.92 ± 0.573 61.32 ± 0.380

155 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 89.06 ± 0.338 27.37 ± 0.142 60.67 ± 0.431 25.74 ± 0.188

156 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 215.12 ± 1.183 54.76 ± 0.361 212.11 ± 0.870 53.46 ± 0.262

157 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 29.66 ± 0.151 13.50 ± 0.063 25.01 ± 0.163 13.39 ± 0.094

158 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 115.63 ± 0.543 24.04 ± 0.168 77.59 ± 0.497 24.21 ± 0.155

159 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 75.52 ± 0.430 15.37 ± 0.069 50.21 ± 0.286 15.94 ± 0.078

160 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 50, 0.1 · αi} 177.44 ± 1.295 33.27 ± 0.186 168.43 ± 0.977 37.66 ± 0.230

161 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 36.52 ± 0.172 20.24 ± 0.087 30.41 ± 0.140 19.30 ± 0.131

Continued on next page

84 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.6: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

162 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 120.06 ± 0.852 44.43 ± 0.253 87.14 ± 0.619 41.26 ± 0.169

163 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 73.18 ± 0.315 30.71 ± 0.111 67.97 ± 0.483 29.69 ± 0.193

164 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 155.37 ± 1.072 68.83 ± 0.248 155.03 ± 0.853 65.61 ± 0.446

165 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 48.11 ± 0.221 23.03 ± 0.081 37.84 ± 0.174 18.05 ± 0.094

166 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 117.23 ± 0.832 36.25 ± 0.225 87.43 ± 0.437 33.84 ± 0.152

167 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 60.63 ± 0.358 23.66 ± 0.114 53.74 ± 0.306 22.93 ± 0.096

168 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 133.92 ± 0.536 56.91 ± 0.233 124.63 ± 0.511 58.88 ± 0.218

169 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 15.66 ± 0.113 14.59 ± 0.099 17.29 ± 0.085 15.02 ± 0.075

170 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 34.02 ± 0.245 29.42 ± 0.150 35.59 ± 0.128 29.73 ± 0.113

171 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 24.99 ± 0.130 19.87 ± 0.103 25.36 ± 0.150 19.77 ± 0.103

172 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 77.41 ± 0.356 47.50 ± 0.171 66.03 ± 0.489 41.99 ± 0.227

173 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 21.31 ± 0.134 20.54 ± 0.082 12.58 ± 0.054 9.72 ± 0.046

174 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 41.14 ± 0.284 31.66 ± 0.190 33.16 ± 0.159 22.62 ± 0.133

175 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 27.38 ± 0.162 20.24 ± 0.073 21.50 ± 0.075 16.25 ± 0.086

176 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 50, 0.1 · αi} 133.14 ± 0.546 77.00 ± 0.293 82.01 ± 0.525 44.59 ± 0.254

177 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 108.58 ± 0.391 62.95 ± 0.315 108.29 ± 0.455 61.81 ± 0.334

178 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 205.15 ± 1.272 131.33 ± 0.630 205.72 ± 1.029 131.33 ± 0.683

179 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 116.84 ± 0.806 81.85 ± 0.426 117.54 ± 0.705 82.75 ± 0.612

180 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 214.70 ± 1.524 168.18 ± 1.211 214.91 ± 0.903 164.83 ± 1.203

181 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 91.69 ± 0.578 42.80 ± 0.197 87.96 ± 0.413 53.75 ± 0.258

182 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 171.49 ± 1.166 93.23 ± 0.559 171.68 ± 1.082 95.59 ± 0.468

183 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 93.58 ± 0.646 57.38 ± 0.413 93.12 ± 0.466 57.39 ± 0.425

184 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 188.75 ± 0.698 133.62 ± 0.922 186.62 ± 0.858 134.95 ± 0.769

185 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 73.28 ± 0.381 46.72 ± 0.182 60.47 ± 0.375 43.39 ± 0.182

186 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 194.27 ± 0.797 92.11 ± 0.405 138.88 ± 0.750 88.78 ± 0.559

187 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 145.85 ± 0.613 50.47 ± 0.353 100.06 ± 0.640 49.50 ± 0.208

188 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 310.00 ± 1.829 110.80 ± 0.776 309.59 ± 1.331 104.87 ± 0.703

189 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 64.64 ± 0.297 33.91 ± 0.220 49.90 ± 0.339 29.27 ± 0.158

190 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 167.52 ± 0.653 63.95 ± 0.339 113.71 ± 0.796 60.09 ± 0.397

191 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 121.59 ± 0.535 40.36 ± 0.182 87.81 ± 0.606 39.41 ± 0.185

192 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 50, 0.1 · αi} 279.33 ± 1.899 97.75 ± 0.371 263.81 ± 0.950 93.38 ± 0.570

193 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 100.88 ± 0.545 43.79 ± 0.263 84.70 ± 0.584 44.10 ± 0.322

194 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 251.91 ± 1.209 69.54 ± 0.341 183.71 ± 1.066 66.36 ± 0.385

195 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 147.96 ± 0.681 35.67 ± 0.260 125.48 ± 0.803 35.95 ± 0.262

196 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 330.76 ± 1.323 86.96 ± 0.600 329.18 ± 1.448 79.80 ± 0.519

197 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 72.91 ± 0.423 14.81 ± 0.104 66.10 ± 0.251 19.87 ± 0.129

198 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 229.13 ± 0.917 20.06 ± 0.116 192.92 ± 0.907 19.80 ± 0.107

199 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 96.42 ± 0.376 12.31 ± 0.087 81.95 ± 0.303 11.41 ± 0.074

200 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 265.08 ± 0.981 29.93 ± 0.108 263.05 ± 1.499 32.58 ± 0.156

201 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 45.85 ± 0.238 42.98 ± 0.198 47.52 ± 0.171 42.86 ± 0.193

202 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 84.89 ± 0.467 74.00 ± 0.377 84.41 ± 0.346 71.96 ± 0.403

203 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 47.06 ± 0.344 32.33 ± 0.200 41.07 ± 0.259 31.32 ± 0.163

204 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 93.41 ± 0.430 45.41 ± 0.313 78.60 ± 0.283 44.29 ± 0.244

205 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 22.53 ± 0.104 14.75 ± 0.105 19.40 ± 0.130 12.75 ± 0.084

206 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 31.13 ± 0.190 15.65 ± 0.108 26.71 ± 0.166 13.24 ± 0.068

207 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 31.59 ± 0.130 16.20 ± 0.081 28.70 ± 0.198 14.55 ± 0.084

Continued on next page

ADDITIONAL INFORMATION COMPUTATIONAL STUDY 85

Table A.6: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

208 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 1, 500, 0.1 · αi} 89.66 ± 0.457 26.05 ± 0.112 61.55 ± 0.326 23.10 ± 0.134

209 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 305.29 ± 1.771 146.14 ± 0.716 300.32 ± 2.132 136.53 ± 0.983

210 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 556.08 ± 3.559 283.24 ± 2.096 556.43 ± 3.728 280.65 ± 1.684

211 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 328.81 ± 1.480 191.70 ± 1.035 329.60 ± 1.384 192.04 ± 0.999

212 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 636.93 ± 2.229 449.71 ± 2.024 639.62 ± 3.390 457.45 ± 2.150

213 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 259.81 ± 1.273 69.76 ± 0.502 269.70 ± 1.672 94.08 ± 0.358

214 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 441.12 ± 2.470 141.91 ± 1.036 442.93 ± 3.012 139.77 ± 0.769

215 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 226.80 ± 1.474 82.93 ± 0.290 310.94 ± 1.399 239.57 ± 1.605

216 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 487.06 ± 3.263 266.51 ± 1.173 485.52 ± 2.670 259.71 ± 1.870

217 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 138.58 ± 0.582 100.26 ± 0.451 181.47 ± 0.871 101.95 ± 0.551

218 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 392.87 ± 2.082 174.10 ± 1.114 368.38 ± 1.510 176.62 ± 1.095

219 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 339.91 ± 2.039 105.05 ± 0.420 273.65 ± 1.861 107.32 ± 0.773

220 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 780.13 ± 3.511 167.60 ± 1.257 781.89 ± 4.770 162.35 ± 0.828

221 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 91.37 ± 0.530 32.86 ± 0.246 185.52 ± 1.150 38.03 ± 0.281

222 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 366.07 ± 1.977 44.62 ± 0.330 379.21 ± 2.199 58.29 ± 0.431

223 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 274.76 ± 1.511 35.05 ± 0.245 280.55 ± 1.459 49.04 ± 0.275

224 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 1, 500, 0.1 · αi} 612.28 ± 4.286 67.05 ± 0.255 573.08 ± 2.006 118.74 ± 0.665

225 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 103.68 ± 0.746 46.90 ± 0.202 77.47 ± 0.449 45.68 ± 0.192

226 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 331.28 ± 1.193 89.50 ± 0.671 241.10 ± 1.664 86.50 ± 0.329

227 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 166.75 ± 0.850 51.61 ± 0.351 140.68 ± 0.619 50.65 ± 0.355

228 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 383.00 ± 1.340 109.65 ± 0.658 376.33 ± 1.656 104.47 ± 0.418

229 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 68.82 ± 0.255 22.30 ± 0.100 79.98 ± 0.544 24.35 ± 0.093

230 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 270.50 ± 2.029 46.33 ± 0.306 233.05 ± 0.979 46.41 ± 0.255

231 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 132.86 ± 0.917 29.37 ± 0.153 120.09 ± 0.757 29.83 ± 0.164

232 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 319.59 ± 1.342 62.30 ± 0.380 320.13 ± 2.209 60.56 ± 0.236

233 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 56.48 ± 0.220 49.00 ± 0.343 50.83 ± 0.315 45.20 ± 0.316

234 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 96.20 ± 0.616 83.65 ± 0.586 99.60 ± 0.428 82.80 ± 0.389

235 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 81.42 ± 0.415 55.21 ± 0.210 71.86 ± 0.474 52.79 ± 0.391

236 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 132.29 ± 0.833 74.91 ± 0.390 110.92 ± 0.510 76.61 ± 0.398

237 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 32.70 ± 0.128 26.50 ± 0.114 26.83 ± 0.164 17.54 ± 0.068

238 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 100.25 ± 0.461 70.00 ± 0.266 71.57 ± 0.508 39.98 ± 0.160

239 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 50.38 ± 0.373 30.36 ± 0.206 41.55 ± 0.307 21.90 ± 0.103

240 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.001; 0.01], 4, 500, 0.1 · αi} 132.46 ± 0.636 58.53 ± 0.299 106.01 ± 0.541 46.58 ± 0.219

241 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 332.95 ± 1.299 169.25 ± 0.677 334.13 ± 2.072 166.11 ± 0.997

242 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 634.11 ± 4.502 356.07 ± 2.243 635.77 ± 3.815 354.49 ± 1.950

243 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 380.53 ± 1.712 243.73 ± 1.365 384.78 ± 2.693 233.59 ± 1.705

244 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 653.62 ± 4.902 461.59 ± 2.816 667.68 ± 4.340 468.83 ± 1.875

245 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 268.40 ± 1.369 79.24 ± 0.578 264.10 ± 1.637 78.02 ± 0.289

246 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 476.00 ± 3.570 181.18 ± 0.670 474.61 ± 2.848 180.23 ± 0.901

247 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 280.37 ± 1.234 135.30 ± 0.825 282.15 ± 1.044 130.04 ± 0.728

248 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 1

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 512.55 ± 2.358 296.59 ± 1.097 522.07 ± 2.036 304.54 ± 1.370

249 {100, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 163.06 ± 0.669 109.84 ± 0.428 209.20 ± 0.732 113.11 ± 0.599

250 {180, (0.4 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 461.47 ± 2.446 239.35 ± 0.838 391.27 ± 2.387 234.26 ± 1.663

251 {100, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 347.47 ± 2.502 98.89 ± 0.593 307.67 ± 1.938 102.09 ± 0.613

252 {180, (0.6 · |Nd|)2, b1 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 858.54 ± 6.010 231.93 ± 0.905 858.35 ± 3.176 217.88 ± 1.569

253 {100, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 96.14 ± 0.596 50.13 ± 0.376 181.33 ± 1.070 52.20 ± 0.313

Continued on next page

86 ADDITIONAL INFORMATION COMPUTATIONAL STUDY

Table A.6: – continued from previous page

Average cost per time unit and 95% confidence interval of heuristic n

Instancea 5 6 7 8

{|N|, |Nd|, T̂ , N, λi, γ, αi, βi} DDSR DDSR-R DDDR DDDR-R

254 {180, (0.4 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 530.43 ± 3.713 113.34 ± 0.453 630.46 ± 2.837 131.65 ± 0.922

255 {100, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 293.97 ± 1.999 56.59 ± 0.419 279.92 ± 1.176 60.93 ± 0.366

256 {180, (0.6 · |Nd|)2, b1.5 ·
√
|N|
N
e, b 2

10
· |Nd|e, U[0.01; 0.05], 4, 500, 0.1 · αi} 742.04 ± 3.636 141.06 ± 0.522 669.54 ± 2.410 172.06 ± 1.204

	Abstract
	Summary
	Preface
	Introduction
	Literature review
	High solution times
	Medium solution times
	Short solution times

	Model description
	Dispatch and reposition problem
	Overview of assumptions

	Markov decision process formulation
	State space
	Action space
	Transition probabilities
	Direct expected cost
	Example

	An exact approach
	Value iteration
	Numerical investigation

	Heuristic approaches
	Dispatching
	Repositioning
	Heuristic policies

	Computational study
	Test beds and objectives
	Numerical results

	Conclusion and discussion
	Main results
	Reflection on limitations
	Future research

	Bibliography
	Additional information computational study
	Confidence intervals computational study

