Dynamic Dispatching and Repositioning Policies in Service Logistics Networks

by
Collin Drent

BSc Industrial Engineering \& Management Sciences
Eindhoven University of Technology 2015
Student identity number 0805771
in partial fulfilment of the requirements for the degree of
Master of Science
in Operations Management and Logistics

Supervisors:
prof.dr.ir. G.J. van Houtum, TU/e, OPAC
prof.dr. T. van Woensel, TU/e, OPAC
dr.ir. J.J. Arts, Université du Luxembourg, LCL
dr. M.C.A. Olde Keizer, CQM
dr.ir. J.B.M. van Doremalen, CQM

TUE. School of Industrial Engineering.
Series Master Theses Operations Management and Logistics

Subject headings: Service logistics, Repair, Dynamic dispatching, Dynamic repositioning, Markov decision processes, Heuristics

Dynamic Dispatching and Repositioning Policies in Service Logistics Networks

Abstract

Motivated by the increasing demand for faster service when advanced capital goods fail, we address the problem of dispatching and pro-actively repositioning service engineers in a service logistics network such that extremely short solution times to service requests can be realized in a cost-efficient way. By formulating this problem as a Markov decision process, we are able to investigate the structure of the optimal policy, thereby focusing on specific characteristics of this optimal policy. Using these insights, we then propose scalable static and dynamic heuristics for both the dispatching and repositioning sub-problem for networks of industrial size, based on the minimum weighted bipartite matching problem and the maximum expected covering location problem, respectively. The dynamic dispatching heuristic takes into account real-time information about both the state of equipment and the fleet of service engineers, while the dynamic repositioning heuristic maximizes the expected weighted coverage of future service requests. In a test bed with a small network, we show that our most advanced heuristic performs excellent with an average optimality gap of 4.6% under specific circumstances, but strictly outperforms all other heuristics across all instances. To show the practical value of our proposed heuristics, we conducted extensive numerical experiments on a large test bed with networks of industrial size where significant savings of up to 61.9% compared to a benchmark static policy are attained. In the same test bed, we show that being flexible in deviating from previous dispatch and reposition decisions, regardless of the heuristics that are used for these decisions, can lead to substantial savings of 49.2% compared to when reallocation is not allowed. The results also show that using the proposed dynamic dispatching heuristic, instead of the widely adopted 'closest-idle first'-heuristic, leads to savings of 27.7%.

Keywords:

Service logistics; Repair; Dynamic dispatching; Dynamic repositioning; Markov decision processes; Heuristics

Summary

For many manufacturers and service organizations, the availability of capital goods - such as MRI scanners, industrial printers or ATMs - is of crucial importance for their operations. Therefore, their uptime is of utmost importance; each minute of unplanned downtime may be costly, risky (in case of medical equipment), or both. As a result, the total unplanned downtime should be minimized. Many of these capital goods are maintained by means of a service logistics network, which is owned and managed by a service organization. Such a network typically consists of a single central warehouse and many service regions (mostly determined by geographical borders) in which the capital goods are installed (see Basten and Van Houtum (2014)). Generally, spare parts are kept on stock both in the central warehouse and in the vehicles of the service engineers that operate in service regions. Upon failure of a capital good, a service engineer is dispatched to this failed capital good if the problem cannot be solved remotely. A failure is often caused by a failed part which can then be replaced immediately by a new part if the dispatched service engineer has this part in its car stock, otherwise it is replaced in a second visit.

According to a recent survey among executives, one of the two top challenges for service organizations is the increasing demand from customers for shorter solution times (Pinder Jr, 2016). Furthermore, recent developments of communication networks and easy-to-integrate sensors allow service organizations to collect real-time data about the state of equipment, which provides enormous opportunities (PWC, 2014).

In this thesis we propose an innovative service logistics network design for each service region, from which we expect that it can realize extremely short solution times to service requests by exploiting the trend of real-time data becoming increasingly available. In this new design, there is a local warehouse and there are service engineers that carry no car stock. We assume that, upon a failure of a system, a perfect remote diagnosis, using real-time data, can be executed. Subsequently, a service engineer is dispatched to the failed system and, independently from the service engineer, a spare part is delivered from the local warehouse to the failed system by a fast transportation mode (e.g., a parcel carrier). Whenever a service engineer is dispatched to the failed system, it may leave a significant part of the service region without coverage. It could therefore be beneficial to reposition idle service engineers to maintain a proper coverage level in anticipation of future demand, after having dispatched a service engineer to a failed system. Furthermore, in practice, penalty costs for not being able to repair a failed system before the solution time target is exceeded, are significantly higher than the cost of repositioning idle service engineers. Consequently, dispatching and
repositioning idle service engineers in a smart way could lead to significant savings in operating costs in this innovative service logistics network design. This leads to the overarching objective of this thesis, which is to develop scalable heuristics that perform well and which are focused on both pro-actively repositioning of service engineers and deciding which service engineer to dispatch to service requests in a cost-efficient way.

Maintenance and service logistics is a topic widely studied in the literature. One of the important areas in maintenance and service logistics that has been studied extensively, is the area of spare parts management, where the focus mainly lies on (multi-item) spare parts optimization models. However, much lesser attention has been devoted to the planning or management of service engineers that are required to install or repair these parts, and none attention has been devoted to the planning of these service engineers with an explicit focus on realizing short solution times. Interestingly enough, the problem of planning the service engineers to realize short solution times, in isolation, is not unique to service logistics, but also appears in the vast literature of Dynamic Ambulance Management (DAM), where dispatching and repositioning decisions also have to be made in real-time. Namely, in life-threatening emergencies, ambulances should be dispatched to and reach these emergencies within extremely short response times. Most research in DAM focuses either on how to pro-actively reposition idle ambulances such that the coverage is maximized or on dynamic dispatching methods, that take into account the current state of the system in the dispatch decision. Hence, despite the aforementioned relation between them, dynamic dispatch and reposition decisions have predominantly been studied in isolation in DAM literature. To that end, we are the first to jointly consider dynamic dispatch and reposition decisions and we apply it in a service logistics network.

We formulate the dynamic dispatch and reposition problem as a Markov Decision Process (MDP) and solve this problem to optimality for a small, artificial service logistics network. We then propose scalable dynamic and static heuristics for both the dispatch and reposition sub-problem, based on the numerical investigation of the optimal policy. Hence, although the MDP solves both the dispatch and reposition problem in an integrated way, we decompose the problem into two sub-problems and design a heuristic independently for both the dispatching and repositioning sub-problems. This is also common in practice, where managers at service organizations are faced with two main problems in real-time: a dispatching problem and reposition problem. The developed dispatching (repositioning) heuristics are generic in the sense that they can be combined with any repositioning (dispatching) heuristic. Our static heuristics are characterized by rules of thumbs that are determined a-priori which are then always followed, regardless of the current state of the network. By contrast, our dynamic heuristics are characterized by maximizing a goal function that takes into account information about the current state of the network. Our proposed dynamic dispatch heuristic, based on the minimum weighted bipartite matching problem, is the first dynamic heuristic that assigns a fleet of service engineers to failed capital goods that takes into account real-time data about the state of equipment and the current position of each service engineer, whereas the static dispatching heuristic is the widely adopted 'closest-idle first'-heuristic. Both our static and dynamic reposition heuristic are based on
the maximum expected covering location problem and they take into account both penalty costs and demand information of the capital goods. Current models, both in literature and in practice, limit themselves by imposing the constraint that once a decision has been made (either to dispatch or to reposition) the service engineer becomes eligible for a new decision once it has completed its service or has arrived at its final location. We analyze the benefit of relaxing this assumption by analyzing the allowance of reallocation in the policy, i.e. being flexible in deviating from previous dispatch and reposition decisions. Combining the option of whether or not reallocating with two options each for both the dispatching and repositioning sub-problem, leads to eight proposed heuristic policies in total.

We compare the performance of our proposed heuristics against the optimal policy in a small network in a small test bed and against a myopic policy, the SDSR heuristic (static dispatching heuristic, static repositioning heuristic, no reallocation), that is currently used in practice across a large test bed of industrial size. In the small test bed, we show that the average and the maximum optimality gap over all examined symmetric problem instances of the DDDR-R heuristic (dynamic dispatching heuristic, dynamic repositioning heuristic, reallocation), our most advanced and best-performing heuristic, are 4.6% and 10.4%, respectively. This is a clear improvement compared to the myopic SDSR heuristic, which has optimality gaps of 99.0% and 322.6%, respectively. However, in a rather pessimistic test bed, we find that the same DDDR-R heuristic performs worse with optimality gaps of of 37.8% and 73.9%, respectively. Nevertheless, in the same test bed we observe that this was still a clear improvement compared to the myopic SDSR heuristic (optimality gaps of 99.9% and 224.5%, respectively). As the overarching objective of this thesis is to develop scalable heuristics that perform well in practice, we conduct a large test bed with networks of industrial size. In this large test bed, we show that huge savings can be obtained by either employing a dynamic dispatching policy or allowing for reallocation in the policy. The combination of both using the dynamic dispatching policy and allowing for reallocation, where we observe savings of up to 61.9%, results in the highest savings in the real-life service logistics networks.

Finally, we quantify the benefit of individually using either a dynamic dispatching heuristic, a dynamic repositioning heuristic or allowing reallocation in the policy. We show that savings of close to 50% can be attained by letting each service engineer be eligible for dispatch and reposition decisions, regardless of whether they are on their way to their destination or have already reached their destination. This quantification, which is currently lacking in the literature, shows that it is very beneficial from a cost-perspective to relax the limitation of no reallocation, regardless of the policy used. This analysis of individual benefits also shows that using the proposed dynamic dispatching heuristic, instead of the widely adopted 'closest-idle first'-heuristic, results in savings of 27.7%

Preface

This thesis marks the end of not only my graduation project conducted at CQM in collaboration with Eindhoven University of Technology, but also of the five-year student period that I thoroughly enjoyed. I would like to take a moment to thank everyone who supported me along this journey.

First and foremost, I am deeply grateful to Geert-Jan van Houtum, my first supervisor, for your excellent guidance the past two years. Without your critical view and invaluable suggestions, this thesis would not have materialized. Your passion for doing doing research made me enthusiastic for pursuing PhD research, in which I hope we can continue our pleasant collaboration. I would like to thank Tom van Woensel, my second supervisor, for your useful feedback and valuable remarks on this thesis. Additionally, I would like to thank Joachim Arts for your willingness to complete my thesis assessment committee.

Moreover, I thank Minou Olde Keizer, my daily supervisor at CQM, for your prompt and, from an academic perspective, invaluable feedback, for the enjoyable and constructive discussions we had and for giving me lots of freedom in conducting this research. I would like to thank Jan van Doremalen for his critical remarks in the early stages of this thesis and for giving me the opportunity to conduct my research within CQM. I would also like to thank my fellow interns and colleagues from CQM, particularly the ones from the Chain Management department, for making my time at CQM as enjoyable as it has been.

Next, I would like to thank my friends, the ones I already had before I came to Eindhoven and the ones that I have met along the way and around the world, especially during my exchange semester at the National Taiwan University. You were my favorite distractions from the hard work and you helped me to keep the broader picture in mind. Particularly, I am indebted to Veerle. Even though you probably had no clue when I was talking about study-related material, you were always there to listen to my struggles.

Finally, I would like to express my deepest appreciation to my family, in particular to Mama, Papa, Levi and Melvin. Thanks for your unfaltering and selfless support for my ambitions throughout the years. Thanks for the celebrations together during the high peaks, but more importantly, thanks for the endless and unconditional support during the low valleys.

Contents

Abstract ii
Summary iii
Preface vi
1 Introduction 1
2 Literature review 6
2.1 High solution times 6
2.2 Medium solution times 7
2.3 Short solution times 7
3 Model description 11
3.1 Dispatch and reposition problem 11
3.2 Overview of assumptions 14
4 Markov decision process formulation 16
4.1 State space 16
4.2 Action space 17
4.3 Transition probabilities 18
4.4 Direct expected cost 19
4.5 Example 20
5 An exact approach 22
5.1 Value iteration 22
5.2 Numerical investigation 24
6 Heuristic approaches 30
6.1 Dispatching 31
6.2 Repositioning 33
6.3 Heuristic policies 37
7 Computational study 39
7.1 Test beds and objectives 39
7.2 Numerical results 43
8 Conclusion and discussion 53
8.1 Main results 53
8.2 Reflection on limitations 55
8.3 Future research 55
Bibliography 57
A Additional information computational study 60
A. 1 Confidence intervals computational study 60

List of Figures

1.1 Illustration of network design 3
3.1 Order of events 12
4.1 Illustration of transition of states 21
5.1 A graph representation of the small network under study 24
5.2 Optimal policy exhibits a static dwell point policy 26
5.3 Optimal policy exhibits a dynamic dwell point policy 26
5.4 Optimal policy exhibits a dynamic dispatching policy 27
5.5 Optimal policy exhibits the reallocation of service requests 28
6.1 Example of solution to dynamic dispatching problem 33
7.1 Distribution of average cost per time unit for large symmetric test bed 50
7.2 Distribution of average cost per time unit for large asymmetric test bed 50

List of Tables

5.1 Parameter settings of numerical investigation of symmetric case 25
6.1 Overview of eight heuristics 37
7.1 Parameter settings of small symmetric test bed 40
7.2 Parameter settings of small asymmetric test bed 40
7.3 Parameter settings of large symmetric test bed 42
7.4 Parameter settings of large asymmetric test bed 43
7.5 Summary of computational results for small symmetric test bed 45
7.6 Summary of computational results for small asymmetric test bed 46
7.7 Summary of computational results for large symmetric test bed 47
7.8 Summary of computational results for large asymmetric test bed 48
7.9 Distribution of average cost per time unit in euros for large symmetric test bed 49
7.10 Distribution of average cost per time unit in euros for large asymmetric test bed 51
7.11 Benefit of either using the dynamic dispatching heuristic, dynamic repositioning heuristic or allowing reallocation in the policy 52
A. 1 Average cost per time unit and 95% confidence interval for each instance of small symmetric test bed 60
A. 2 Average cost per time unit and 95% confidence interval for each instance of small asymmetric test bed 62
A. 3 Average cost per time unit and 95% confidence interval for each instance of large symmetric test bed: heuristic 1-4 63
A. 4 Average cost per time unit and 95% confidence interval for each instance of large symmetric test bed: heuristic 5-8 69
A. 5 Average cost per time unit and 95% confidence interval for each instance of large asymmetric test bed: heuristic 1-4 74
A. 6 Average cost per time unit and 95% confidence interval for each instance of large asymmetric test bed: heuristic 5-8 80

Chapter 1

Introduction

Capital goods - such as MRI scanners, industrial printers or ATMs - are expensive, technologically complex systems that are used in the primary processes of their users. Therefore, their uptime is of utmost importance; each minute of unplanned downtime may be costly, risky (in case of medical equipment), or both. As a result, the total unplanned downtime should be minimized.

Many capital goods are being maintained by means of a service logistics network, which is owned and managed by a service organization. Such a network typically consists of a single central warehouse and many service regions (mostly determined by geographical borders) in which the capital goods are installed (see Basten and Van Houtum (2014)). Generally, spare parts are kept on stock both in the central warehouse and in the vehicles of the service engineers that operate in service regions. Upon failure of a capital good, a service engineer is dispatched to this failed capital good if the problem cannot be solved remotely. A failure is often caused by a failed part which can then be replaced immediately by a new part if the dispatched service engineer has this part in its car stock. Otherwise a (costly) second visit is needed, which usually occurs the next day. The spare part that is required is then delivered from the central warehouse during the night.

Service organizations invest heavily in maintenance and services to minimize the amount of unplanned downtime. In a recent survey, the Dutch Organization for Maintenance (Nederlandse Vereniging voor Doelmatig Onderhoud) reported that services and spare parts constituted, with a total amount of 30-35 billion euro, 4\% of the gross domestic product of the Netherlands ${ }^{1}$. In the same survey, it is estimated that the maintenance and service logistics industry employs 280.000-300.000 service engineers.

According to a recent survey among executives, one of the two top challenges for service organizations is the increasing demand from customers for better service (Pinder Jr, 2016). In practice, this means that although customers are currently satisfied when failures are solved within a day, in the future customers

[^0]demand solution times (i.e. the time between the service call and the completion of solving the failure) of 1-2 hours or even lower in case of critical medical systems (e.g., IGT or iXR systems of Philips Healthcare that are used during surgeries).

Recent developments of communication networks and easy-to-integrate sensors allow service organizations to collect real-time data about the state of equipment, which provides enormous opportunities (PWC, 2014). Especially, executing a perfect remote diagnosis upon failure of a capital good before a service engineer is dispatched, will be a game changer in having the right spare part at the failed capital good in a timely fashion. This diagnosis will namely indicate whether a particular spare part is needed and, if so, which part, thereby enabling short solution times.

In this research, we want to analyze an innovative network design for a service region, from which we expect that it can realize extremely short solution times by exploiting real-time data. Figure 1.1 shows the conceptual model of this network design. In this design, there is a local warehouse and there are service engineers that carry no car stock. We assume that, upon a failure of a system, a perfect remote diagnosis can be executed. Subsequently, two procedures are initiated; i) a service engineer is dispatched to the failed system; ii) the spare part is delivered from the local warehouse to the failed system by a fast transportation mode (e.g., a parcel carrier). In the second procedure, we exploit the future possibility of remote diagnosis such that the correct spare part is sent. It is important to note that whenever a service engineer is dispatched to the failed system, it may leave a significant part of the service region without coverage. It could therefore be beneficial to reposition idle service engineers to maintain a proper coverage level in anticipation of future demand, after having dispatched a service engineer to a failed system. Furthermore, in practice, penalty costs for not being able to repair a failed system before the solution time target is exceeded, are significantly higher than the cost of repositioning idle service engineers. Consequently, repositioning idle service engineers in a smart way could lead to significant savings in operating costs. When customers demand solution times that are extremely low, service engineers have to be dispatched quickly upon a failure of system. This can only be achieved when service engineers are predominantly idle, i.e. when their utilization is low. As a result, the importance of repositioning idle service engineers in a smart way, will - in light of the trend of decreasing solution times - only increase.

Managers of service organizations are faced with three decisions (not to be confused with the two procedures that are initiated upon a failure of a system) in the design and control of such an innovative network:

1. How many service engineers are needed? (tactical)
2. How many and which spare parts should be stored in the local warehouse? (tactical)
3. How should service engineers be dispatched in response to or reposition in anticipation of a failure? (operational)

Figure 1.1: Illustration of network design

In practice, service organizations have contracts with their customers that prescribe the service that they should attain in terms of a certain fraction of failed systems that should be repaired within a certain time window (e.g., 95% of all failures should be repaired within 3 hours after the service call). Hence, we want to design and control this network such that this service measure - specifically a very low threshold - is attained in a cost-efficient way. In this thesis, we focus on the operational decision that has to be made, i.e. decision 3 , and leave the other two decisions for future research. The reason for this is threefold. First, we are the first to address this innovative network and we intend to start from the operational decisions before we move on to the tactical decisions (i.e. a bottom-up approach). Second, despite the practical relevance and the aforementioned relation between them, dynamic dispatch and reposition decisions have only been studied in isolation in literature (as we will see in our literature review). To that end, by answering question 3 in this thesis, we are the first to jointly consider dynamic dispatch and reposition decisions in a service logistics network, thereby having a clear contribution to the related literature. Third, as we will see in the remainder of this thesis, the complexity of question 3 is already sufficiently high to devote this whole thesis research to it.

The overarching objective of this thesis is therefore to present a tractable optimization model that assists decision makers in answering question 3. More specifically, we intend to come up with scalable heuristics that perform well and which are focused on both pro-actively repositioning of service engineers and deciding which service engineer to dispatch to service requests in a cost-efficient way. Despite the common usage of scalability when addressing heuristics, the issue whether a heuristic can be deemed as scalable itself differs from research to research depending on the objective of the heuristic. In this thesis we adopt the same meaning of scalability of a heuristic as Caseau and Laburthe (1999), where a heuristic is scalable if it can be used to make good decisions in a suitable time horizon in problems of real-life size. Since we address
a real-time problem, the length of a time horizon is suitable when decisions can be made instantaneously, meaning that the time complexity of our proposed heuristics should be low.

The main contribution of this thesis is fourfold:

- We are the first to jointly address the real-time dispatch and reposition problem of service engineers in a service logistics network to realize short solution times. We formulate the real-time service engineer dispatch and reposition problem, which we solve to optimality for small instances. By means of a numerical investigation, we are the first to show that the optimal policy for the dispatch and reposition problem of service engineers exhibits certain behavior with respect to three aspects, i.e. location strategy for idle service engineers, dispatching strategy of service engineers that takes into account the state of the system, and reallocation of service engineers.
- We propose scalable dynamic and static heuristics for both the dispatch and reposition sub-problem, based on the numerical investigation of the optimal policy. Our static heuristics are characterized by rules of thumbs that are determined a-priori which are then always followed, regardless of the current state of the network. By contrast, our dynamic heuristics are characterized by maximizing a goal function that takes into account information about the current state of the network. Our proposed dynamic dispatch heuristic, based on the minimum weighted bipartite matching problem, is the first dynamic heuristic that assigns a fleet of service engineers to failed capital goods that takes into account real-time data about the state of equipment and the current position of each service engineer. Both our static and dynamic reposition heuristic are based on the maximum expected covering location problem and they take into account both penalty costs and demand information of the capital goods, where the dynamic variant maximizes the expected weighted coverage of future service requests.
- We compare our proposed heuristic dispatch and reposition policies on a wide range of both small and large problem instances. In a small test bed, we show that our most advanced heuristic performs excellent under specific circumstances, but strictly outperforms all other heuristics across all instances. To show the practical value of our proposed heuristics, we conducted extensive numerical experiments with service logistics networks of industrial size. In these numerical experiments we show that our most advanced heuristic greatly outperforms (up to 61.9% savings) the myopic policy that is common in current practice.
- We quantify the benefit of individually using either a dynamic dispatching heuristic, a dynamic repositioning heuristic of allowing reallocation in the policy. We show that savings of close to 50 percent can be attained by letting each service engineer be eligible for dispatch and reposition decisions, regardless of whether they are on their way to their destination or have already reached their destination. This quantification, which is currently lacking in the literature, shows that it is very beneficial from a cost-perspective to relax the limitation of no reallocation, regardless of the policy used. This analysis
of individual benefits also shows that using the proposed dynamic dispatching heuristic, instead of the widely adopted 'closest-idle first'-policy heuristic, results in savings of 27.7%.

The remainder of this thesis is structured as follows. In Chapter 2, we provide a review of related literature and we position the contribution of this work with respect to existing literature. In Chapter 3, we give a formal problem definition. In Chapter 4, we translate the formal problem definition into a Markov Decision Process. In Chapter 5, we present insights into the optimal policy that we use in designing eight scalable heuristics in Chapter 6. In Chapter 7, we present a computational study to evaluate the performance of our scalable heuristics in both a test bed for small instances and a test bed that is of industrial size. Finally, we end with our conclusion and discussion in Chapter 8.

Chapter 2

Literature review

Maintenance and service logistics is a topic widely studied in the literature. One of the important areas in maintenance and service logistics that has been studied extensively, is the area of spare parts management (we refer the reader to Basten and Van Houtum (2014) and Van Houtum and Kranenburg (2015) for an excellent overview of spare parts management), where the focus mainly lies on (multi-item) spare parts optimization models. However, much lesser attention has been devoted to the planning or management of service engineers that are required to install or repair these parts. In this research, we study the real-time management of service engineers in service logistics networks.

We structure our literature review according to the solution time target that needs to be attained. We do so since, as we see in the remainder of this chapter, the solution time target determines in which class of problems the management of service engineers falls and hence also which analysis techniques are applicable. The main focus lies in the range of short solution times, however in order to provide a complete overview, we shortly discuss related literature when solution time targets are high and medium, respectively. We conclude this chapter by providing an extensive overview of the related literature when solution time targets are low. Here, we position our work and we also discuss why particularly this stream of literature relates to our problem.

2.1 High solution times

At first glance, the main stream of literature that seems to be related to this work is the area of dynamic vehicle routing problems. When solution time targets are high, management of service engineers mainly consist of routing them dynamically (i.e. there is an explicit routing dimension inherent to the decisions that are made) to known and upcoming requests throughout the day, which is a typical Dynamic Vehicle Routing Problem (DVRP) (Laporte, 1992). We refer to Pillac et al. (2013) for an overview of the available
techniques (e.g., Approximate Dynamic Programming (ADP), meta-heuristics) for DVRPs.

2.2 Medium solution times

When solution time targets are of medium level, management of service engineers should not only consist of routing decisions but should also anticipate future demand with more caution. That is, the decisions should reflect that in some regions service request could arrive in the near future by diverted routes from one service request to another. Such a path would then anticipate a service request in between a route from one known service request to another known service request, thereby increasing the chance of adhering to the solution time target if the anticipated service request realizes. This problem relates to the new class of Anticipatory Routing Problems (ARPs), which also falls under broad category dynamic and stochastic routing problems. In ARPs, vehicles are routed dynamically to known demand in anticipation of future demand. Thomas and White III (2004), Thomas (2007), Ulmer et al. (2015) and Ulmer et al. (2017) all studied ARPs and developed algorithms based on Markov Decision Processes (MDP) to route a single vehicle. The research of Ichoua et al. (2006) extended the problem to a multi-vehicle setting but they do not exploit real-time information.

2.3 Short solution times

As stressed out in the introduction, we study the management of service engineers in service logistics networks to realize short solution times such that this challenge for service organizations can be coped with in the near future. To the best of the our knowledge, there is no literature that explicitly focuses on this subject. Moreover, real-time management of service engineers to realize short solution times, in contrast to high or medium solution time target, is dominated by dispatching and repositioning decisions, instead of (anticipatory) routing decisions This makes the problem inherently different from the aforementioned types of problems. Consequently, even though the literature on dynamic and stochastic routing problems seems applicable to our problem, we will not use results from, nor will we contribute to these streams. Hence, we resort ourselves to a complete different stream of literature where the focus lies also on dispatching and repositioning decisions, albeit in a different application domain.

Interestingly enough, the problem of planning the service engineers to realize short solution times, in isolation, is not unique to service logistics, but also appears in the vast literature of ambulances and fire-fighters management. For instance, in life-threatening emergencies, ambulances should be dispatched to and reach these emergencies within extremely short response times. Since we want to realize short solution times, the real-time management of service engineers in our network show similarities with the real-time management
of emergency providers.

In particular, the concept of Dynamic Ambulance Management (DAM), where the expected fraction of latearrivals of ambulances is minimized, has gained momentum in recent years. See Maxwell et al. (2014) for an overview of the widely used techniques for DAM (e.g., MDP theory), where the main concern is the lack of scalability to large-scale systems due to the curse of dimensionality (Powell, 2007). To overcome this, some researches have focused on developing DAM heuristics based on Approximate Dynamic Programming (ADP) (e.g., Maxwell et al. (2010) and Schmid (2012)), while Naoum-Sawaya and Elhedhli (2013) formulated DAM heuristics based on two-stage Stochastic Programming, and Alanis et al. (2013) formulated a DAM heuristic based on a two-dimensional Markov chain model. More recently, Van Barneveld et al. (2016),Van Barneveld et al. (2017), Jagtenberg et al. (2015) and Jagtenberg et al. (2016) have considered DAM-policies in real-life EMS networks, where they developed real-time heuristics that outperformed myopic polices.

The vast majority of the papers on DAM focuses on how to pro-actively reposition idle vehicles such that the coverage is maximized. This ensures that future incidents get a larger likelihood of being reached in time, thereby increasing the total expected fraction of incidents that can be reached within the time threshold. Jagtenberg et al. (2015) show that pro-actively repositioning significantly outperforms static policies in which idle ambulances always return to a base station in terms of minimizing late-arrivals. With regard to the actual dispatching (i.e. deciding which ambulance to dispatch to incidents), most articles assume a static dispatch rule: whenever an incident occurs they use the 'closest-idle first'-policy. Such a 'closest-idle first'policy is due to both regulatory and ethical reasons most common in practice (Schmid, 2012), but, as the research of Jagtenberg et al. (2016) shows, at the same time far from optimal if the goal is to minimize late-arrivals. Intuition behind this sub-optimality lies in the notion of coverage. Always sending the closestidle vehicle could lead to a, from a system perspective, sub-optimal coverage, thereby decreasing the total expected fraction of incidents that can be reached within the time threshold.

Only few papers in the DAM literature focus on dynamic dispatching methods, which is also the focus of our research. The exceptions are Jagtenberg et al. (2016), Naoum-Sawaya and Elhedhli (2013) and Schmid (2012), where Naoum-Sawaya and Elhedhli (2013) and Schmid (2012) are the only ones that jointly address dynamic dispatching and dynamic repositioning policies. Dynamic dispatching methods, in contrast to static dispatching methods such as the 'closest-idle first'-policy, take into account the current state of the system in the dispatch decision. Hence, dynamic dispatching methods do not rely on a-priori decision rules that are always taken regardless of the state of the system, as is the case with their static counterpart.

Jagtenberg et al. (2016) consider dynamic dispatching of ambulances to requests, where the objective is to minimize late-arrivals (i.e. arrivals that exceed a certain time threshold). The problem is formulated as an MDP and due to the restriction that ambulances always have to return to a static base station (i.e. they consider a static reposition policy), their state space remains tractable. Hence, using value iteration,
the authors are able to compute the optimal policy. For larger instances, they propose a fast and efficient heuristic based on the maximum expected covering location problem (Daskin, 1983) which performs close to the optimal solution from the MDP. In this research, we also use structural results from the maximum expected covering location problem to design an efficient heuristic, albeit in a different way. There are two differences between their problem and our problem. First, idle ambulances always return to their static base station, which is know to be suboptimal (see Jagtenberg et al. (2015)), whereas in our problem, service engineers can immediately serve other service calls without returning to their base station. Second, similar to the research of Schmid (2012), if there are idle ambulances and an incident occurs, an ambulance has to be dispatched, which is not the case in our research.

Naoum-Sawaya and Elhedhli (2013) formulate a two-stage stochastic optimization model for both the redeployment and dispatching of ambulances that minimizes the number of re-locations over a planning horizon while maintaining an acceptable service level. Their approach falls in the class of periodic re-optimization methods (see Pillac et al. (2013)), as they solve the problem periodically for each planning horizon. In this approach, critical information is revealed over time, meaning that the complete instance is only known at the end of the planning horizon. As a consequence, the method only provides solutions for the current state which relies on currently available data, but do not guarantee that the solution will remain good once new data becomes available. In this thesis however, we intend to integrate stochastic knowledge about future states analytically such that we formally capture the stochastic nature of the problem. Furthermore, their modeling approach relies on the assumption that scenarios are known and that they are of medium size, such that optimization can take place instantaneously. By contrast, in service logistics of real-life size, this assumption will probably not hold, which makes this modeling approach not suitable for our problem.

Schmid (2012) considers both the dispatching of ambulances to request sites and the repositioning of ambulances before and after they have served a request. They propose a dynamic programming model and solve this model using ADP due to the intractability of it. There are two differences between their study and our problem. First, if there are idle ambulances and an incident occurs, an ambulance has to be dispatched. In our problem, we can choose to postpone a service call. Second, after an incident, an ambulance always returns to the hospital before becoming idle again whereas in our problem a service engineer is immediately available after the visit.

Even though the same decisions (i.e. dispatch and reposition decisions) have to be made in our research and DAM research, there are two differences with our research that all aforementioned DAM studies have in common. First, in DAM literature, all models limit themselves by imposing the constraint that once a decision has been made (either to dispatch or to reposition) the vehicle becomes eligible for a new decision once it has completed its service or has arrived at its final location. In other words, reallocation is not allowed. We hypothesize however that it could be beneficial to reallocate (e.g., when a service request arrives on or next to a already determined route of a service engineer) and we therefore include and analyze this
possibility in our research. Second, whereas the performance in DAM studies is predominantly formulated in response times (actual time between arrival of emergency and arrival at the scene) for obvious reasons, the performance in our research is formulated in monetary terms. In the former, being to late at a scene can result in life-threatening situations (or worse, casualties), whereas in the latter a penalty cost will be incurred, which is a fundamental difference that we need to include in our research.

As stressed out in the introduction, we intend to come up with scalable heurstics that perform well in practice and are focused on both pro-actively repositioning of service engineers and deciding which service engineer to dispatch to failures. Here, the goal is to minimize the late-arrivals after a certain threshold such that a certain performance measure is attained. More specifically, we intend to integrate the models of Jagtenberg et al. (2015), Jagtenberg et al. (2016), Schmid (2012), and extend the models in light of the differences, where we especially incorporate the possibility of reallocation. Our goal is to use the same techniques to formulate the problem, namely techniques from Markov decision theory. Subsequently, we use exact analysis (e.g., value iteration) in case of small instances and in order to understand the optimal policy, and then develop scalable heuristics for larger instances of industrial size. The quality of these scalable heuristics can then be compared to static policies that are mostly used in practice using simulation.

Chapter 3

Model description

In this chapter, we introduce the real-time service engineer dispatch and reposition problem. We first formulate the dispatch and reposition problem in mathematical terms and describe the problem in more detail. We then conclude this chapter by both summarizing and justifying the assumptions we have made in modelling the dispatch and reposition problem.

3.1 Dispatch and reposition problem

We model the service region of interest as a graph, with finite node set \mathcal{N}. For notational convenience, the nodes are assumed to be numbered $n=1, \ldots,|\mathcal{N}|$. There are two types of nodes: demand nodes and non-demand nodes. The former are nodes where capital goods are installed and hence where demand can occur. Additionally, service engineers can wait at these nodes in anticipation of future demand or travel via these nodes to other nodes. The latter are nodes in the network where service engineers can only reside in anticipation of future demand or nodes that lie on their route when they are dispatched to failures. These disjoint sets are denoted by \mathcal{N}^{d} and $\mathcal{N}^{w}=\mathcal{N} \backslash \mathcal{N}^{d}$, respectively. Hence, the sole purpose of non-demand nodes $i \in \mathcal{N}^{w}$ is waiting or routing, whereas demand nodes $j \in \mathcal{N}^{d}$ have the additional property that demand can occur at these nodes. For simplicity, we number the nodes in such a way that the first $\left|\mathcal{N}^{d}\right|$ nodes in the numbering represent the demand nodes, i.e.; $\mathcal{N}^{d}=\left\{1,2, \ldots,\left|\mathcal{N}^{d}\right|\right\}, \mathcal{N}^{w}=\left\{\left|\mathcal{N}^{d}\right|+1, \ldots,|\mathcal{N}|\right\}$. Furthermore, let $\mathcal{N}_{i} \subseteq \mathcal{N}$ be the set of neighboring nodes of node $i \in \mathcal{N}$. The total number of identical service engineers in this region is denoted by N and we assume that service engineers are indistinguishable.

We assume that the length of each edge equals 1 , so it takes one time step to traverse an edge. Consequently, our graph is a unit distance graph, which is a special case of a graph where all edges have length 1. Hence, time is discretized in time steps of Δt, which enables us to keep the problem size and its analysis tractable (as we will see in the next chapter). These discrete points in time also mark the decision epochs at which
all information about the events that occurred in the preceding time step becomes available to the decision maker. As a consequence, it takes a service engineer Δt time (e.g., 20 minutes) to cross an edge. In practice, the graph should be constructed in such a way that Δt is sufficiently small enough to model service engineer movements. To model more realistic situations, one could decrease Δt, but then the graph should be scaled accordingly by adding more nodes and edges. For $\Delta t \rightarrow 0$, this model becomes continuous in both time and space.

At each node $i \in \mathcal{N}^{d}$, we assume that exactly one capital good is installed. The capital good is composed of critical and non-critical components. When a critical component of a machine fails, the whole machine goes down, while a machine can continue its functioning upon the failure of a non-critical component. We limit ourselves to the failures of critical components, since these failures have a high impact in terms of downtime. Furthermore, the components under consideration that fail are only repaired by replacement, meaning that we limit ourselves to corrective maintenance. Such a failed part will be replaced by a new part, for which we here assume that it has arrived at or before the service engineer arrives (this relates to the spare parts planning sub-problem).

Upon the failure of a component, a service request arrives at the start of the next decision epoch at the central decision maker. In practice, this is often either the original equipment manufacturer or a service organization that is responsible for the maintenance function. The decision maker now has to choose how to dispatch and reposition service engineers such that this service request is fulfilled in the near future. Note that he may also choose to postpone service requests. That is, not immediately deciding to dispatch a service engineer to this node or to start the repair. When a service engineer arrives or already resides at the node where the failed capital good is installed, the repair can start after the central decision maker decides to perform a repair at that particular node, which takes Δt time units by assumption. See Figure 3.1 for a graphical representation of this repositioning and dispatching process. Here, a capital good fails during $[\Delta t, 2 \Delta t)$, for which the service request arrives at the central decision maker at $t=2 \Delta t$. The central decision maker now decides to reposition a service engineer in the direction of the failed capital good. At $t=4 \Delta t$, a service engineer arrives at the failed capital good, after which the decision maker immediately decides to repair the capital good. This repair is finished at $t=5 \Delta t$, after which the service engineer is again repositioned.

Figure 3.1: Order of events

The failures of the components at each node $i \in \mathcal{N}^{d}$, occur according to a Poisson process (i.e. their lifetimes are exponentially distributed random variables) with rate $\lambda_{i}(\Delta t)$. Although $\lambda_{i}(\Delta t)$ depends on the chosen time step size Δt, we will omit this dependence in the remainder of this thesis by simply choosing, without loss of generality, $\Delta t=1$. Let us define $p_{i}^{0}(\Delta t)$ and $p_{i}^{1}(\Delta t)$ as the probability that the capital good at node $i \in \mathcal{N}^{d}$ has failed and not failed, respectively, during discrete time step Δt. Similar to the parameter of the Poisson process, these probabilities depend on the chosen time step size Δt, but we again select $\Delta t=1$ and omit this dependence in the remainder of this thesis. Since demand at node $i \in \mathcal{N}^{d}$ occurs according to a Poisson process with a constant rate λ_{i}, we have: :

$$
\begin{align*}
& p_{i}^{0}=P\left(X_{i}<1\right)=1-e^{-\lambda_{i}} \tag{3.1}\\
& p_{i}^{1}=1-P\left(X_{i}<1\right)=e^{-\lambda_{i}} \tag{3.2}
\end{align*}
$$

where X_{i} represents the life time distribution of the critical component in the capital good at demand node i, which is an exponentially distributed random variable. Our objective is, first of all, formulated in terms of the solution times to failures: The time between the arrival of the service request and the moment a service engineer completes the repair of the failure. In service logistics networks, service contracts postulate a solution time threshold T for solution times (which is equal to the time between the moment the service request becomes known to the decision maker and the moment the repair has been completed) that should be achieved for a certain fraction of service requests (e.g., service requests should be solved within 100 minutes). Otherwise, a cost penalty, denoted by $\alpha_{i}(<\infty)$ for node $i \in \mathcal{N}^{d}$, has to be paid by the service organization to their customer. Therefore, we look for a dynamic dispatch and reposition policy that minimizes the fraction of service requests for which the solution time is larger than T.

Second, in practice, service organizations also often want to serve the delayed service requests as fast as possible even though the solution time is larger than T. This is mostly because a linear penalty cost, denoted by $\beta_{i}(<\infty)$ for node $i \in \mathcal{N}^{d}$, is agreed upon for delayed service requests for the time period between the time threshold T and the point in time that the capital good is repaired.

Finally, service organizations also incur costs that are related to traveling of their service engineers, we therefore assign a weight $\gamma(<\infty)$ to the number of edges that are traveled by the service engineers, representing the traveling costs (e.g., gasoline, insurance). Hence, as we will see in the next chapter where we present the mathematical formulation of the problem, we formulate the objective such that all relevant costs are taken into account. Interviews with our industrial partner, a large manufacturer of industrial printers, confirmed that this cost structure indeed captures all relevant costs that are common in practice. As a performance criterion, we are interested in the long-run average cost per time unit.

3.2 Overview of assumptions

We summarize and discuss the main assumptions introduced in the previous section:

1. Service engineers are indistinguishable. This assumption is made since we are interested in dynamic dispatching and reposition policies from a system perspective, meaning that we centrally organize the fleet of service engineers. To solely focus on the configuration of the whole fleet, we assume that each service engineer can be treated equally. In practice, this assumption is justified if service engineers have the same background and training which results in that they have developed the same set of skills.
2. The length of each edge equals 1 , which takes one time step Δt to traverse. For $\Delta t \rightarrow 0$, this model not only becomes continuous in both time and space but also more accurate, which results in a realistic model. For larger values of Δt, the model becomes less accurate in the sense that the model does not differentiate between events that occur at the start and end of time period $[t, t+\Delta t)$.
3. Each node $i \in \mathcal{N}^{d}$ has exactly one installed capital good. We use this assumption to keep the state space tractable in our model formulation, which we will see in the next chapter. From a practical point of view, if multiple capital goods are installed at a location, then one could model this situation by a single node for each of these goods. Consequently, this means that even though the distance between these goods are zero from a practical point of view, they are separated Δt from each other from a modeling perspective. When Δt becomes small, this difference not only becomes negligible but also allows us to differentiate in repairing individual capital goods at a single location which could lead to a more flexible policy. Furthermore, interviews with our industrial partner confirmed that, due to high investment costs of these capital goods, most locations have only one installed capital good, with a few locations having more than one installed capital good.
4. Repair times are deterministic and take Δt time units. The assumption of deterministic repair times is justified since in our model, it is known beforehand which spare part needs to be repaired. Hence, service engineers are prepared for the repair which means that we can consider the variability in the duration of the repair as negligible. Furthermore, it allows us to formulate the problem with a tractable mathematical model, which we will see in the next chapter. In the next chapter, we also show that our model can easily be extended to incorporate deterministic repair times that are an integral multiple of Δt, resulting in a more realistic model.
5. Service requests (demand) at each node arrive according to a Poisson process with constant rate. This is a common assumption in literature and allows a tractable analysis as we will see in the next chapter. Moreover, the assumption is often justified in practice(cf. Caglar et al. (2004); Sherbrooke (2006); Graves (1985)). Additionally, it is reasonable to assume constant failure rates since in practice, long
down-times of capital goods are not allowed.

Despite the benefit of being able to formulate a tractable model due to the key assumption in our model, i.e. both time and space are discretized in steps of length Δt, it considerably simplifies the problem at hand. Consequently, the results of our tractable model do not hold directly in practice, but should be looked at while taking into account the limitations of this key assumption. We reflect on these limitations in Chapter 8.

Chapter 4

Markov decision process formulation

In this chapter, we model the problem that has been discussed in the previous chapter as a Markov Decision Process (MDP). We start by formulating the state space, which remains tractable due to our choice to discretize both space and time. We then describe the action space, which is focused on both the configuration of the fleet of service engineers and the repairs. Subsequently, the transition probabilities are discussed. The MDP formulation is then finalized by formulating the direct expected cost, which takes into account costs for both reaching a failure too late, i.e. exceeding the solution time threshold, and for the total travel distance of the service engineers. We conclude this chapter by providing an illustrative example that shows the underlying dynamics of our MDP.

4.1 State space

For each node $i \in \mathcal{N}^{d}$, the tuple $s_{i}=\left(y_{i}, \sigma_{i}\right)$, represents the local state of node i, where $y_{i} \in\{0,1, \ldots, N\}$ represents the number of service engineers that are currently residing at node i, and $\sigma_{i} \in\{0,1, \ldots, \hat{T}\}$ denotes the state of the capital good at node i. To be more precise, $\sigma_{i}=0$ indicates that the capital good is up and running, whereas $\sigma_{i} \in\{1, \ldots, \hat{T}\}$ means that the capital good has failed for σ_{i} time units, for each node $i \in \mathcal{N}^{d}$. Thus, by setting $\hat{T}=\left\lfloor\frac{T}{\Delta t}\right\rfloor+1, \sigma_{i}=\hat{T}$ means that the capital good has failed for longer than solution time threshold T. Consequently, in light of our goal to minimize the fraction of service requests that exceed solution time threshold T, we only need to capture information about the state of the capital good until $\sigma_{i}=\hat{T}$. With regard to the non-demand nodes, for each node $i \in \mathcal{N}^{w}$ the local state $s_{i}=\left(y_{i}\right)$ only contains the number of service engineers that are currently residing at node i. In the remainder of this thesis, we use \mathbf{y} and $\boldsymbol{\Sigma}$ to denote the state vectors $\left(y_{i}\right)_{i \in \mathcal{N}}$ and $\left(\sigma_{i}\right)_{i \in \mathcal{N}^{d}}$, respectively. The state space of the entire system can be represented as:

$$
\mathcal{S}=\left\{\left(s_{i}\right)_{i \in \mathcal{N}}\right\}=\left\{\left(s_{1}, s_{2}, \ldots, s_{|\mathcal{N}|}\right)\right\}
$$

Throughout this thesis, we use $y_{i}(s)$ and $\sigma_{j}(s)$ to denote the number of service engineers at node $i \in \mathcal{N}$ and the state of the capital good at node $j \in \mathcal{N}^{d}$, respectively, when the state of the system is $s \in \mathcal{S}$. The size of the state space, $|\mathcal{S}|$, is restricted by imposing a logical constraint. As the total number of service engineers in our system is equal to $N<\infty$, we have that $\sum_{i \in \mathcal{N}} y_{i}(s)=N$ for each $s \in \mathcal{S}$. Hence, $|\mathcal{S}|=(\hat{T}+1)^{\left|\mathcal{N}^{d}\right|} \cdot\binom{|\mathcal{N}|+N-1}{|\mathcal{N}|-1}$, where the latter term represents the number of ways of distributing N identical service engineers among $|\mathcal{N}|$ nodes such that each node can have 0 or more $(\leq N)$ service engineers.

As a final note, our MDP formulation can easily be extended to incorporate deterministic repair times that are an integral multiple of Δt. Let r_{i} be the deterministic repair time that is required for the repair of the capital good located at demand node $i \in \mathcal{N}^{d}$. We then add for each demand node $i \in \mathcal{N}^{d}$ a new state parameter, denoted by z_{i}, to tuple s_{i} that represents how many time units ago a repair started, with $z_{i} \in\left\{0,1, \ldots, \hat{r}_{i}\right\}$. Then, by setting $\hat{r}_{i}=\frac{r_{i}}{\Delta t}$, we can model deterministic repair times that are an integral multiple of Δt and which can depend on the capital good located at demand node $i \in \mathcal{N}^{d}$. The action space and transition probabilities should also be changed accordingly, resulting in a higher dimensional MDP.

4.2 Action space

At each state $s \in \mathcal{S}$, a set of actions \mathcal{A}_{s} can be performed, which is a subset of the action space \mathcal{A} (i.e. $\mathcal{A}=\bigcup_{s \in \mathcal{S}} \mathcal{A}_{s}$). Such an action specifies for each node $n \in \mathcal{N}$ how many service engineers will be sent to each of its neighboring nodes, and for each node $m \in \mathcal{N}^{d}$ where a capital good has failed and at least one service engineer resides, whether a repair should be carried out or not.

The action space \mathcal{A}_{s} can be represented as:

$$
\mathcal{A}_{s}=\left\{\left(A_{i}\right)_{i \in \mathcal{N}},\left(R_{i}\right)_{i \in \mathcal{N}^{d}}\right\}=\left\{\left(A_{1}, A_{2}, \ldots, A_{|\mathcal{N}|}\right),\left(R_{1}, R_{2}, \ldots, R_{\left|\mathcal{N}^{d}\right|}\right)\right\}
$$

where tuple $A_{i}=\left(a_{i}^{l}\right)_{l \in \mathcal{N}_{i}}$, with $a_{i}^{l} \in \mathbb{N}_{0}$, represents the number of service engineers that are sent from node i to neighbouring node l and $R_{i} \in\{0,1\}$ represents whether a repair is performed $\left(R_{i}=1\right)$ or not $\left(R_{i}=0\right)$ at node $i \in \mathcal{N}^{d}$. Analogously to the state space, the action space is thus a Cartesian product of local actions that apply to individual nodes in the graph. The actions are locally interacting (i.e. actions A_{i} and R_{i} solely influence $x_{i},\left\{\left(x_{j}\right)_{j \in \mathcal{N}_{i}}\right\}$ or both) and the interaction network can be represented by the underlying graph. The action space \mathcal{A}_{s} is subject to the following restrictions:

$$
\begin{array}{rll}
R_{i} & \in\{0,1\} & \forall i \in\left\{j \in \mathcal{N}^{d} \mid y_{j}(s) \geq 1 \wedge \sigma_{j}(s) \neq 0\right\} \\
R_{i} & =0 & \forall i \in\left\{k \in \mathcal{N}^{d} \mid y_{k}(s)=0 \vee \sigma_{k}(s)=0\right\} \\
\sum_{l \in \mathcal{N}_{i}} a_{i}^{l}+R_{i} \leq y_{i}(s) & \forall i \in \mathcal{N}^{d}
\end{array}
$$

$$
\begin{equation*}
\sum_{l \in \mathcal{N}_{i}} a_{i}^{l} \leq y_{i}(s) \quad \forall i \in \mathcal{N}^{w} \tag{4.4}
\end{equation*}
$$

Equation (4.1) states that when at least one service engineer is at a node $i \in \mathcal{N}^{d}$ where a capital good has failed, we can take the decision to either repair $\left(R_{i}=1\right)$ or not $\left(R_{i}=0\right)$ (Equation (4.2)). For demand nodes, where there is no service engineer or the capital good is up and running or both, the default action to not repair the capital good (i.e. $R_{i}=0$) is taken. Then, when the action to repair the capital good at node $i \in \mathcal{N}^{d}$, is taken, at least one service engineer has to reside at node i after the concurrent reposition actions are taken. This is expressed in Equation (4.3). Here, we assume that only one service engineer is needed to repair the failed capital good (the service engineer that remains at node i) and that a repair is non-preemptive. This is a reasonable assumption since in practice, repairs mostly require only one service engineer that completes the repair once started. Equation (4.4) states that the total number of service engineers that leave a certain node should be less than or equal to the number of service engineers that are currently residing at that node.

All other actions from \mathcal{A}_{s} that are not restricted by Equations (4.1)-(4.4) are feasible. This completely defines the allowed action space for each state. Hence, all service engineer movements are allowed, except that once the action to repair a capital good at a node is taken, at least one service engineer has to remain at this node to repair the capital good, which takes Δt time units.

4.3 Transition probabilities

Let $P_{a}\left(s, s^{\prime}\right)$ denote the probability that action a in state s at time t will lead to state s^{\prime} at time $t+\Delta t$. This probability depends on the local transitions that occur at each node, i.e. the randomness in our model stems from the independent transitions that occur locally at each node $i \in \mathcal{N}$ during discrete time step Δt. More specifically, the state s^{\prime} to which the system transitions after taking action a in state s is determined by three factors:

1. The random event that a capital good fails or not. This influences state vector $\boldsymbol{\Sigma}$.
2. The decision to carry out a repair or not. This also influences state vector $\boldsymbol{\Sigma}$.
3. The configuration actions of the service engineers. This impacts state vector \mathbf{y} through Equation (4.6).

Let $\hat{P}_{a}\left(s_{i}, s_{i}^{\prime}\right)$ be the probability that non-demand node $i \in \mathcal{N}^{w}$ goes from local state s_{i} to local state s_{i}^{\prime} due to action a. Analogously, let $\bar{P}_{a}\left(s_{i}, s_{i}^{\prime}\right)$ be the probability that demand node $i \in \mathcal{N}^{d}$ goes from local state s_{i} to local state s_{i}^{\prime} due to action a. Then we can define $P_{a}\left(s, s^{\prime}\right)$, which is the product of the local transition
probabilities, as follows:

$$
\begin{equation*}
P_{a}\left(s, s^{\prime}\right)=\prod_{i \in \mathcal{N}^{w}} \hat{P}_{a}\left(s_{i}, s_{i}^{\prime}\right) \prod_{j \in \mathcal{N}^{d}} \bar{P}_{a}\left(s_{j}, s_{j}^{\prime}\right) \tag{4.5}
\end{equation*}
$$

With regard to the non-demand nodes, $\hat{P}_{a}\left(s_{i}, s_{i}^{\prime}\right)$, can only take value 0 and 1 , namely:

$$
\hat{P}_{a}\left(s_{i}, s_{i}^{\prime}\right)= \begin{cases}1 & \text { if } y_{i}\left(s^{\prime}\right)=y_{i}(s)+\sum_{l \in \mathcal{N}_{i}} a_{l}^{i}-\sum_{l \in \mathcal{N}_{i}} a_{i}^{l} \\ 0 & \text { otherwise }\end{cases}
$$

Logically, $\hat{P}_{a}\left(s_{i}, s_{i}^{\prime}\right)$ takes value 1 if flow balance Equation (4.6) holds, otherwise, this local transition cannot occur. Just as with the non-demand nodes, for each of the local transitions from s_{i} to s_{i}^{\prime} through action a at demand node $i \in \mathcal{N}^{d}$, it needs to hold that:

$$
\begin{equation*}
y_{i}\left(s^{\prime}\right)=y_{i}(s)+\sum_{l \in \mathcal{N}_{i}} a_{l}^{i}-\sum_{l \in \mathcal{N}_{i}} a_{i}^{l} \tag{4.6}
\end{equation*}
$$

Then, $\bar{P}_{a}\left(s_{i}, s_{i}^{\prime}\right)$ is defined as (in each of these cases Equation (4.6) also needs to hold):

$$
\bar{P}_{a}\left(s_{i}, s_{i}^{\prime}\right)= \begin{cases}p_{i}^{1} & \text { if }\left[\sigma_{i}(s)=0 \wedge \sigma_{i}\left(s^{\prime}\right)=0\right] \\ p_{i}^{0} & \text { if }\left[\sigma_{i}(s)=0 \wedge \sigma_{i}\left(s^{\prime}\right)=1\right] \\ 1 & \text { if }\left[\sigma_{i}(s) \neq 0 \wedge\left(R_{i}=1 \wedge \sigma_{i}\left(s^{\prime}\right)=0\right)\right] \vee \\ & {\left[\sigma_{i}(s) \neq 0 \wedge\left(R_{i}=0 \wedge \sigma_{i}\left(s^{\prime}\right)=\min \left\{\sigma_{i}(s)+1, \hat{T}\right\}\right)\right]} \\ 0 & \text { otherwise }\end{cases}
$$

In words, $\bar{P}_{a}\left(s_{i}, s_{i}^{\prime}\right)$ takes value p_{i}^{1} (see Equation (3.1) in Section 3.1), if the capital good at demand node i does not fail during discrete time step Δt. Next, the capital good at demand node i fails during discrete time step Δt with probability p_{i}^{0} (see Equation (3.2) in Section 3.1), leading to a transition from $\sigma_{i}(s)=0$ to $\sigma_{i}\left(s^{\prime}\right)=1$. For each demand node i where a capital good has failed, it can either be repaired or not, depending on the action, leading to $\sigma_{i}\left(s^{\prime}\right)=0$ or $\sigma_{i}\left(s^{\prime}\right)=\min \left\{\sigma_{i}(s)+1, \hat{T}\right\}$, respectively, with certainty. Additionally, the flow balance of service engineers needs to hold (see Equation (4.6)). Other local transitions cannot occur.

4.4 Direct expected cost

Along with taking action a in state s, we incur a direct expected cost, denoted by $C_{a}(s)$, which consist of three parts; a cost for exceeding the solution time threshold T, a cost for each additional time unit by which
the solution time threshold T is exceeded, and a cost for the total distance traveled by the service engineers. $C_{a}(s)$ is then defined as:

$$
\begin{equation*}
\left.\left.C_{a}(s)=\sum_{i \in \mathcal{N}^{d}} \alpha_{i} \cdot \mathbb{1}_{\left[\sigma_{i}(s)=\hat{T}-1\right.} \wedge R_{i}=0\right]+\sum_{j \in \mathcal{N}^{d}} \beta_{j} \cdot \mathbb{1}_{\left[\sigma_{j}(s)=\hat{T}\right.} \wedge R_{j}=0\right]+\gamma \cdot \sum_{i \in \mathcal{N}} \sum_{l \in \mathcal{N}_{i}} a_{i}^{l}, \tag{4.7}
\end{equation*}
$$

where $\mathbb{1}_{[x]}$ denotes the indicator function, which is 1 if x holds and 0 otherwise. This cost function assigns a weight to the number of service requests whose solution times exceed T, to the amount of remaining delayed service requests and to the amount of edges that are traveled by the service engineers. In practice, the latter represents costs related to traveling (e.g., gasoline, insurance). The magnitude of α, β and γ determines the emphasis that is put on maximizing the amount of service requests that are resolved within solution time T, minimizing the delay with which service requests are fulfilled, or minimizing the distance that is traveled by the service engineers.

4.5 Example

Figure 4.1 shows an example of a transition from state s to s^{\prime} through action a. In this example, with $\hat{T}=4$, we have a small network with $\mathcal{N}=\{1, \ldots, 9\}$, with red and green demand nodes, $\mathcal{N}^{d}=\{1,2,3,4\}$, which are demand nodes with failed and non-failed capital goods, respectively. The remaining five grey nodes are the waiting nodes. Neighboring nodes are nodes that are connected with edges, e.g., $\mathcal{N}_{7}=\{5,6,8,9\}$ and $\mathcal{N}_{1}=\{5,6\}$. There are 3 service engineers in this network. In state $s, 2$ service engineers reside at node 1 and 1 service engineer resides at node 8 , hence $y_{1}(s)=2$ and $y_{8}(s)=1$. Lastly, the capital good at node 1 has failed for 3 time units and the capital good at node 2 for 1 time unit, hence $\sigma_{1}(s)=2$ and $\sigma_{2}(s)=1$.

The decision maker now decides to reposition two service engineers and repair the failed capital good at node 1 through action a, with $a_{1}^{5}=1, a_{8}^{2}=1$ and $R_{1}=1$, after which the system transitions to state s^{\prime}. Next to the changes in $y_{i}\left(s^{\prime}\right) \forall i \in \mathcal{N}, \sigma_{1}\left(s^{\prime}\right)$ has made a transition. The service engineer that remained at node 1 has repaired the capital good and therefore $\sigma_{1}\left(s^{\prime}\right)=0$. Since the capital good at node 2 was not repaired during the transition from state s to $s^{\prime}, \sigma_{2}\left(s^{\prime}\right)$ has increased with one. Finally, the capital goods at node 3 and node 4 have failed $\left(\sigma_{3}\left(s^{\prime}\right), \sigma_{4}\left(s^{\prime}\right)=1\right)$ during discrete time step Δt.

Figure 4.1: Illustration of transition of states

Chapter 5

An exact approach

In this chapter, we first describe an exact solution algorithm with which we solve the MPD, as formulated in the previous chapter, to optimality. We will then perform a numerical investigation to gain insights into the structure of the optimal policy. However, as our MDP can only be solved to optimality for small instances due to the curse of dimensionality ${ }^{1}$, we will perform this numerical investigation on a small network. These insights will be helpful in developing a scalable heuristic that can be used for larger instances, as we will do in the next chapter.

5.1 Value iteration

In Sections 3.1 and 4.1, we restricted the state space by imposing a logical constraint that ensures that both the state space and the action space are finite. Additionally, the transition cost function (see Section 4, equation (4.7)) is also bounded from above. A stationary average optimal policy exists that can be determined using the value iteration algorithm (Puterman, 2014), if the model would also be unichain ${ }^{2}$. Following the same logic as Olde Keizer et al. (2017), who applied the value iteration algorithm to the joint maintenance and inventory optimization problem, our model can contain multiple recurrent states. If for instance all service engineers reside at a waiting node and the stationary policy (for each state s) is to let all service engineers stay at their node, i.e. $a_{i}^{l}=0 \forall l \in \mathcal{N}_{i}, \forall i \in \mathcal{N}^{w}$. Using this policy, each capital good at each node $i \in \mathcal{N}^{d}$ will be in the failed state $\sigma_{i}(s)=\hat{T}$ in the long run, and the initial configuration of the service engineers will remain unchanged. The transition matrix corresponding to this action then contains $\binom{\left|\mathcal{N}^{w}\right|+N-1}{\left|\mathcal{N}^{w}\right|-1}$ recurrent states (the number of unique configurations of N service engineers in a network with $\left|\mathcal{N}^{w}\right|$ nodes $)$. Consequently, our model is multichain rather than unichain.

[^1]However, as long as the value of α and β in the cost function are positive, it is realistic to assume that any optimal policy repairs a failed capital good at some point in time. This means that our model does satisfy the weak unichain assumption ${ }^{3}$ as defined in Tijms (1994). As a result, we can find the minimal average cost per time unit and the corresponding optimal policy by applying the value iteration algorithm.

The minimal average cost per time unit, denoted by g^{*}, is independent of the initial state, and follows from the Bellman optimality equations (see Bellman (1957)) for the (discrete-time) average cost MDP:

$$
\begin{equation*}
v^{*}(s)=\min _{a \in \mathcal{A}_{s}}\left[C_{a}(s)+\sum_{s^{\prime} \in \mathcal{S}} P_{a}\left(s, s^{\prime}\right) \cdot v^{*}\left(s^{\prime}\right)\right] \quad \forall s \in \mathcal{S} \tag{5.1}
\end{equation*}
$$

where $v^{*}(s)$ is the optimal value of state s. The optimal stationary policy, denoted by π^{*}, which consists of the optimal action for each state $s \in \mathcal{S}, f^{*}(s)$, is the policy that attains the minimum in (5.1). Note that action $f^{*}(s)$ is the action that minimizes the expected value of the resulting state s^{\prime}.

We solve the fixed-point equations in (5.1) by applying the value iteration algorithm (see Tijms (1994)), which is shown in Algorithm 1. Here v_{n} denotes the value function obtained with the n-th iteration. Observe that the number of optimality equations grows linearly with the number of states. Hence, the number of optimality equations grows exponentially in the number of demand nodes and/or as a combinatorial number when the total number of nodes and/or number of service engineers grow. As a result, the optimality equations in (5.1) can only be solved for small networks.

$$
\begin{aligned}
& \text { Algorithm } 1 \text { Value Iteration } \\
& \text { Require: } \epsilon>0, n=0, v_{0}(s)=0 \forall s \in \mathcal{S} \\
& \text { 1. For each } s \in \mathcal{S} \text {, compute the value function } v_{n+1}(s) \text { as: } \\
& \qquad v_{n+1}(s):=\max _{a \in \mathcal{A}_{s}}\left\{C_{a}(s)+\sum_{s^{\prime} \in \mathcal{S}} P_{a}\left(s, s^{\prime}\right) v_{n}\left(s^{\prime}\right)\right\}
\end{aligned}
$$

and select a stationary policy $f_{n+1}(s)$ which minimizes the value function:

$$
f_{n+1}(s) \in \operatorname{argmax}_{a \in \mathcal{A}_{s}}\left\{C_{a}(s)+\sum_{s^{\prime} \in \mathcal{S}} P_{a}\left(s, s^{\prime}\right) v_{n}\left(s^{\prime}\right)\right\}
$$

2. Let

$$
M_{n}:=\max _{s \in \mathcal{S}}\left\{v_{n}(s)-v_{n-1}(s)\right\}, \quad m_{n}:=\min _{s \in \mathcal{S}}\left\{v_{n}(s)-v_{n-1}(s)\right\}
$$

stop if $M_{n}-m_{n}<\epsilon$, otherwise set $n:=n+1$ and go to step 1

Let f_{n} denote the stationary policy which minimizes the value function for $n \geq 1$, and let $g_{s}\left(f_{n}\right)$ denote the corresponding one-step difference $v_{n}(s)-v_{n-1}(s)$. Since $g_{s}\left(f_{n}\right)$ is, in the long rung, independent of initial state s, we drop the index s and denote it by $g\left(f_{n}\right)$. Then it holds that $m_{n} \leq g^{*} \leq g\left(f_{n}\right) \leq M_{n}$, for all $s \in \mathcal{S}$, where the sequences $\left\{m_{n}, n \geq 1\right\}$ and $\left\{M_{n}, n \geq 1\right\}$ are non-decreasing and non-increasing, respectively (Tijms, 1994). In other words, the sequence $\left\{v_{n}(s), n \geq 1\right\}$ converges to $v^{*}(s)$ for each $s \in \mathcal{S}$ when n grows large. Additionally, $g\left(f_{n}\right)$, the average cost per time unit resulting from policy f_{n}, deviates

[^2]at most 100ϵ percent from g^{*}.

5.2 Numerical investigation

In this section, we numerically investigate the structure of the optimal policy obtained with Algorithm 1 with $\epsilon=10^{-3}$ for a small, tractable region. See Figure 5.1 for the graph representation of the small, tractable region, which consists of a grid with $|\mathcal{N}|=9$ and $\left|\mathcal{N}^{d}\right|=4$. We consider two service engineers, i.e. $N=2$. We use this example throughout this section. Note that the red demand nodes (1 and 4) represent nodes where a capital good has failed, whereas green demand nodes (2 and 3) represent nodes where a capital good is up and running. Furthermore, the black rectangles represent the time a failed capital good has failed (recall that this is equal to $\sigma_{i}(s)$ in our MDP formulation). For instance, the capital good at node 1 has failed for one time unit, whereas the capital good at node 4 has failed for two time units and \hat{T} is equal to 3 . We first investigate the structure of the optimal policy for symmetric instances, where the characteristics of the demand nodes are equal. We then continue with investigating the structure of the optimal policy for asymmetric instances, where the characteristics of the demand nodes differ from each other. All computations were carried out on a PC running Windows (64 bit) with an Intel Quad Core 2.20 GHz processor and 8 GB RAM. The average computation time to calculate g^{*} for a single instance of this small network is on average equal to approximately 100 minutes.

Figure 5.1: A graph representation of the small network under study

We emphasize that instead of characterizing the structure of the optimal policy or determining the performance in terms of the optimal cost rate, we intend to derive insights into how the optimal policy behaves. This is the subject of the remainder of this chapter. We will then use these insights to come up with a scalable heuristic that can be used for larger instances, which is the focus of the next chapter.

5.2.1 Symmetric case

In the symmetric case we set Δt equal to 1 and take $\lambda_{i}=0.105 \forall i \in \mathcal{N}^{d}$, which results in $p_{i}^{0}=0.1, p_{i}^{1}=$ $0.9 \forall i \in \mathcal{N}^{d}$. Furthermore, we take two values for $\gamma \in\{0,0.5\}$, and we subsequently vary the values of α_{i}, β_{i} and \hat{T}, where the former two are equal for all nodes $i \in \mathcal{N}^{d}$ due to symmetry. Note that this choice seems reasonable in practice. Whereas the cost for traveling is rather fixed and relatively small compared to contractual penalties, the costs for service requests whose solution times exceed T and for solving delayed service requests and the solution time threshold depend on the agreement between the service organization and the customer and can thus vary. Moreover, in practice it is not reasonable to set $\beta_{i}>\alpha_{i}$ since the primary purpose is mostly to maximize the amount of service requests that are served within T. We therefore choose three combinations $\left(\alpha_{i} \gg \beta_{i}, \alpha_{i}>\beta_{i}\right.$ and $\left.\alpha_{i}=\beta_{i}\right)$ of values for α_{i} and β_{i}, that is (α_{i}, $\left.\beta_{i}\right) \in\{(5,1),(5,3),(5,5)\}$. We choose three values for T in our numerical investigation, namely $T \in\{2,3,4\}$, which results in 18 test instances. See Table 5.1 for an overview of the parameter settings in the numerical investigation of the symmetric case.

Table 5.1: Parameter settings of numerical investigation of symmetric case

	Input parameter	No. of choices	Values
1	Travel cost, γ	2	$0,0.5$
2	Time threshold, T	3	$2,3,4$
3	Cost penalties, $\left(\alpha_{i}, \beta_{i}\right)$	3	$(5,1),(5,3),(5,5)$

The main observations that can be drawn from the numerical investigation of the symmetric case is that the optimal policies (regardless of the parameter settings in most cases) exhibit similar characteristics with regard to three aspects, which we will discuss in the remainder of this subsection. These three aspects relate to the location strategy for idle service engineers, the dispatching strategy of service engineers that takes into account the state of the system, and the reallocation of service engineers.

Dwell point policy

In warehousing literature, a dwell point policy prescribes the position of idle order-pick equipment (see Rouwenhorst et al. (2000)), which is analogous to a base location policy in DAM literature. The latter refers to positions in an emergency services network where idle ambulances are sent to such that the response times to future emergencies is minimized.

Figure 5.2 a shows that whenever there are two idle service engineers, which can best be shown when all demand nodes have capital goods that are up and running, it is optimal to send them to node 6 and node 8 (or node 5 and 9 due to symmetry). Furthermore, Figure 5.2 b shows that it is optimal to keep the idle service engineers at node 6 and node 8 , if no failure occurs, which makes these two nodes dwell points. This
is also quite intuitive since all demand nodes are reached from there within one time step.

Figure 5.2: Optimal policy exhibits a static dwell point policy

Figure 5.3: Optimal policy exhibits a dynamic dwell point policy

In case a failure occurs at a demand node, Figure 5.3a suggests that dwell points then depend on the state of the system. Here, the optimal policy prescribes that the service engineer from node 5 is sent to node 1 , where he will repair the capital good that has failed for 1 time unit, and that the remaining idle service engineer is sent to node 4. Note that the latter action results in that the remaining demand nodes are reached within $2 \Delta t$ at maximum, and that the total time to reach the remaining demand nodes is minimized and equal to $4 \Delta t$. In the succeeding decision epoch, a repair is carried out at node 1 , while the idle service engineer remains at node 4. Thereafter, both service engineers are idle again and if no failure has occurred, then both service engineers will reposition to the static dwell points as is depicted in Figure 5.2. Hence, this illustration of the optimal policy shows that dwell points depend on the current state and that idle service engineers reposition pro-actively to retain a good coverage (i.e. time to reach remaining demand).

Dispatching policy

In practice, a dispatching policy that is often used is the 'closest-idle first'-policy, where the closest-idle service engineer is sent to an incoming service request. Figure 5.4 shows, however, that the optimal policy can prescribe a different action than sending the closest-idle service engineer. In the state of the system in Figure 5.4a, the capital good at node 1 has failed for two time units, whereas the capital good at node 2 has failed for one time unit. The optimal policy prescribes that the service engineer at node 1 does not repair this capital good, but that he is sent to node 5 , such that both failed capital goods can be repaired within \hat{T}. Note that in practice this service engineer would repair this capital good since he is the closest-idle service engineer. Furthermore, this optimal action suggests that the optimal dispatching policy of service engineers to service requests takes into account the state of the system, instead of relying on static policies like the 'closest-idle first'-policy. This observation is important in designing an efficient dispatching heuristic, which we will see in the next chapter.

Figure 5.4: Optimal policy exhibits a dynamic dispatching policy

Reallocation

In practice, whenever a service engineer is assigned to a service request, he will be assigned to this service request until he repairs the corresponding capital good. In other words, the service request cannot be postponed anymore and the service engineer that is assigned to it, cannot be reallocated anymore. Figure 5.5 shows that the optimal policy can prescribe to do otherwise. In the first state (see Figure 5.5a), one service engineer is sent to node 3 and one service is sent to node 8 , such that they eventually repair the failed capital good at node 3 and node 2, respectively. After this action, during the succeeding time period, the capital good at node 4 also fails. The optimal action (see Figure 5.5b) now prescribes to reallocate and send a service engineer to node 4 to repair this capital good. The reason for this postponement of the service
request at node 2 is that the service engineer cannot make it to repair the capital good at node 2 within \hat{T} (he arrives at node 2 when $\sigma_{2}=3$). Hence, by sending this service engineer to node 4 , one repairs at least one capital good within \hat{T}. Even though this action depends on the cost structure and the value of \hat{T}, it suggests that it can be more efficient to remain flexible in reallocating service requests, than to stick to an assignment of service engineers to service requests once it is decided upon. This observation is also useful in designing an efficient dispatching heuristic, which we will see in the next chapter.

(a) Idle service engineers are dispatched

(b) Optimal policy reallocates idle service engineer

Figure 5.5: Optimal policy exhibits the reallocation of service requests

5.2.2 Asymmetric case

In the asymmetric test bed, we only consider two values for $\left(\alpha_{i}, \beta_{i}\right)(\in\{(5,1)(15,3)\})$ and two values for the demand intensity $\lambda_{i}(\in\{0.105,0.210\})$. We set γ equal to 0.5 and consider three values for T, that is $T \in\{2,3,4\}$. We observe that the optimal policy exhibits similar behavior to the symmetric cases, albeit influenced by both the demand and cost parameters.

With respect to dwell points, we observed that, for instance, if we have $\left(\alpha_{i}, \beta_{i}\right)=(15,3)$ for $i=1,2$ and $\left(\alpha_{i}, \beta_{i}\right)=(5,1)$ for $i=3,4$ and equal demand intensities for all demand nodes, both service engineers, when idle, reside at node 5 . Similarly, when we have $\lambda_{i}=0.210$ for $i=1,2$ and $\lambda_{i}=0.105$ for $i=3,4$ and equal values for the cost parameters for all demand nodes, both service engineers, when idle, also reside at node 5 . This suggests, which is also quite intuitive, that the locations of the dwell points point policy is influenced by both cost and demand parameters of the demand nodes. More specifically, idle service engineers move towards demand nodes that have either high penalty costs or a high demand intensity, or both. In the next chapter, we will see that our devised reposition heuristics, both dynamic and static, explicitly take into account both cost and demand parameters of the demand nodes.

With respect to the dispatching policy and the fact that the optimal policy exhibits reallocation, we observed
similar actions as extensively discussed in the symmetric case. In contrast to the dwell point policy, where the influence of the demand and cost parameters was easy to observe, it was less obvious to determine how the dispatch and reallocation policy is influenced by the parameters. Although we observed, for instance, that service engineers are first dispatched to demand nodes with high cost penalties and then to demand nodes with low cost penalties if both exist at the same time, we are not able to give specific examples like we provided in the previous section. This is mainly due to the fact that it is unclear when the optimal action is due to cost parameters, demand parameters, or both, or just because of the combination of timing of failures and the current configuration of the service engineers. We therefore conclude this numerical investigation and we design our heuristics based on the characteristics of the optimal policy that we discussed before.

Chapter 6

Heuristic approaches

In the previous chapter, we solved the dispatch and reposition problem using an exact approach by solving the MDP to optimality. However, due to the curse of dimensionality, we cannot use this method for problems of practical size. Hence, we intend to use the derived insights from the previous chapter to derive scalable heuristics that can be used for larger instances.

Although the MDP solves both the dispatch and reposition problem in an integrated way, we decompose the problem into two sub-problems and design a heuristic independently for both the dispatching and repositioning sub-problems. Note that this is also common in practice, where managers at service organizations are faced with two main problems in real-time: a dispatching problem and reposition problem.

In this chapter, we start with discussing the dispatching sub-problem and we finish with addressing the repositioning sub-problem. For both sub-problems, we derive a static heuristic and a dynamic heuristic. Our static heuristics are characterized by rules of thumbs that are determined a-priori and which are then always followed, regardless of the current state of the network. By contrast, our dynamic heuristics are characterized by maximizing a goal function that takes into account information about the current state of the network. We conclude this section by discussing how we solve the real-time dispatch and reposition problem of service engineers by applying our proposed heuristics (either the static or dynamic variant) for both sub-problems in a consecutive manner. Here, we also differentiate between whether reallocation is allowed or not in the policy. This has implications for the definition of 'idle' that we use in the discussions of our proposed heuristics in the remainder of this chapter. When reallocation is not allowed, 'idle' service engineers are service engineers that arrived at their final destination or have completed a repair in the preceding time step and become eligible for dispatching and repositioning decisions again in the succeeding decision epoch. In contrast, when reallocation is allowed, at every decision epoch, the whole fleet of service engineers is 'idle', regardless of whether they are on their way to their destination or have already reached their destination.

6.1 Dispatching

The numerical investigation in Section 5.2 suggests that the optimal policy exhibits a dispatching policy that takes into account all service engineers, when deciding upon which service engineer must be dispatched to each waiting service request. In other words, the current state of the system is taken into account, rather than solely relying on static decision rules that do not take into account state information. However, the former is computationally more expensive than the latter.

In this subsection we discuss two dispatching heuristics. We start with briefly discussing a static heuristic that is often encountered in practice. We then discuss a dynamic counter part, where we take all idle service engineers and (a subset of) all waiting service requests into account when determining which service engineer is dispatched to each waiting service request.

6.1.1 Static

A dispatching heuristic that is both intuitive and easy to implement is called the 'closest-idle first'-heuristic. Because of these two characteristics, this heuristic is often used in practice, which was also confirmed by our interviews at our industrial partner, a large manufacturer of industrial printers. In this heuristic, whenever a service requests arrives, the closest service engineer that is idle is sent to this service request. If multiple service requests arrive at the same time, then each next service request is selected with equal probability to which the closest-idle service engineer will be dispatched. We will also use this heuristic as the benchmark to compare our proposed dynamic dispatching heuristic to, which we will discuss in the next subsection.

Observe that even though this heuristic is often used in practice, it does not incorporate the state of the capital goods of the corresponding waiting service requests, and hence it does not differentiate between waiting service requests. It could thus be possible that a service request, that lies very remote from the nearest idle service engineer, has to wait for a very long time, thereby incurring costs, if other service requests arrive constantly that lie closer to the idle service engineers. This undesirable situation can be prevented by taking into account the state of the failed capital goods that correspond to the waiting service requests in the dispatching heuristic.

6.1.2 Dynamic

The problem of dispatching service engineers to waiting service requests, while taking into account the distance to and the characteristics of the waiting service requests, shows similarities with a well-known assignment problem: the Minimum Weighted Bipartite Matching problem (MWBM).

To this end, we introduce a weighted complete bipartite graph $G=\left(V_{1}, V_{2}, E, l\right)$, where the two partitions V_{1}, V_{2} are the two node sets, E the edge set and l a function assigning weights to edges. The node set V_{1} corresponds to the locations of the idle service engineers. To each idle service engineer we introduce a node indexed by its location (if there are more service engineers at a location, we use subindices to differentiate between them). Similarly, the node set V_{2} consists of the nodes where a capital good is currently failed. Let $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$, then $l\left(\left(v_{1}, v_{2}\right)\right)$ assigns a non-negative real-valued weight to edge $\left(v_{1}, v_{2}\right) \in E$ as follows:

$$
\begin{equation*}
l\left(\left(v_{1}, v_{2}\right)\right)=\left(d\left(v_{1}, v_{2}\right)-\sigma\left(v_{2}\right)\right)^{+} \tag{6.1}
\end{equation*}
$$

where $x^{+}=\max (0, x), d\left(v_{1}, v_{2}\right)$ is the Manhattan distance ${ }^{1}$ (since we have a grid) between v_{1} and v_{2} and $\sigma\left(v_{2}\right)$ is the failed state of the capital good at node v_{2} (which corresponds to $\sigma_{v_{2}}(s)$ in the MDP formulation). Hence, $l: E \rightarrow \mathbb{R}_{0}^{+}$. Note that this mapping ensures that the longer a capital good has failed or the closer it is located to a service engineer, or both, the higher the priority this capital good has to dispatch a service engineer to it. This is exactly the mechanism that we want to attain with our dynamic dispatching heuristic, since we want to minimize costs that are associated with both delayed services and traveling.

A matching $M \subseteq E$ is a collection of edges such that no two edges share an endpoint. Furthermore, a matching is perfect if $|M|=\left|V_{1}\right|=\left|V_{2}\right|$ and let \mathcal{M} be the set of all perfect matchings. Note that our dynamic dispatching problem $(D D P)$ can then be formulated as the following MWBM:
($D D P$)

$$
\begin{equation*}
\min _{M \in \mathcal{M}} \sum_{e \in M} l(e), \tag{6.2}
\end{equation*}
$$

Observe that it could be possible that $\left|V_{1}\right|>\left|V_{2}\right|$ or $\left|V_{1}\right|<\left|V_{2}\right|$. In that case, we insert into the relevant partition (the partition with the lowest cardinality) dummy nodes with ∞-weight edges to all nodes in the opposite partition. By solving problem $(D D P)$, we can find the optimal allocation of idle service engineers to the waiting service requests. We use the Hungarian algorithm, which runs in $\mathcal{O}\left(\max \left\{\left|V_{1}\right|^{3},\left|V_{2}\right|^{3}\right\}\right)$ (Jungnickel, 2008), to solve problem $(D D P)$ to optimality. We refer the reader to Jungnickel (2008) for an extensive discussion of the Hungarian algorithm. During the interviews with service engineer planners at our industrial partner, it became clear that the service logistic networks at which this research focuses typically employ around 20-30 service engineers and contain 120-130 demand nodes. Therefore, the maximum value that $\max \left\{\left|V_{1}\right|^{3},\left|V_{2}\right|^{3}\right\}$ can attain, remains also relatively small and hence the Hungarian algorithm can be used to make instant dispatching decisions. Hence, the dynamic dispatching heuristic is well-scalable

[^3]according to our definition of scalability.

Figure 6.1: Example of solution to dynamic dispatching problem

Figure 6.1 shows an example of an assignment that results from solving problem $(D D P)$. In this example, there are three idle service engineers: two at location 1 and one at location 3 . These idle service engineers are indexed by their location (where we use a subindex, i.e. $v_{1,1}$ and $v_{1,2}$, for the two service engineers at location 1) and partitioned in the set V_{1}. We have two waiting service requests: one for location 7 and one for location 9. Since $\left|V_{1}\right|>\left|V_{2}\right|$, we add a dummy waiting service request to partition V_{2} with ∞-weight edges to the three elements of V_{1}. In this example, we set $d\left(v_{1,1}, w_{7}\right)=d\left(v_{1,2}, w_{7}\right)=3, d\left(v_{1,1}, w_{9}\right)=d\left(v_{1,2}, w_{9}\right)=5$, $d\left(v_{3}, w_{7}\right)=4$ and $d\left(v_{3}, w_{9}\right)=8$ (note that these are just artificial values for illustrative purpose and that we could have taken other values as well that result in the same weights). The capital good at location 7 and the capital good at 9 have failed for 1 and 4 time units, respectively. Our weight function (6.1) now assigns the weight to the edges between the elements (excluding dummy elements) of partition V_{1} and V_{2} (see Figure 6.1 for the resulting weights). Solving problem $(D D P)$, results in a matching between $v_{1,1}$ and $w_{9}, v_{1,2}$ and w_{7}, and v_{3} and the dummy service request. Hence, service engineer 1 is dispatched to location 9 , service engineer 2 is dispatched to location 7 , whereas service engineer 3 remains idle and becomes eligible for repositioning.

6.2 Repositioning

The numerical investigation in Section 5.2 suggests that the optimal policy exhibits a dwell point policy. This means that idle service engineers are repositioned by sending them to dwell points in anticipation of future
demand. We also saw that the location of these dwell points can depend on the state of the system. This suggests that the optimal policy exhibits a dwell point policy that is dynamic, rather than static. However, for problems of practical size it is computationally expensive to take into account the whole state of the system when reposition decisions have to be made instantly. In this subsection we discuss two repositioning heuristics. We start with a static repositioning heuristic, where we determine the location of the dwell points a priori, after which we send each idle service engineer to the closest dwell point. We then discuss a dynamic variant, where the locations of the dwell points are not determined a priori.

6.2.1 Static

In a static repositioning policy, we search for static dwell points where idle service engineers are being sent to in anticipation of future demand, and we want to determine the maximum number of service engineers that can occupy a dwell point at the same time. This is also a common heuristic in practice. In fact, during interviews with service engineers planners at our industrial partner, it became clear that the planners indeed send each idle service engineer to the nearest so-called waiting location (an equivalent term for dwell points). However, at our industrial partner, these waiting locations are determined based on the physical characteristics of the location (for instance, some waiting locations were the homes of service engineers). On the contrary, we determine dwell points and the maximum number of service engineers that can occupy each dwell point at the same time such that we incorporate how well idle service engineers can serve future service requests.

We use the notion of coverage as a measure for how well or how bad future demand is anticipated to, since it is intuitive that a well-covered service region outperforms a not so well-covered service region in anticipating future service requests. The sub-problem of finding dwell points, and their capacity, where idle service engineers are sent to, such that the weighted expected coverage is maximized, can then be seen as a stochastic variant of the maximal covering location problem, called the Maximum Expected Covering Location Problem (MEXCLP) (Daskin, 1983).

In the MEXCLP, we have N service engineers that need to be positioned over a set of possible dwell points \mathcal{N}, hence a demand node can also be a dwell point. A service engineer can be either idle or busy. Let $q \in[0,1]$ be the probability that a service engineer is busy. Note that it is implicitly assumed that this probability is the same for all service engineers and independent of their position with respect to the demand and the other service engineers. We calculate this probability by dividing the total expected load of the network by the number of service engineers, that is:

$$
\begin{equation*}
q=\min \left\{\frac{\sum_{i \in \mathcal{N}^{a}} p_{i}^{0}}{N}, 1\right\} \tag{6.3}
\end{equation*}
$$

Here we do not take into account the length of an occupied period when a service engineer is actually busy. Since we use q both when reallocation is and when reallocation is not allowed, the busy period will vary and therefore it is difficult to take into account the busy period. To simplify the calculation, we neglect the busy period. We introduce the decision variable x_{j} which represents the capacity of node $j \in \mathcal{N}$. Next, we introduce the set W_{i} for all $i \in \mathcal{N}^{d}$, which is the set of nodes that cover demand node i. With cover we mean that if a service engineer is positioned at node $j \in W_{i}$ and the capital good at node i fails, then node i can be reached within $\hat{T}-1$ time steps by this service engineer, and hence be repaired within \hat{T} time steps. More formally, we have $W_{i}=\{j \in \mathcal{N} \mid d(j, i) \leq \hat{T}-1\}$. Furthermore, we introduce a binary variable $y_{i k}$ that is equal to 1 if and only if node $i \in \mathcal{N}^{d}$ is covered by at least k service engineers. The expected covered demand of node i given that exactly k service engineers cover this node, denoted by E_{k}^{i}, is calculated as follows:

$$
\begin{align*}
E_{k}^{i} & =\lambda_{i} \cdot P(\text { at least } 1 \text { out of } k \text { service engineers is idle }) \\
& =\lambda_{i} \cdot(1-P(k \text { service engineers are busy })) \\
& =\lambda_{i} \cdot\left(1-q^{k}\right) \tag{6.4}
\end{align*}
$$

The expected weighted covered demand of node i given that exactly k service engineers cover this node, denoted by \hat{E}_{k}^{i}, is then equal to $\left(\alpha_{i}+\beta_{i}\right) \cdot E_{k}^{i}=\left(\alpha_{i}+\beta_{i}\right) \cdot \lambda_{i} \cdot\left(1-q^{k}\right)$

Our static repositioning problem $(S R P)$ can then be formulated as the following weighted MEXCLP:

$$
\begin{array}{lll}
\max & & \\
\text { subject to } & \sum_{i \in \mathcal{N}^{d}}^{N}\left(\alpha_{i}+\beta_{i}\right) \cdot \lambda_{i}(1-q) q^{k-1} y_{i k} & \\
& \sum_{j \in \mathcal{N}} x_{j} \leq N, & \\
& \sum_{j \in W_{i}} x_{j} \geq \sum_{k=1}^{N} y_{i k}, & \forall i \in \mathcal{N}^{d} \\
& x_{j} \in\{0, \ldots, N\}, & \forall j \in \mathcal{N} \tag{6.9}\\
& y_{i k} \in\{0,1\}, & \forall i \in \mathcal{N}^{d}, \forall k \in\{0, \ldots, N\}
\end{array}
$$

The objective function (6.5) sums the total expected weighted coverage. Here we assign weight ($\alpha_{i}+\beta_{i}$) to the expected coverage of each demand node $i \in \mathcal{N}^{d}$. This ensures that if node i has higher costs for delayed services, then the expected coverage of this node has more priority than nodes with lower costs for delayed services. In practice, this means that (more) dwell points will lie closer near demand nodes that have high costs for delayed services. Consequently, such a demand node has a higher chance of being repaired within T time units, as soon as the capital good fails, which leads to lower costs than when you would not take this
weight into account in determining dwell points.
Equation (6.6) states that at most N service engineers are to be positioned. This Equation will be binding in general. Equation (6.7) ensures that if node $i \in \mathcal{N}^{d}$ is covered by at least k service engineers, then the sum of all service engineers that are located at a node $j \in W_{i}$ is at least k. Furthermore, Equation (6.8) imposes the logical integral constraint that we can only position between 0 and N service engineers at a node. Finally, Equation (6.9) ensures that variable $y_{i k}$ can only take value 0 or 1.

6.2.2 Dynamic

In the previous subsection, we discussed the notion of coverage, and subsequently discussed a related model that we can use to determine static dwell points, where service engineers are sent to when they are idle. Daskin (1983) showed that the marginal coverage contribution of the $k^{\text {th }}$ service engineer to the expected value of the covered demand of node i is equal to $E_{k}^{i}-E_{k-1}^{i}=\lambda_{i} \cdot(1-q) q^{k-1}$. Hence, the weighted marginal coverage contribution of the $k^{\text {th }}$ service engineer to the expected value of the covered demand of node i is equal to $\hat{E}_{k}^{i}-\hat{E}_{k-1}^{i}=\left(\alpha_{i}+\beta_{i}\right) \cdot \lambda_{i}(1-q) q^{k-1}$. Consequently, if a service engineer is sent to node j where he will become the $k^{\text {th }}$ service engineer, then the total marginal coverage contribution of this service engineer to the total expected covered demand (of the demand nodes where the capital good is still up and running) is equal to $\sum_{i \in\left\{x \in W_{j} \mid \sigma_{x}=0\right\}}=\hat{E}_{k}^{i}-\hat{E}_{k-1}^{i}$.

Based on this observation, we can now design the following repositioning heuristic: At each decision epoch, we sent each idle service engineer to the neighboring node, or let him remain at the current node, with the highest total weighted marginal coverage contribution to the total covered demand. That is, send each service engineer that is currently at node i to (or let him remain at) node j such that $j \in$ $\operatorname{argmax}_{n \in \mathcal{N}_{i} \cup\{i\}}\left\{\sum_{l \in\left\{x \in W_{n} \mid \sigma_{x}=0\right\}} \hat{E}_{k}^{l}-\hat{E}_{k-1}^{l}\right\}$.
Note that, if we have n idle service engineers, then the maximum size of the search space of this local search heuristic is equal to 5^{n}. This is because the decision to send a service engineer to a neighboring node could depend, because of the marginal coverage contribution, on whether it is already decided to send another service engineer to this particular node in the same decision epoch. We deal with this by randomly selecting the next service engineer in the set of idle service engineers for which we still need to decide where to sent these service engineers. Consequently, we do this for each idle service engineer until a decision has been made for each idle service engineer at a particular decision epoch. This reduces the maximum cardinality of the search space to $n \cdot 5$, which is suitable for making reposition decisions in real-time in networks of real-life size when n becomes large. As a result, the dynamic repositioning heuristic is well-scalable according to our definition of scalability.

6.3 Heuristic policies

In the two previous subsections, we extensively elaborated on the static and dynamic heuristics for both the sub-problem of dispatching and repositioning, respectively. Next to these heuristics, we can also differentiate between the case where reallocation is possible and where it is not. In practice, which was also confirmed by the production planners at our industrial partner, once service engineers are dispatched or sent to a dwell point they become available for dispatching or repositioning again when they reach their destination. In contrast, the numerical investigation of the optimal policy in Section 5.2.1 suggests that the optimal policy does reallocate service engineers even before they reach their destination. In essence, reallocation leads to being considerably more flexible in deviating from previous dispatch and reposition decisions. Combining the option of whether or not reallocating with two options each for both the dispatching and repositioning sub-problem, we have eight heuristics in total. Table 6.1 presents an overview of these eight heuristic policies, ranging from myopic (SDSR heuristic) to advanced (DDDR-R heuristic).

Table 6.1: Overview of eight heuristics

	Name	Dispatching	Repositioning	Reallocating
1	SDSR	Static	Static	
2	SDSR-R	Static	Static	\checkmark
3	SDDR	Static	Dynamic	
4	SDDR-R	Static	Dynamic	\checkmark
5	DDSR	Dynamic	Static	
6	DDSR-R	Dynamic	Static	\checkmark
7	DDDR	Dynamic	Dynamic	
8	DDDR-R	Dynamic	Dynamic	\checkmark

Each heuristic consist of two consecutive steps that are carried out at the start of each time period Δt :

1. A central decision maker determines which idle service engineers are dispatched to the waiting service requests by using the dispatch heuristic. If reallocating is allowed, the size of the set of idle service engineers is equal to N. If reallocating is not allowed, then the set of idle service engineers consists of all service engineers that arrived (and possibly finished a repair) at their destination at the end of the previous time period.
2. If there are still idle service engineers after having dispatched service engineers to all waiting service requests, the central decision maker determines for each idle service engineer where to sent them to next. This corresponds to solving the reposition sub-problem.

Observe that if reallocating is allowed, multiple paths with the same Manhattan distance exist, where each path can have a different performance in the end. Namely, if a service engineer is sent from node with coordinates $(0,0)$ on the grid, to a node with coordinates (m, n) on the grid, then there exist $\binom{m+n}{m}$ different
paths. We overcome this by randomly selecting, at the start of each time step, the next node with equal probability.

Finally, if reallocating is allowed, then there is not an explicit repair decision. In contrast, if reallocating is not allowed, then the decision to dispatch a service engineer from node x to a service request at node y also implies that this failed capital good will be repaired after $d(x, y)+1$ time units (note that $\Delta t=1$). Therefore, if after the dispatching decision, service engineers are dispatched to nodes where they are already residing, then this means that a repair will be carried out by them in the upcoming time period.

Chapter 7

Computational study

In this chapter, we present both a small and large computational study to evaluate the performance of the heuristics that we discussed in the previous chapter. We first introduce the test beds and objectives. Subsequently, we present and discuss the results of the computational study.

7.1 Test beds and objectives

We first discuss the small test bed, which compares the performance of the heuristics with the performance of the optimal policy. We then conclude this section with discussing the large test bed, where we consider real-life networks of industrial size.

7.1.1 Small test bed

In the small test bed, we consider the network as discussed in Section 5.2. As discussed before, it is wellknown that solving MDPs suffers from the curse of dimensionality; We therefore resort to test instances that are rather small such that they can be solved within reasonable time.

The small test bed serves three objectives. First, we want to determine which heuristic performs best compared to the optimal policy. Second, we want to quantify the gap between the performance, in terms of the cost rate, of the optimal policy, denoted by g^{*}, obtained by Algorithm 1 with $\epsilon=10^{-3}$ and the cost rate obtained by heuristic n, denoted by g^{n}. We calculate this relative difference as follows:

$$
\begin{equation*}
\% G A P=100 \cdot \frac{g^{n}-g^{*}}{g^{*}}, \tag{7.1}
\end{equation*}
$$

where g^{n} is obtained by performing a simulation study using the technique of Discrete Event Simulation (DES). Third, we want to investigate how the answers to the first two objectives are influenced by different
parameter settings.
We consider two test beds of small instances, one with symmetric demand intensities and cost parameters (where demand intensities and cost parameters are identical for all demand nodes) and one with asymmetric demand intensities and cost parameters (where demand intensities and cost parameters vary across the demand nodes). In the former, we consider five different demand intensities for each demand node $i \in \mathcal{N}^{d}$, $\lambda_{i} \in\{0.15,0.20,0.25,0.30,0.35\}$. Next, we consider two different values for the solution time threshold, that is $\hat{T} \in\{3,4\}$. Finally, with regard to the cost parameters, we consider three different values for γ, i.e. $\gamma \in\{0.50,0.75,1.00\}$, and three different combinations for $\left(\alpha_{i}, \beta_{i}\right) \in\{(8,4),(8,6),(8,8)\}$. These parameter settings result into $5 \cdot 2 \cdot 3^{2}=90$ instances. Table 7.1 summarizes the input parameter settings used in the small symmetric test bed.

Table 7.1: Parameter settings of small symmetric test bed

	Input parameter	No. of choices	Values
1	Demand intensity, λ_{i}	5	$0.15,0.20,0.25,0.30,0.35$
2	Solution time threshold, \hat{T}	2	3,4
3	Travel cost, γ	3	$0.50,0.75,1.00$
4	Cost penalties, $\left(\alpha_{i}, \beta_{i}\right), \forall i \in \mathcal{N}^{d}$	3	$(8,4),(8,6),(8,8)$

In the small asymmetric test bed, we generate the demand intensity for each node $i \in \mathcal{N}^{d}$ from an uniform distribution $U[0.15 ; 0.35]$. Next, since we cannot perform a full factorial test bed in which we consider different cost parameters for each demand node, simply due to the time complexity of solving one instance to optimality, we consider only extremes where we only vary the cost parameters of one demand node. This test bed can thus be regarded as a pessimistic test bed. To that end, we consider four cost penalty combinations for demand node 1 , that is $\left(\alpha_{1}, \beta_{1}\right) \in\{(4,2),(8,4),(12,6),(20,10)\}$, whereas we consider the same three different combinations for $\left(\alpha_{i}, \beta_{i}\right)$ as in the small symmetric test bed for demand node $i \in\{2,3,4\}$. These parameter settings result into $1 \cdot 2 \cdot 3^{2} \cdot 4=72$ instances. Table 7.2 summarizes the input parameter settings used in the small asymmetric test bed.

Table 7.2: Parameter settings of small asymmetric test bed

	Input parameter	No. of choices	Values
1	Demand intensity, λ_{i}	1	$U[0.15 ; 0.35]$
2	Solution time threshold, \hat{T}	2	3,4
3	Travel cost, γ	3	$0.50,0.75,1.00$
5	Cost penalties, $\left(\alpha_{1}, \beta_{1}\right)$	4	$(4,2),(8,4),(12,6),(20,10)$
4	Cost penalties, $\left(\alpha_{i}, \beta_{i}\right), \forall i \in\{2,3,4\}$	3	$(8,4),(8,6),(8,8)$

7.1.2 Large test bed

In the large test bed, we consider real-life networks of industrial size. Due to the size of the networks, we cannot compare the performance of our heuristics with the optimal cost rate. We therefore compare the performance of the heuristics with the performance of a benchmark heuristic. The benchmark heuristic can be seen as what is now common in practice.

As said before, during our interviews with the service engineers planners at our industrial partner, we observed that they use the closest-idle heuristic for dispatching service engineers and that they send idle service engineers to dwell points that are determined a priori, where they do not take into account state information. Moreover, to simplify the planning process, the service engineers planners do not reallocate service engineers after decisions are made. In essence, this coincides with our first heuristic, the SDSR heuristic (see Section 6.3).

We can then quantify the value that can be attained in practice when using heuristic $n \in\{2,3, \ldots, 8\}$ instead of this benchmark. That is

$$
\begin{equation*}
\% V A L=-100 \cdot \frac{g^{n}-g^{1}}{g^{1}} \tag{7.2}
\end{equation*}
$$

where \%VAL will indicate how much cost per time unit reductions in percentages can be attained when using heuristic n instead of the SDSR heuristic.

Analogously to the small test bed, we consider two test beds of large instances, where both are a squared grid network, one with symmetric cost parameters (where cost parameters are identical for all demand nodes) and one with asymmetric cost parameters (where demand intensities and cost parameters vary across the demand nodes). Note that we have asymmetric demand intensities in both test beds, since this is also the case in practice. Furthermore, since we want to evaluate our heuristics under circumstances that are comparable to circumstances that are encountered in practice, we have to choose the values for the parameters with caution. For instance, if we choose a network with 100 demand nodes, then the total number of nodes $|\mathcal{N}|$, the number of service engineers N and our solution time threshold \hat{T}, should be different than when we choose a network with 180 demand nodes, since this will also be the case in practice. To deal with this, we choose the values for the other parameters relatively to the number of demand nodes in our network since this is the most important characteristic that determines whether a network is of practical size or not. We consider two values for the number of demand nodes, that is $\left|\mathcal{N}^{d}\right| \in\{100,180\}$, which is confirmed to be of of practical size in the interviews at our industrial partner. With regard to the total number of nodes, we choose two values for the number of nodes in both sides of our grid network: $0.4 \cdot\left|\mathcal{N}^{d}\right|$ and $0.6 \cdot\left|\mathcal{N}^{d}\right|$. Consequently, we have also two values for $|\mathcal{N}|$, that is $|\mathcal{N}| \in\left\{\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2}\right\}$. This means that if a network contains 100 demand nodes, then the total number of nodes is either 1600 or 3600 .

We also choose to randomly distribute the demand nodes over the squared grid network. We generate values from a uniform distribution for the demand intensities for each demand node $i \in \mathcal{N}^{d}$, that is $\lambda_{i} \in$ $\{U[0.001 ; 0.01], U[0.01 ; 0.05]\}$. For the number of service engineers N, we consider two different values that are set as an integral fraction $N \in\left\{\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil,\left\lfloor\frac{1}{5} \cdot\left|\mathcal{N}^{d}\right|\right\rceil\right\}$ of the number of demand nodes. In order to determine solution time thresholds that are representable for practice, we reason along the following lines. If we have a squared grid with sides of length $\sqrt{|\mathcal{N}|}$ and hence a surface of $|\mathcal{N}|$, then each service engineer, if we distribute them evenly, is responsible for a sub-region with surface $\frac{|\mathcal{N}|}{N}$. Such a sub-region has sides of length $y=\sqrt{\frac{|\mathcal{N}|}{N}}$, which means that it takes $y-1$ time units to cross the whole region, i.e. from one side to the opposite side of the sub-region. Since the total number of nodes in our network is relatively large, we neglect minus 1 , and consider values for \hat{T} that are multiples of y rounded to the nearest integer, that is $\hat{T} \in\{\lfloor 1 \cdot y\rceil,\lfloor 1.5 \cdot y\rceil\}$. We test two different values for $\gamma(\gamma \in\{1,4\})$, two different values for $\alpha_{i}\left(\alpha_{i} \in\{50,500\}\right)$ and we consider two different values that are set as a fraction of α_{i} for β_{i}, i.e. $\beta_{i} \in\left\{0.05 \cdot \alpha_{i}, 0.1 \cdot \alpha_{i}\right\}$ for each node $i \in \mathcal{N}^{d}$. All cost parameters are in euros and during discussions with our industrial partner it was confirmed that penalty costs of this ratio are realistic. These parameter settings result into $2^{8}=256$ instances. Table 7.3 summarizes the input parameter settings used in the large symmetric test bed.

The parameter settings are chosen in such a way that they reflect realistic situations. For instance, if a service region in reality is a square with sides of length 320 km , then we have the following. With a grid network with \mathcal{N}^{d} and sides of length $0.4 \cdot\left|\mathcal{N}^{d}\right|$, we have that the length of an edge is equal to 8 km . If service engineers are traveling at a speed of $80 \mathrm{~km} / \mathrm{hr}$ (on average, service engineers travel in both rural and urban areas), Δt equals 6 minutes. With 20 service engineers and \hat{T} equal to 9 (which corrsponds to 54 minutes in practice), we can approximate the average utilization of the service engineers for both the instances with U [0.001; 0.01] and $U[0.01 ; 0.05]$ as follows. For $U[0.001 ; 0.01]$, we have on average $100 \cdot \frac{0.001+0.01}{2}=0.55$ failures per time step. If such a failure needs on average 6 discrete time steps before it is solved, then we approximate the utilization, denoted by ρ in the whole network as follows: $\rho=\frac{\text { work offered per time step }}{\text { capacity }}=\frac{0.55 * 10}{20}=0.275$. Similarly, for $U[0.01 ; 0.05]$ we have $\rho=\frac{3 * 10}{20}=0.900$. Other instances result in either higher or lower values for the approximate utilization, and hence our test captures instances that are not only realistic but also capture a wide continuum for the degree of utilization.

Table 7.3: Parameter settings of large symmetric test bed

	Input parameter	No. of choices	Values
1	Number of demand nodes, $\left\|\mathcal{N}^{d}\right\|$	2	100,180
2	Number of nodes, $\|\mathcal{N}\|$	2	$\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2}$
3	Demand intensity, $\lambda_{i}, \forall i \in \mathcal{N}^{d}$	2	$U[0.001 ; 0.01], U[0.01 ; 0.05]$
4	Number of service engineers, N	2	$\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil,\left\lfloor\frac{1}{5} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil$
5	Solution time threshold, \hat{T}	2	$\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil,\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil}\right.$
6	Travel cost (euros), γ	2	1,4
7	Cost penalty (euros), $\alpha_{i}, \forall i \in \mathcal{N}^{d}$	2	50,500
8	Cost penalty (euros), $\beta_{i}, \forall i \in \mathcal{N}^{d}$	2	$0.05 \cdot \alpha_{i}, 0.1 \cdot \alpha_{i}$

In the asymmetric, we generate the value of α_{i} for each demand node i from a uniform distribution, that is $\alpha_{i} \in\{U[50 ; 100], U[100 ; 500]\}$. The other parameters are set in the same way as for the first large test bed and hence, test bed 2 also results in 256 instances. Table 7.4 summarizes the input parameter settings used in the large asymmetric test bed.

Table 7.4: Parameter settings of large asymmetric test bed

	Input parameter	No. of choices	Values
1	Number of demand nodes, $\left\|\mathcal{N}^{d}\right\|$	2	100,180
2	Number of nodes, $\|\mathcal{N}\|$	2	$\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2}$
3	Demand intensity, $\lambda_{i}, \forall i \in \mathcal{N}^{d}$	2	$U[0.001 ; 0.01], U[0.01 ; 0.05]$
4	Number of service engineers, N	2	$\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil,\left\lfloor\frac{1}{5} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil$
5	Solution time threshold, \hat{T}	2	$\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil,\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil}\right.$
6	Travel cost, γ	2	1,4
7	Cost penalty, $\alpha_{i}, \forall i \in \mathcal{N}^{d}$	2	$U[50 ; 100], U[100 ; 500]$
8	Cost penalty, $\beta_{i}, \forall i \in \mathcal{N}^{d}$	2	$0.05 \cdot \alpha_{i}, 0.1 \cdot \alpha_{i}$

7.2 Numerical results

Both the exact approach and the DES study are programmed as single threaded applications in JAVA. Furthermore, we use a Branch and Cut implementation of the open source package GLPK implemented in JAVA to solve problem $(S R P)$. All computations were carried out on a PC running Windows (64 bit) with an Intel Quad Core 2.20 GHz processor and 8 GB RAM. The average computation time to calculate g^{*} for a single instance of the small test bed is on average equal to approximately 100 minutes, which is also an argument for the limited number of instances and the size of the instances itself in this small test bed.

In the small test bed, we evaluate each heuristic with 10 simulation runs of 30,000 simulated decision epochs, from which we discard the first 5,000 decision epochs due to the warm-up effect. In the large test bed, we observe that it takes longer before convergence is reached. Hence, we evaluate each heuristic with 10 simulation runs of 70,000 simulated decision epochs, from which we discard the first 15,000 decision epochs due to the warm-up effect. Table A. 1 to Table A. 6 in Appendix A. 1 show the 95% confidence intervals of each instance of both the small and large test bed.

As a final note, since the overarching objective of this thesis is to develop scalable heuristics that perform well in practice, we discuss the results of the large test bed with networks of industrial size more extensively than the artificial network in our small test bed.

7.2.1 Small test bed

The results of the small symmetric test bed and the small asymmetric test bed are summarized in Table 7.5 and Table 7.6 , respectively. In both tables, we present the minimum value, average value and maximum value of the GAP percents. We first distinguish between subsets of instances with the same value for a specific input parameter of Table 7.1 and Table 7.2 , respectively, and subsequently present the results for all instances.

The main observations drawn from both tables can be summarized as follows:

- In the symmetric test bed, our most advanced heuristic, the DDDR-R heuristic, performs close to the optimal policy with an average $\mathrm{GAP} \%$ of 4.6% and 10.4% at maximum. However, in the asymmetric test bed, which is rather pessimistic, we observe that the DDDR-R heuristic performs much worse with optimality gaps of 37.8% and 73.9%, respectively. Notwithstanding, the DDDR-R heuristic still outperforms the other heuristics. Additionally, if we compare the DDDR-R heuristic to the myopic SDSR heuristic (which has optimality gaps of 99.9% and 224.5%, respectively), we observe that the DDDR-R heuristic is still a huge improvement in the asymmetric test bed.
- In both test beds, the optimality gaps are relatively small on average when either a dynamic dispatching policy is employed or when reallocation is allowed in the policy. Hence, either including dynamic dispatching or reallocation are cost efficient and the combination of both using a dynamic dispatching policy and allowing for reallocation results in the smallest optimality gaps.
- In both test beds, for each of the eight heuristics, the range between the minimum gap and maximum gap are rather larger, indicating that the performance of the heuristics is not very robust to changing parameters. Nevertheless, the averages are more skewed to the minimum, suggesting that outliers (in terms of optimality gaps) occur sporadically. However, as this is the case with each of the eight heuristics in both test beds, we cannot say when this is exactly the case.
- In both test beds, for each of the four heuristics with the static repositioning heuristic, we observe that the increase of \hat{T} from 3 to 4 results in the highest increases in optimality gaps across the small test bed. A closer look at the optimal policy explains why this is the case. When $\hat{T}=4$, the static repositioning heuristic determines that there is one dwell point, namely at the center of the network, whereas the optimal policy suggests different locations for the dwell points. By contrast, when $\hat{T}=3$, the locations of the dwell points determined by the static repositioning heuristic coincide with the locations of the dwell points of the optimal policy. This observation highlights the importance of selecting good locations for dwell points.

Table 7.5: Summary of computational results for small symmetric test bed
(a) Heuristic 1-4

Parameter	Value	$\% G A P$ heuristic n											
		1			2			3			$\begin{gathered} 4 \\ \text { SDDR-R } \end{gathered}$		
		SDSR			SDSR-R			SDDR					
		Min	Avg	Max									
$\begin{aligned} & \lambda_{i} \\ & \forall i \in \mathcal{N}^{d} \end{aligned}$	0.15	34.6	154.0	322.6	20.0	82.7	150.0	11.4	38.2	80.7	6.8	24.6	53.4
	0.20	35.1	114.1	224.1	20.5	65.0	118.2	13.3	41.2	82.0	7.5	26.4	55.4
	0.25	30.9	90.1	172.6	19.5	53.4	97.2	14.2	41.8	82.4	7.9	27.4	57.2
	0.30	26.6	74.2	139.9	18.5	45.6	84.1	14.1	40.8	78.3	7.8	27.3	57.5
	0.35	22.6	62.6	116.2	16.2	40.0	74.8	13.2	39.1	73.6	7.3	27.0	56.5
\hat{T}	3	22.6	32.6	42.8	16.2	21.8	32.9	11.4	16.6	20.8	6.8	9.1	11.4
	4	83.7	165.3	322.6	51.8	92.9	150.0	46.1	63.8	82.4	32.1	44.0	57.5
γ	0.50	22.6	103.6	322.6	16.2	58.2	150.0	11.5	42.6	82.4	6.9	28.2	57.5
	0.75	23.3	98.5	296.0	16.7	57.2	147.6	11.4	40.0	76.9	6.8	26.4	54.1
	1.00	26.1	94.8	276.1	17.4	56.6	143.0	11.7	37.9	71.4	7.2	25.0	50.8
$\begin{aligned} & \left(\alpha_{i}, \beta_{i}\right) \\ & \forall i \in \mathcal{N}^{d} \end{aligned}$	$(8,4)$	22.6	89.7	258.5	16.2	54.0	135.8	11.4	33.6	61.2	6.8	21.8	39.7
	$(8,6)$	25.4	99.1	291.7	16.7	57.2	144.2	14.1	40.4	71.9	7.4	26.7	49.8
	$(8,8)$	27.0	108.3	322.6	17.0	60.8	150.0	15.7	46.6	82.4	8.0	31.2	57.5
Total		22.6	99.0	322.6	16.2	57.3	150.0	11.4	40.2	82.4	6.8	26.5	57.5

(b) Heuristic 5-8

Parameter	Value	\%GAP heuristic n											
		5			6			7			$\begin{gathered} 8 \\ \text { DDDR-R } \end{gathered}$		
		DDSR			DDSR-R			DDDR					
		Min	Avg	Max									
$\begin{aligned} & \lambda_{i} \\ & \forall i \in \mathcal{N}^{d} \end{aligned}$	0.15	27.3	136.3	283.6	14.8	63.6	107.2	8.6	27.4	55.4	1.9	5.2	10.4
	0.20	26.6	94.2	182.4	13.8	43.5	70.3	9.0	26.7	51.2	1.9	5.0	10.2
	0.25	22.9	69.2	126.7	11.5	31.1	49.4	9.1	24.4	44.3	1.9	4.6	9.0
	0.30	19.5	52.8	94.1	9.9	23.1	36.0	8.0	21.6	38.1	2.0	4.3	8.9
	0.35	16.2	41.5	71.9	7.9	17.6	27.5	7.1	18.8	32.0	1.7	4.1	8.3
\hat{T}	3	16.2	24.9	38.8	7.9	15.8	30.0	7.1	10.3	13.3	1.7	2.2	5.0
	4	60.1	132.7	283.6	22.5	55.7	107.2	25.5	37.3	55.4	4.0	7.0	10.4
γ	0.50	16.2	81.9	283.6	7.9	35.0	107.2	7.1	25.1	55.4	1.7	4.8	10.4
	0.75	16.7	78.5	262.0	8.4	35.7	105.5	7.1	23.6	50.4	1.9	4.6	9.8
	1.00	17.1	75.9	245.0	8.9	36.6	105.9	8.3	22.6	46.0	1.9	4.5	8.6
$\begin{aligned} & \left(\alpha_{i}, \beta_{i}\right) \\ & \forall i \in \mathcal{N}^{d} \end{aligned}$	$(8,4)$	16.3	74.3	231.4	11.2	38.4	107.2	7.1	21.0	42.5	1.8	5.6	10.4
	$(8,6)$	16.4	78.6	257.9	9.3	35.4	105.0	8.7	23.7	49.9	1.9	4.4	8.7
	$(8,8)$	16.2	83.4	283.6	7.9	33.5	104.5	10.3	26.7	55.4	1.7	3.9	8.5
Total		16.2	78.8	283.6	7.9	35.8	107.2	7.1	23.8	55.4	1.7	4.6	10.4

Table 7.6: Summary of computational results for small asymmetric test bed
(a) Heuristic 1-4

Parameter	Value	$\% G A P$ heuristic n											
		1			2			3			4		
		SDSR			SDSR-R			SDDR			SDDR-R		
		Min	Avg	Max									
\hat{T}	3	30.5	44.7	73.7	21.1	32.6	52.8	27.8	39.1	61.1	20.7	31.8	50.3
	4	97.2	155.2	224.5	60.5	97.1	149.2	70.6	103.3	142.5	57.4	89.7	138.7
γ	0.50	30.5	105.9	224.5	22.6	66.8	149.2	27.8	73.1	142.5	22.1	62.2	138.7
	0.75	31.8	98.0	174.5	22.1	63.4	112.4	28.5	70.1	114.0	21.4	59.5	104.3
	1.00	32.0	95.9	194.5	21.1	64.4	132.3	28.4	70.3	126.7	20.7	60.5	123.0
$\left(\alpha_{1}, \beta_{1}\right)$	$(4,2)$	41.1	112.4	224.5	30.9	75.9	149.2	37.5	80.3	142.5	30.9	71.5	138.7
	$(8,4)$	30.5	85.1	157.9	22.6	54.6	98.4	27.8	61.4	100.0	22.1	51.7	91.8
	$(12,6)$	32.5	98.1	203.9	22.7	62.3	117.5	28.5	67.8	118.1	21.4	57.8	106.9
	$(20,10)$	32.0	104.1	179.1	21.1	66.6	110.3	28.4	75.2	114.8	20.7	61.9	98.4
(α_{i}, β_{i})	$(8,4)$	30.5	91.8	182.0	22.6	60.5	107.9	27.8	68.0	112.9	22.1	57.0	98.6
$\forall i \in$	$(8,6)$	32.5	99.1	176.8	22.7	64.1	112.4	28.5	70.7	114.0	21.4	60.1	104.3
\{2, 3, 4\}	$(8,8)$	32.0	108.9	224.5	21.1	69.9	149.2	28.4	74.8	142.5	20.7	65.2	138.7
Total		30.5	99.9	224.5	21.1	64.9	149.2	27.8	71.2	142.5	20.7	60.7	138.7

(b) Heuristic 5-8

Parameter	Value	$\% G A P$ heuristic n											
		5			6			7			$\begin{gathered} 8 \\ \text { DDDR-R } \end{gathered}$		
		DDSR			DDSR-R			DDDR					
		Min	Avg	Max									
\hat{T}	3	22.7	36.1	58.5	13.9	25.8	42.7	19.0	30.7	47.5	13.4	24.8	40.2
	4	73.4	122.4	183.1	35.7	59.4	86.9	46.9	72.8	101.7	31.2	50.8	73.9
	0.50	24.1	83.7	183.1	16.6	42.6	86.9	21.4	52.6	101.7	15.6	37.5	73.9
γ	0.75	24.3	77.3	141.4	15.3	41.3	70.6	20.2	50.7	82.9	14.7	36.6	60.8
	1.00	22.7	76.8	159.6	13.9	43.9	83.0	19.0	52.1	94.2	13.4	39.2	72.3
	$(4,2)$	34.4	90.5	183.1	26.4	50.5	86.9	30.9	59.4	101.7	26.0	45.5	73.9
	$(8,4)$	24.1	65.1	116.9	16.6	32.9	54.0	21.4	42.2	66.4	15.4	29.2	46.1
$\left(\alpha_{1}, \beta_{1}\right)$	$(12,6)$	24.3	78.6	162.5	15.6	41.2	71.8	20.2	49.8	83.9	14.7	36.0	62.5
	$(20,10)$	22.7	82.9	144.0	13.9	45.8	71.4	19.0	55.7	82.9	13.4	40.5	58.8
$\left(\alpha_{i}, \beta_{i}\right)$	$(8,4)$	24.1	75.2	154.7	17.5	43.8	74.9	21.4	52.0	86.8	16.8	39.6	65.8
$\forall i \in$	$(8,6)$	24.3	78.2	141.4	15.6	41.7	70.6	20.2	51.0	82.3	14.7	36.9	60.8
\{2, 3, 4\}	$(8,8)$	22.7	84.5	183.1	13.9	42.3	86.9	19.0	52.3	101.7	13.4	36.9	73.9
Total		22.7	79.3	183.1	13.9	42.6	86.9	19.0	51.8	101.7	13.4	37.8	73.9

7.2.2 \quad Large test bed

The results of the large symmetric test bed and the large asymmetric test bed are summarized in Table 7.7 and Table 7.8, respectively. In both tables, we present the average values of the VAL percents, as calculated
by Equation (7.2). We first distinguish between subsets of instances with the same value for a specific input parameter of Table 7.3 and Table 7.4, respectively, and subsequently present the results for all instances.

Table 7.7: Summary of computational results for large symmetric test bed

Parameter	Value	Average $\% V A L$ heuristic n						
		$\begin{gathered} 2 \\ \text { SDSR-R } \end{gathered}$	$\begin{gathered} 3 \\ \text { SDDR } \end{gathered}$	$\begin{gathered} 4 \\ \text { SDDR-R } \end{gathered}$	$\begin{gathered} 5 \\ \text { DDSR } \end{gathered}$	$\begin{gathered} 6 \\ \text { DDSR-R } \end{gathered}$	$\begin{gathered} 7 \\ \text { DDDR } \end{gathered}$	$\begin{gathered} 8 \\ \text { DDDR-R } \end{gathered}$
Number of demand	100	31.1	-7.7	17.7	15.0	55.9	10.3	55.7
nodes, $\left\|\mathcal{N}^{d}\right\|$	180	32.2	1.3	29.6	28.2	66.9	31.7	68.0
Number of nodes, $\|\mathcal{N}\|$	$\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2}$	35.4	-5.5	31.5	15.5	55.4	11.7	55.9
	$\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2}$	27.9	-0.9	15.7	27.7	67.5	30.3	67.9
Demand intensity,	$U[0.001 ; 0.01]$	26.5	3.2	27.1	18.8	52.0	21.2	52.4
$\lambda_{i}, \forall i \in \mathcal{N}^{d}$	$U[0.01 ; 0.05]$	36.8	-9.7	20.2	24.4	70.8	20.8	71.4
Number of service	$\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil$	20.0	0.2	6.0	34.5	72.1	37.3	71.5
engineers, N	$\left\lfloor\frac{1}{5} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil$	43.3	-6.6	41.2	8.7	50.7	4.7	52.3
Solution time	$\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil}\right.$	30.2	0.9	20.0	11.8	53.7	15.2	56.2
threshold, \hat{T}	$\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil$	33.1	-7.3	27.3	31.3	69.1	26.7	67.6
Travel cost, γ	1	32.2	-3.7	26.7	22.1	64.1	21.6	63.6
	4	31.1	-2.7	20.5	21.0	58.8	20.4	60.1
Cost penalty,	50	30.1	3.6	24.9	20.9	59.2	26.4	60.8
$\alpha_{i}, \forall i \in \mathcal{N}^{d}$	500	33.2	-10.0	22.4	22.3	63.6	15.5	63.0
Cost penalty,	$0.05 \cdot \alpha_{i}$	32.8	-4.4	20.8	30.0	67.7	29.9	68.0
$\beta_{i}, \forall i \in \mathcal{N}^{d}$	$0.1 \cdot \alpha_{i}$	30.5	-2.1	26.5	13.2	55.1	12.1	55.8
Total		31.7	-3.2	23.6	21.6	61.4	21.0	61.9

The main observations drawn from both tables can be summarized as follows:

- Huge savings can be obtained by either employing a dynamic dispatching policy or allowing for reallocation in the policy. The combination of both using a dynamic dispatching policy and allowing for reallocation results in the highest savings that can be attained, compared to the myopic SDSR policy, namely 61.4% and 61.9% for heuristic DDSR-R and DDDR-R, respectively, in the symmetric test bed and 58.1% and 60.1%, respectively, in the asymmetric test bed. This is a similar result we observed in the small test bed, where the optimality gaps of these heuristics were the smallest. Hence, our most advanced heuristic, the DDDR-R heuristic, outperforms all other heuristics on average across the large test bed.
- More specifically, allowing reallocation in the heuristic greatly outperforms heuristics where it is not allowed to reallocate. This can be seen when we directly compare the average $\% V A L$ of the heuristics where it is not allowed to reallocate with their reallocating counterpart. This observation triggered us to analyze the benefit of each aspect (dynamic dispatching, dynamic repositioning and reallocation) individually, which we discuss later in this section.

Table 7.8: Summary of computational results for large asymmetric test bed

Parameter	Value	Average \%VAL heuristic n						
		$\begin{gathered} 2 \\ \text { SDSR-R } \end{gathered}$	$\begin{gathered} 3 \\ \text { SDDR } \end{gathered}$	$\begin{gathered} 4 \\ \text { SDDR-R } \end{gathered}$	$\begin{gathered} 5 \\ \text { DDSR } \end{gathered}$	$\begin{gathered} 6 \\ \text { DDSR-R } \end{gathered}$	7 DDDR	$\begin{gathered} 8 \\ \text { DDDR-R } \end{gathered}$
Number of demand	100	31.9	3.4	28.7	13.9	52.7	18.5	54.4
nodes, $\left\|\mathcal{N}^{d}\right\|$	180	30.7	6.6	29.9	26.7	63.4	34.9	65.8
Number of nodes, $\|\mathcal{N}\|$	$\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2}$	33.8	4.6	34.6	14.8	52.2	20.5	54.6
	$\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2}$	28.8	5.4	24.0	25.8	63.9	32.8	65.6
Demand intensity,	$U[0.001 ; 0.01]$	26.5	6.1	27.1	17.9	50.5	23.3	51.5
$\lambda_{i}, \forall i \in \mathcal{N}^{d}$	$U[0.01 ; 0.05]$	36.1	3.9	31.5	22.8	65.6	30.1	68.7
Number of service	$\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil$	21.0	4.1	16.5	32.7	68.8	37.3	68.6
engineers, N	$\left\lfloor\frac{1}{5} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil$	41.6	6.0	42.1	8.0	47.3	16.0	51.7
Solution time	$\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N \|}\|}{N}\right\rceil}\right.$	31.0	10.3	31.9	11.0	50.3	21.7	55.2
threshold, \hat{T}	$\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil$	31.6	-0.3	26.8	29.7	65.8	31.7	65.1
Travel cost, γ	1	33.6	5.1	30.2	21.7	61.6	28.3	62.8
	4	29.0	4.9	28.4	19.0	54.5	25.1	57.5
Cost penalty,	$U[50 ; 100]$	29.7	9.1	27.8	19.3	54.6	29.6	57.9
$\alpha_{i}, \forall i \in \mathcal{N}^{d}$	$U[100 ; 500]$	32.9	0.9	30.8	21.4	61.5	23.8	62.3
Cost penalty,	$0.05 \cdot \alpha_{i}$	32.9	5.1	30.5	28.1	64.3	34.8	66.6
$\beta_{i}, \forall i \in \mathcal{N}^{d}$	$0.1 \cdot \alpha_{i}$	29.7	4.9	28.1	12.6	51.8	18.6	53.6
Total		31.3	5.0	29.3	20.3	58.1	26.7	60.1

- In both the symmetric and asymmetric test bed, the results indicate that savings of all proposed heuristics (with the exception of heuristic SDSR-R and SDDR-R) tend to increase when networks become larger (both $|\mathcal{N}|$ and $\left|\mathcal{N}^{d}\right|$). These are promising results as our heuristics are in particular focused on network of large size.
- When considering either a dynamic dispatching heuristic or dynamic repositioning heuristic, we observe that only adopting a dynamic dispatching heuristic greatly outperforms only adopting a dynamic repositioning heuristic. With the SDDR heuristic savings of -3.2% (symmetric) to 5.0% (asymmetric) are attained, whereas with the DDSR heuristic savings of 20.3% (asymmetric) to 21.6% (symmetric) are attained. When allowing reallocation in the heuristic, this difference becomes even larger. With the SDDR-R heuristic savings of 23.6% (symmetric) to 29.3% (asymmetric) are attained, whereas with the DDSR-R heuristic huge savings of 58.1% (asymmetric) to 61.4% (symmetric) are attained. This is in contrast with findings in DAM literature, where it is shown that smarter allocation of idle ambulances to bases offers greater gains than advanced dispatching rules for ambulances to requests (Yue et al., 2012). This discrepancy could be explained by the different performance criterion. Whereas models in DAM literature are mainly focused on the minimization of late-arrivals (where an hour too late is considered equally as just a mere second too late), our objective is formulated in monetary terms where
penalty costs are incurred when a service engineer is already too late. In our case, dynamic dispatching rules, where the state of an equipment is taken into account, is then of more value than repositioning idle service engineers in anticipation of future demand. We come back to this observation when we discuss the substantial difference between the results of the small and large test bed with respect to the repositioning heuristic.
- Across all instances, savings tend to decrease for each of the four heuristics with the dynamic dispatching heuristic when the number of service engineers increases. This can be explained as follows. When the number of service engineers decreases, it is more likely that a demand node is located remotely from the nearest service engineer. Then, it could be the case that this demand node, upon failure, has to wait considerably long before eventually being served, thereby incurring penalty costs. Our proposed dynamic dispatching heuristic ensures that failed capital goods that are remotely located are also being served in a timely fashion. However, when the number of service engineers increases, it is less likely that a demand node is located remotely, thereby diminishing these effects. In other words, when each demand node is not too distant from the nearest idle service engineer, then our static dispatching heuristic suffices.

We also investigated the average relative distributions of the cost per time unit (i.e. which part is spent on α, β and γ). Note that these are relative fractions, which means that they do not say anything about the absolute values. The absolute values are displayed in Table 7.9 and Table 7.10, respectively. When observing Figures 7.1 and 7.2 , where the average relative distribution of the cost per time unit is displayed for the symmetric and asymmetric test bed, respectively, we make two other observations:

- Employing the dynamic dispatching heuristic results in relatively lower penalty costs that are incurred after exceeding the solution time threshold, whereas employing the static counter part results in relatively lower traveling costs.
- Allowing reallocation amplifies the first observation.

Table 7.9: Distribution of average cost per time unit in euros for large symmetric test bed

	Heuristic	cost due to α	cost due to β	cost due to γ	total cost
1	SDSR	124.1	336.3	36.0	496.4
2	SDSR-R	78.8	268.7	27.0	374.5
3	SDDR	123.8	354.2	34.0	512.0
4	SDDR-R	83.3	304.7	25.8	413.8
5	DDSR	156.9	74.7	34.8	266.4
6	DDSR-R	74.6	12.5	23.9	111.0
7	DDDR	159.7	75.3	32.9	267.9
8	DDDR-R	78.0	13.3	22.3	113.6

Figure 7.1: Distribution of average cost per time unit for large symmetric test bed

Figure 7.2: Distribution of average cost per time unit for large asymmetric test bed

These observations show the benefit of taking into account the state of equipment. Using a static dispatch policy (i.e. always sending the 'closest-idle' service engineer) indeed results in lower traveling costs, however it also results in that remote service requests have to wait too long before eventually being served, thereby incurring penalty costs. In contrast, our proposed dynamic dispatching heuristic ensures that failed capital goods that are remotely located are also being served in a timely fashion. Reallocation amplifies this effect

Table 7.10: Distribution of average cost per time unit in euros for large asymmetric test bed

	Heuristic	cost due to α	cost due to β	cost due to γ	total cost
1	SDSR	67.6	180.6	36.2	284.4
2	SDSR-R	43.1	143.3	27.1	213.5
3	SDDR	65.1	185.8	32.6	283.5
4	SDDR-R	44.7	160.2	25.3	230.2
5	DDSR	85.1	39.7	35.0	159.8
6	DDSR-R	40.5	6.6	24.1	71.2
7	DDDR	83.7	37.9	31.4	153.0
8	DDDR-R	42.5	7.3	21.9	71.5

since one can coordinate the dispatching decision at each decision epoch, resulting in that service requests that are on or close to the route to other service requests can be served, preventing them from incurring penalty costs.

Next, if we compare the results of the small test bed with the large test bed, we see one substantial difference. Whereas a heuristic that uses our dynamic repositioning heuristic greatly outperforms its counterpart with the static repositioning heuristic in the small test bed, this is not the case in the large test bed. This can be explained by the nature of our proposed dynamic repositioning heuristic. In our dynamic repositioning heuristic, we perform a local search for each idle service engineer where we calculate the weighted marginal coverage contribution of each neighboring node. In the small network of the small test bed, this calculation captures for each node the state of a large part of the whole network since most demand nodes can be reached within $\hat{T}-1$ from each node. However, in the large network it can be the case that (a substantial part of all) demand nodes that are still up and running lie further away than $\hat{T}-1$ from the nearest idle service engineer. If such a situation occurs, then such an area also remains uncovered due to the nature of our local search method. With our static repositioning heuristic, these areas will be covered as well, albeit without taking into account whether the demand nodes are actually up and running or not. Consequently, we can state that our static repositioning heuristic is already advanced enough for practical purposes. Note that a possible solution to this could be to first determine the distance to the nearest idle service engineer for each demand node and then take the maximum of these distances as the new value for $\hat{T}-1$ in our local search.

Finally, we can quantify the benefit of either using the dynamic dispatching heuristic, dynamic repositioning heuristic or allowing reallocation in the policy by comparing each heuristic with its counterpart that differs on that one aspect and subsequently take the average of these four comparisons. To illustrate this, the benefit of allowing reallocation in the policy, denoted by $\% V A L^{R}$, is calculated as:

$$
\begin{equation*}
\% V A L^{R}=\frac{-100}{4} \cdot\left(\frac{g^{2}-g^{1}}{g^{1}}+\frac{g^{4}-g^{3}}{g^{3}}+\frac{g^{6}-g^{5}}{g^{5}}+\frac{g^{8}-g^{7}}{g^{7}}\right) \tag{7.3}
\end{equation*}
$$

where g^{n} is as defined before. The benefit of either using the dynamic dispatching heuristic or dynamic repositioning heuristic, denoted by $\% V A L^{D D}$ and $\% V A L^{D R}$, respectively, are calculated analogously to
$\% V A L^{R}$. Hence, these benefits can be interpreted as savings that can be attained on average by either employing a dynamic instead of a static heuristic or by allowing reallocation (instead of not allowing) in the policy that is used. These savings are shown in Table 7.11.

Table 7.11: Benefit of either using the dynamic dispatching heuristic, dynamic repositioning heuristic or allowing reallocation in the policy

Benefit	Value
$\% V A L^{R}$	49.2
$\% V A L^{D D}$	27.7
$\% V A L^{D R}$	0.5

From Table 7.11 we observe that substantial savings of close to 50% can be attained by allowing reallocation in the policy. Current models, both in literature and in practice, limit themselves by imposing the constraint that once a decision has been made (either to dispatch or to reposition) the vehicle becomes eligible for a new decision once it has completed its service or has arrived at its final location. This quantification, which is currently lacking in the literature, shows that it is very beneficial to allow reallocation, regardless of the policy used, and can therefore be seen as an important contribution of this thesis. Table 7.11 also shows that significant savings, albeit it to a lesser degree, can be attained by employing the dynamic dispatching heuristic instead of the widely adopted 'closest-idle first'-heuristic. Finally, Table 7.11 shows that employing the dynamic repositioning heuristic performs comparable to the static repositioning heuristic. We discussed the underlying argument for this before, where we extensively explained the substantial difference between the results of the small and large test bed.

Chapter 8

Conclusion and discussion

We conclude this thesis by summarizing our main results, discussing and reflecting on the limitations of our research and pointing out opportunities for future research. We were the first to address the problem of realtime dispatching and repositioning of service engineers in a service logistics network to realize short solution times, such that costs (associated with exceeding the solution time threshold, delayed service requests and traveling of service engineers) are minimized. We formulated the problem as an Markov Decision Process (MDP) and solved the problem to optimality for a small network. We obtained insights into the structure of the optimal policy, along which we proposed two repositioning and two dispatching heuristics for both the reposition and dispatch sub-problem. In both cases we developed a static and dynamic heuristic. Our static heuristics are characterized by rules of thumbs that are determined a-priori and which are then always followed. By contrast, our dynamic heuristics are characterized by maximizing a goal function that takes into account information about the current state of the network. The developed dispatching (repositioning) heuristics are generic in the sense that they can be combined with any repositioning (dispatching) heuristic. We also analyzed the benefit of employing reallocation in the policy, i.e. being flexible in deviating from previous dispatch and reposition decisions.

8.1 Main results

We compared the performance of our proposed heuristics against the optimal policy in a small network in a small test bed and against a myopic policy, the SDSR heuristic (static dispatching heuristic, static repositioning heuristic, no reallocation), that is currently used in practice across a large test bed of industrial size. In the small test bed, we found that the average and the maximum optimality gap over all examined symmetric problem instances of the DDDR-R heuristic (dynamic dispatching heuristic, dynamic repositioning heuristic, reallocation), our most advanced heuristic, are 4.6% and 10.4%, respectively. This is a clear improvement compared to the myopic SDSR heuristic, which has optimality gaps of 99.0% and 322.6% t,
respectively. However, in a rather pessimistic test bed, we found that the same DDDR-R heuristic performed worse with optimality gaps of of 37.8% and 73.9%, respectively. Nevertheless, in the same test bed we observed that this was still a clear improvement compared to the myopic SDSR heuristic (optimality gaps of 99.9% and 224.5%, respectively). As the overarching objective of this thesis was to develop scalable heuristics that perform well in practice, we conducted a large test bed with networks of industrial size that we discussed more extensively than the artificial network in our small test bed. In this large test bed, we found that huge savings can be obtained by either employing a dynamic dispatching policy or allowing for reallocation in the policy. The combination of both using a dynamic dispatching policy and allowing for reallocation, where we observed savings of up to 61.9%, results in the highest savings in the real-life service logistics networks.

Furthermore, we quantified the benefit of individually using either a dynamic dispatching heuristic, a dynamic repositioning heuristic of allowing reallocation in the policy. We showed that savings of close to 50% can be attained by letting each service engineer be eligible for dispatch and reposition decisions, regardless of whether they are on their way to their destination or have already reached their destination. Current models, both in literature and in practice, limit themselves by imposing the constraint that once a decision has been made (either to dispatch or to reposition) the vehicle becomes eligible for a new decision once it has completed its service or has arrived at its final location. This quantification, which is currently lacking in the literature, shows that it is very beneficial from a cost-perspective to relax this limitation, regardless of the policy used, and can therefore be seen as an important result of this thesis. Employing the dynamic dispatching heuristic also results in high savings (27.7%) compared to the static counterpart, the widely adopted 'closest-idle first'-heuristic, which tend to increase when the number of service engineers decreases (i.e. when the chance of remotely located demand nodes increases). Finally, we showed that employing the dynamic repositioning heuristic results in minimal savings (0.5%) compared to the static repositioning heuristic, which stem from the fact that areas that are uncovered, remain uncovered due to the nature of the local search method. At the same time, these minimal savings indicate that our static repositioning heuristic is already advanced enough for practical purposes.

Although our work is mainly motivated by the dispatch and reposition problem for service engineers in service logistics networks, it is also relevant for other logistics networks where dispatching and repositioning decisions have to be made in real-time. Results of our work are of particular interest to the area of emergency services management and the real-time management of taxis. The models that exist in the literature for the real-time management of emergency providers do not consider reallocation. However, we show that huge benefits can be gained from allowing reallocation in the dispatch and repositioning policies. In the real-time management of taxis, the central decision maker also faces a dispatching problem and reposition problem. Especially our proposed dynamic reposition heuristic can be easily adapted to the area of taxi management by translating the state of the equipment into the waiting time of a customer.

8.2 Reflection on limitations

The main, and at the same time most restrictive, assumption in our exact model is that we discretize both time and space in steps of Δt. This allowed us to model the problem as an exact MDP problem. However, as is often the case with higher dimensional MDPs, even this formulation was tractable only in oversimplified versions of the problem with few service engineers and small service logistics networks. Though this assumption oversimplified the problem, it helped us to gain insights into the optimal policy with respect to three aspects, i.e. location strategy for idle service engineers, dispatching strategy of service engineers that takes into account the state of the system, and reallocation of service engineers. Note that these insights are solely focused on the movements of service engineers. Likewise, our proposed heuristics are also solely focused on the movements of service engineers, irrespective of the duration of repairs or even travel times. Our aim was to use as little information possible, such that the heuristics scale well in practice, and such that it is implicitly insensitive to choices of the parameters. As a result, the proposed heuristics do not depend on Δt but they only need as input where idle service engineers are located, their (expected) travel times to each demand node, and, if applicable, the arrival times of service requests. Additionally, when reallocation is allowed in the policy, managers of service organizations only have to choose how often previous dispatch and reposition decision should be reconsidered.

We can thus state that our exact model is limited by our assumption with regard to Δt, but that this assumption has not restricted us from reaching the overarching goal of this thesis, i.e. developing scalable heuristics that perform well in practice.

8.3 Future research

Suggestions for future research are twofold. First, our research can be extended by looking into the limitations of this study. In the formulation of our exact model we have assumed that i) travel times are deterministic, ii) repair times are deterministic and can only take one certain value (Δt) irrespective of the type of the repair, iii) service engineers are indistinguishable and iv) there is only one solution time threshold for all customers. From a practical point of view, these assumptions do not always hold. Hence, future research can focus on relaxing one or more of these assumptions in the exact model. With respect to the second limitation, we already shortly discussed how deterministic repair times that are a integral multiple of Δt can be incorporated. In contrast to the exact model, the first two limitations do not apply to both our dispatching and repositioning heuristics since they do not rely on these assumptions (as discussed in the previous section). With regards to assumption iv), our dynamic dispatching and both repositioning heuristics could incorporate different solution time thresholds by means of a weight factor.

Second, we suggest to investigate research question 1 and research question 2 that we discussed in Chapter 1, which were related to how many service engineers are needed and how many and which spare parts should be stored in the local warehouse, respectively. With this research we made a starting point for analyzing our proposed innovative network design by developing scalable heuristics that assist decision makers in answering question 3 under given choices for research question 1 and independent from research question 2 . This leaves research question 1 and research question 2 open for further research. Answering all three research questions will complete the analysis, planning and control of our proposed innovative network. The performance of this network can then be compared to the performance of traditional service logistics networks. Such a comparison should be done under a wide range of conditions, but in particularly for a continuum of solution time targets. Managers of service organizations can then base their choice for the service logistics network design on the solution time target that they need to attain.

The spare parts problem of research question 2 in isolation falls in the class of multi-item, single-location inventory models that are subjected to an aggregate fill-rate constraint (which is the service measure). A single-item version of this model was initially formulated by Feeney and Sherbrooke (1966), which is later extended to a multi-item formulation (see Sherbrooke (2006), chapter 2). Several exact optimization methods have been proposed to determine optimal base-stock levels for this problem (see Van Houtum and Kranenburg (2015), chapter 2), which could be used in this research. One difficulty that arises here is that by decomposing the spare parts problem and the dispatching and repositioning problem into two sub-problems, it is implicitly assumed that both problems are independent. However, in practice this will not be the case as both the service engineer and the spare part need to be at the same place at exactly the same time, which means that they are dependent on each other.

Next, the trade-off between higher coverage and the costs of additional service engineers on the overall performance should be studied (e.g., by means of enumeration). Integrating all decisions at each layer and evaluating the performance of our proposed network design is a difficult problem that is likely to be intractable using analytical methods. Instead, Simulation-Based Optimization (SBO), which is a way to solve problems of high computational complexity, could be a promising technique to tackle this problem. Ghosh et al. (2013) propose to use SBO for complex problems in two parts. First, a tractable analytical model is solved in order to provide good solutions for the individual decisions. In our case, this will be for decision 2 and the decision that was under study in this thesis. This solution is then used as input for a simulation model, which can be solved using local search methods. This approach was refined recently by Dieker et al. (2016), who use an iterative method between the two stages.

Bibliography

R. Alanis, A. Ingolfsson, and B. Kolfal. A markov chain model for an ems system with repositioning. Production and Operations Management, 22(1):216-231, 2013.
R.J.I. Basten and G.J.J.A.N. Van Houtum. System-oriented inventory models for spare parts. Surveys in Operations Research and Management Science, 19(1):34-55, 2014.
R. Bellman. A markovian decision process. Journal of Mathematics and Mechanics, pages 679-684, 1957.
D. Caglar, C.L. Li, and D. Simchi-Levi. Two-echelon spare parts inventory system subject to a service constraint. IIE Transactions, 36(7):655-666, 2004.
Y. Caseau and F. Laburthe. Heuristics for large constrained vehicle routing problems. Journal of Heuristics, 5(3):281-303, 1999.
M.S. Daskin. A maximum expected covering location model: formulation, properties and heuristic solution. Transportation Science, 17(1):48-70, 1983.
A.B. Dieker, S. Ghosh, and M.S. Squillante. Optimal resource capacity management for stochastic networks. Operations Research, 65(1):221-241, 2016.
G.J. Feeney and C.C. Sherbrooke. The ($\mathrm{s}-1, \mathrm{~s}$) inventory policy under compound poisson demand. Management Science, 12(5):391-411, 1966.
S. Ghosh, A.R. Heching, and M.S. Squillante. A two-phase approach for stochastic optimization of complex business processes. In Simulation Conference (WSC), 2013 Winter, pages 1856-1868. IEEE, 2013.
S.C. Graves. A multi-echelon inventory model for a repairable item with one-for-one replenishment. Management Science, 31(10):1247-1256, 1985.
S. Ichoua, M. Gendreau, and J.Y. Potvin. Exploiting knowledge about future demands for real-time vehicle dispatching. Transportation Science, 40(2):211-225, 2006.
C.J. Jagtenberg, S. Bhulai, and R.D. Van der Mei. An efficient heuristic for real-time ambulance redeployment. Operations Research for Health Care, 4:27-35, 2015.
C.J. Jagtenberg, S. Bhulai, and R.D. Van der Mei. Dynamic ambulance dispatching: is the closest-idle policy always optimal? Health Care Management Science, pages 1-15, 2016.
D. Jungnickel. Graphs, networks and algorithms. Springer, 2008.
G. Laporte. The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59(3):345-358, 1992.
M.S. Maxwell, M. Restrepo, S.G. Henderson, and H. Topaloglu. Approximate dynamic programming for ambulance redeployment. INFORMS Journal on Computing, 22(2):266-281, 2010.
M.S. Maxwell, E.C. Ni, C. Tong, S.G. Henderson, H. Topaloglu, , and S.R. Hunter. A bound on the performance of an optimal ambulance redeployment policy. Operations Research, 62(5):1014-1027, 2014.
J. Naoum-Sawaya and S. Elhedhli. A stochastic optimization model for real-time ambulance redeployment. Computers $\mathcal{E B}^{\mathcal{G}}$ Operations Research, 40(8):1972-1978, 2013.
M.C.A. Olde Keizer, R.H. Teunter, and J. Veldman. Joint condition-based maintenance and inventory optimization for systems with multiple components. European Journal of Operational Research, 257(1): 209-222, 2017.
V. Pillac, M. Gendreau, C. Guéret, and A.L. Medaglia. A review of dynamic vehicle routing problems. European Journal of Operational Research, 225(1):1-11, 2013.
A. Pinder Jr. Field service data analytics: Connecting the customer, the asset, and the answer. Technical report, AberdeenGroup, 072016.
W.B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality, volume 703. John Wiley \& Sons, 2007.
M.L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley \& Sons, 2014.

PWC. Sensing the future of the internet of things. Technical report, Price Waterhouse Coopers, 2014.
B. Rouwenhorst, B. Reuter, V. Stockrahm, G.J.J.A.N. Van Houtum, R.J. Mantel, and W.H. Zijm. Warehouse design and control: Framework and literature review. European Journal of Operational Research, 122(3): 515-533, 2000.
V. Schmid. Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. European Journal of Operational Research, 219(3):611-621, 2012.
C.C. Sherbrooke. Optimal inventory modeling of systems: multi-echelon techniques, volume 72. Springer Science \& Business Media, 2006.
B.W. Thomas. Waiting strategies for anticipating service requests from known customer locations. Transportation Science, 41(3):319-331, 2007.
B.W. Thomas and C.C. White III. Anticipatory route selection. Transportation Science, 38(4):473-487, 2004.
H.C. Tijms. Stochastic models: an algorithmic approach, volume 303. John Wiley \& Sons Inc, 1994.
M.W. Ulmer, J.C. Goodson, D.C. Mattfeld, and M. Hennig. Offline-online approximate dynamic programming for dynamic vehicle routing with stochastic requests. Submitted for publication, 2015.
M.W. Ulmer, D.C. Mattfeld, and F. Köster. Budgeting time for dynamic vehicle routing with stochastic customer requests. Transportation Science, 2017. URL http://pubsonline.informs.org/doi/abs/10. 1287/trsc.2016.0719. Advance online publication.
T.C. Van Barneveld, S. Bhulai, and R.D. Van der Mei. The effect of ambulance relocations on the performance of ambulance service providers. European Journal of Operational Research, 252(1):257-269, 2016.
T.C. Van Barneveld, S. Bhulai, and R.D. Van der Mei. A dynamic ambulance management model for rural areas. Health Care Management Science, 20(2):165-186, 2017.
G.J.J.A.N. Van Houtum and B. Kranenburg. Spare parts inventory control under system availability constraints, volume 227. Springer, 2015.
Y. Yue, L. Marla, and R. Krishnan. An efficient simulation-based approach to ambulance fleet allocation and dynamic redeployment. In AAAI Conference on Artificial Intelligence, 2012. URL https://www. aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5148.

Additional information computational

study

A. 1 Confidence intervals computational study

Table A.1: Average cost per time unit and 95% confidence interval for each instance of small symmetric test bed

Instance$\{\lambda, \hat{T}, \gamma,(\alpha, \beta)\}$	Average cost per time unit and 95\% confidence interval of heuristic n							
	1	2	3	4	5	6	7	8
	SDSR	SDSR-R	SDDR	SDDR-R	DDSR	DDSR-R	DDDR	DDDR-R
1 \{0.15,3,0.5, (8,4)\}	5.28 ± 0.0103	4.90 ± 0.0108	4.21 ± 0.0094	4.04 ± 0.0098	5.12 ± 0.0102	4.79 ± 0.0107	4.10 ± 0.0092	3.86 ± 0.0096
$2\{0.2,3,0.5,(8,4)\}$	6.67 ± 0.0108	6.20 ± 0.0114	5.57 ± 0.0102	5.28 ± 0.0107	6.39 ± 0.0108	6.00 ± 0.0113	5.36 ± 0.0101	5.04 ± 0.0105
3 \{0.25,3,0.5,(8,4)\}	7.80 ± 0.0110	7.30 ± 0.0117	6.81 ± 0.0107	6.45 ± 0.0112	7.44 ± 0.0110	7.03 ± 0.0116	6.51 ± 0.0105	6.11 ± 0.0110
$4\{0.3,3,0.5,(8,4)\}$	8.74 ± 0.0110	8.22 ± 0.0117	7.87 ± 0.0109	7.44 ± 0.0114	8.31 ± 0.0111	7.88 ± 0.0117	7.46 ± 0.0107	7.05 ± 0.0112
5 \{0.35,3,0.5, (8,4)\}	9.48 ± 0.0110	8.99 ± 0.0117	8.75 ± 0.0109	8.30 ± 0.0114	8.99 ± 0.0111	8.60 ± 0.0117	8.28 ± 0.0108	7.87 ± 0.0113
$6\{0.15,4,0.5,(8,4)\}$	3.01 ± 0.0070	1.98 ± 0.0068	1.33 ± 0.0058	1.16 ± 0.0055	2.78 ± 0.0065	1.74 ± 0.0061	1.20 ± 0.0053	0.93 ± 0.0048
7 \{0.2,4,0.5,(8,4)\}	3.70 ± 0.0082	2.61 ± 0.0078	2.11 ± 0.0073	1.83 ± 0.0069	3.32 ± 0.0075	2.22 ± 0.0070	1.85 ± 0.0066	1.45 ± 0.0060
$8\{0.25,4,0.5,(8,4)\}$	4.33 ± 0.0089	3.23 ± 0.0086	2.90 ± 0.0083	2.54 ± 0.0080	3.81 ± 0.0082	2.68 ± 0.0077	2.47 ± 0.0075	98 ± 0.0071
$9\{0.3,4,0.5,(8,4)\}$	4.90 ± 0.0095	3.82 ± 0.0092	3.65 ± 0.0091	3.21 ± 0.0088	4.25 ± 0.0087	3.14 ± 0.0083	3.07 ± 0.0082	2.54 ± 0.0079
$10\{0.35,4,0.5,(8,4)\}$	5.40 ± 0.0098	4.34 ± 0.0096	4.35 ± 0.0096	3.87 ± 0.0093	4.64 ± 0.0090	3.56 ± 0.0088	3.61 ± 0.0087	3.06 ± 0.0085
$11\{0.15,3,0.75,(8,4)\}$	5.53 ± 0.0103	5.15 ± 0.0110	4.35 ± 0.0094	4.17 ± 0.0101	5.36 ± 0.0102	5.02 ± 0.0109	26 ± 0.0093	. 00 ± 0.0099
$12\{0.2,3,0.75,(8,4)\}$	6.97 ± 0.0108	6.47 ± 0.0116	5.79 ± 0.0103	5.48 ± 0.0110	6.70 ± 0.0107	6.26 ± 0.0115	5.57 ± 0.0101	5.21 ± 0.0108
$13\{0.25,3,0.75,(8,4)\}$	8.13 ± 0.0110	7.62 ± 0.0119	7.04 ± 0.0108	6.65 ± 0.0114	7.76 ± 0.0109	7.31 ± 0.0118	6.73 ± 0.0106	6.30 ± 0.0113
$14\{0.3,3,0.75,(8,4)\}$	9.06 ± 0.0110	8.55 ± 0.0119	8.13 ± 0.0109	7.70 ± 0.0117	8.63 ± 0.0110	8.19 ± 0.0119	7.70 ± 0.0108	7.30 ± 0.0115
$15\{0.35,3,0.75,(8,4)\}$	9.83 ± 0.0109	9.31 ± 0.0119	9.08 ± 0.0109	8.59 ± 0.0117	9.33 ± 0.0110	8.92 ± 0.0119	8.54 ± 0.0108	8.14 ± 0.0116
$16\{0.15,4,0.75,(8,4)\}$	3.29 ± 0.0071	2.26 ± 0.0069	1.49 ± 0.0059	1.31 ± 0.0057	3.08 ± 0.0066	2.01 ± 0.0063	1.35 ± 0.0054	1.07 ± 0.0049
17 \{0.2,4,0.75, (8,4)\}	4.01 ± 0.0082	2.93 ± 0.0080	2.30 ± 0.0074	2.02 ± 0.0071	3.64 ± 0.0075	2.52 ± 0.0071	2.03 ± 0.0067	1.62 ± 0.0062
$18\{0.25,4,0.75,(8,4)\}$	4.66 ± 0.0089	3.55 ± 0.0087	3.15 ± 0.0085	2.75 ± 0.0082	4.15 ± 0.0082	3.00 ± 0.0079	2.70 ± 0.0076	2.20 ± 0.0072
$19\{0.3,4,0.75,(8,4)\}$	5.25 ± 0.0094	4.13 ± 0.0093	3.93 ± 0.0092	3.47 ± 0.0090	4.59 ± 0.0086	3.46 ± 0.0085	3.33 ± 0.0083	2.76 ± 0.0080
$20\{0.35,4,0.75,(8,4)\}$	5.75 ± 0.0097	4.69 ± 0.0097	4.64 ± 0.0097	4.15 ± 0.0095	4.97 ± 0.0089	3.90 ± 0.0090	3.90 ± 0.0087	3.33 ± 0.0087
$21\{0.15,3,1,(8,4)\}$	5.77 ± 0.0103	5.38 ± 0.0113	4.52 ± 0.0096	4.33 ± 0.0104	5.61 ± 0.0102	5.25 ± 0.0112	4.39 ± 0.0094	4.13 ± 0.0102
$22\{0.2,3,1,(8,4)\}$	7.27 ± 0.0108	6.75 ± 0.0118	5.97 ± 0.0104	5.68 ± 0.0113	6.98 ± 0.0107	6.54 ± 0.0118	5.75 ± 0.0103	5.40 ± 0.0111
$23\{0.25,3,1,(8,4)\}$	8.45 ± 0.0110	7.90 ± 0.0121	7.29 ± 0.0109	6.89 ± 0.0118	8.07 ± 0.0109	7.61 ± 0.0120	6.94 ± 0.0107	6.53 ± 0.0116
$24\{0.3,3,1,(8,4)\}$	9.40 ± 0.0110	8.86 ± 0.0121	8.39 ± 0.0110	7.96 ± 0.0119	8.95 ± 0.0110	8.50 ± 0.0121	7.97 ± 0.0109	7.53 ± 0.0118
$25\{0.35,3,1,(8,4)\}$	10.15 ± 0.0109	9.64 ± 0.0120	9.35 ± 0.0110	8.86 ± 0.0119	9.65 ± 0.0109	9.24 ± 0.0121	8.81 ± 0.0109	8.40 ± 0.0118
$26\{0.15,4,1,(8,4)\}$	3.59 ± 0.0072	2.54 ± 0.0071	1.63 ± 0.0061	1.47 ± 0.0060	3.36 ± 0.0068	2.29 ± 0.0065	1.50 ± 0.0057	1.21 ± 0.0051
$27\{0.2,4,1,(8,4)\}$	4.35 ± 0.0083	3.24 ± 0.0081	2.50 ± 0.0076	2.21 ± 0.0074	3.96 ± 0.0076	2.82 ± 0.0073	2.23 ± 0.0069	1.79 ± 0.0064
$28\{0.25,4,1,(8,4)\}$	5.00 ± 0.0090	3.88 ± 0.0089	3.39 ± 0.0087	2.98 ± 0.0084	4.49 ± 0.0083	3.33 ± 0.0080	2.93 ± 0.0078	2.40 ± 0.0074
$29\{0.3,4,1,(8,4)\}$	5.60 ± 0.0095	4.49 ± 0.0095	4.20 ± 0.0093	3.72 ± 0.0092	4.93 ± 0.0087	3.79 ± 0.0087	3.59 ± 0.0084	3.00 ± 0.0082

Table A.1: - continued from previous page

Instance$\{\lambda, \hat{T}, \gamma,(\alpha, \beta)\}$	Average cost per time unit and 95% confidence interval of heuristic							
	SDSR	SDSR-R	SDDR	SDDR-R	DDSR	$\begin{gathered} 6^{6} \\ \text { DDSR-R } \end{gathered}$	$\stackrel{7}{\operatorname{DDDR}}$	DDDR-R
. $35,4,1,(8,4)\}$	$0 \pm$. 04 ± 0.0099	4.92 ± 0.0098	. 41 ± 0.0097	$5.31 \pm$	4.23 ± 0.0092	4.17 ± 0.0088	3.57 ± 0.0089
$31\{0.15,3,0.5,(8,6)\}$	6.10 ± 0.0116	5.52 ± 0.0118	10	12	5.82 ± 0.0113	5.36 ± 0.0115	4.90 ± 0.0107	± 0.0109
32	7.93 ± 0.0124	7.18 ± 0.0127	6.85 ± 0.0121	6.35 ± 0.0123	7.48 ± 0.0120	6.86 ± 0.0123	6.50 ± 0.0117	98 ± 0.0119
33	27	31	7	7.82 ± 0.0129	23	8.16 ± 0.0127	122	7.28 ± 0.0124
3,3	10.	9.89 ± 0.0133	\pm	9.14 ± 0.0132	9.97 ± 0.0124	9.27 ± 0.0129	9.18 ± 0.0124	7
$35\{0.35,3,0.5,(8,6)\}$	11.75 ± 0.0126	10.94 ± 0.0132	11.02 ± 0.0129	28	91	25	21	. 55 ± 0.0128
36	3.46 ± 0.0078	2.15 ± 0.0074	5	1.29 ± 0.0062	3.16 ± 0.0072	1.81 ± 0.0064	58	0.96 ± 0.0049
37 \{0.2,4,0.5,(8,6)\}	4.24 ± 0.0091	2.92 ± 0.0087	8	2.07 ± 0.0078	3.75 ± 0.0082	2.33 ± 0.0073	72	1.51 ± 0.0063
$38\{0.25,4,0.5,(8,6)\}$	$5.01 \pm$	$3.68 \pm$	3.34 ± 0.0095	92	\pm	86 ± 0.0081	. 75 ± 0.0082	4
39 \{0.3,4,0.5, (8,	5.71 ± 0.0107	4.42 ± 0.0105	5	01	94	36 ± 0.0088	42 ± 0.0090	. 70 ± 0.0083
$40\{0.35,4,0.5,(8,6)\}$	6.33 ± 0.01	5.1	10	4.57 ± 0.0108	098	3.84 ± 0.0093	. 01 ± 0.0094	9
$41\{0.15,3,0.75$,	$6.33 \pm$	5.77	5.24 ± 0.0110	4.92 ± 0.0115	6.06 ± 0.0112	5.57 ± 0.0118	08	4.69 ± 0.0112
42 \{0.2,3,0.75,	8.22 ± 0.012	7.47 ± 0.0129	22	6.54 ± 0.0126	20	12 ± 0.0125	18	15 ± 0.0122
$43\{0.25,3,0.75,(8,6)\}$	26	33	27	33	22	8.44 ± 0.0129	123	127
.3,3,0	11.04 ± 0.0127	10.22 ± 0.0134	10.08 ± 0.0130	9.38 ± 0.0135	10.29 ± 0.0123	9.58 ± 0.0130	9.39 ± 0.0125	8.72 ± 0.0130
$45\{0.35$	12.08 ± 0.0125	11.26 ± 0.0134	11.31 ± 0.0129	10.55 ± 0.0135	11.23 ± 0.0122		125	9.80 ± 0.0130
$46\{0.15,4,0$	3.75 ± 0.0079	2.43 ± 0.0076	. 66 ± 0.0066	. 64	. 45 ± 0.0072	2.09	1.47 ± 0.0059	10
47 \{0.2,4, 0.75, (8,	4.58 ± 0.009	3.24 ± 0.0089	2.60 ± 0.0083	2.28 ± 0.0081	. ± 0.0082	2.64 ± 0.007	23 ± 0.0073	64
$48\{0.25,4,0.75$,	5.36 ± 0.0100	4.00 ± 0.0098	96	3.14 ± 0.0094	4.63 ± 0.0089	3.18 ± 0.0083	8	76
49 \{0.3,4, 0.75, (8,	6.05 ± 0.0106	106	4.53 ± 0.0105	3	0093	70 ± 0.0090	67 ± 0.0090	.93 ± 0.0084
50 \{0.35,	$6.68 \pm$	5.46 ± 0.0111	5.39 ± 0.0111	4.83 ± 0.0110	5.56 ± 0.0097	4.17 ± 0.0095	4.30 ± 0.0095	3.54 ± 0.0091
51 \{0.15	6.61 ± 0.0116	6.00	5.39 ± 0.0111	5.08 ± 0.0119	6.34 ± 0.0113	5.81 ± 0.0120	5.23 ± 0.0109	4.83 ± 0.0115
52	8.53 ± 0.0124	31	23	6.74 ± 0.0130	. 0119	39 ± 0.0128	89	. 34 ± 0.0125
$53\{0.25,3,1,(8,6)\}$	10.06 ± 0.0126	9.22 ± 0.0135	8.90 ± 0.0129	8.26 ± 0.0136	9.46 ± 0.0122	8.74 ± 0.0131	8.38 ± 0.0124	
$54\{0.3,3,1,(8,6)\}$	11.38 ± 0.0126	10.50 ± 0.0137	10.36 ± 0.0130	9.63 ± 0.0138	61	. 91	9.65 ± 0.0125	3
$55\{0.35,3,1,(8,6)\}$	12.44 ± 0.0125	11.58 ± 0.0136	11.58 ± 0.0130	10.82 ± 0.0138	8	88	10.76 ± 0.0125	33
$56\{0.15,4,1,(8,6)\}$	4.05 ± 0.0080	2.72 ± 0.0077	1.80 ± 0.0068	1.58 ± 0.0065	3.74 ± 0.0073	86	1.61 ± 0.0061	53
57 \{0.2,4,1,(8,6)\}	4.90 ± 0.0092	3.54 ± 0.0090	80 ± 0.0085	2.45 ± 0.0082	. 37 ± 0.0082	2.95 ± 0.0077	2.42 ± 0.0075	. 0066
$58\{0.25,4,1,(8,6)\}$	5.69 ± 0.0101	4.35 ± 0.0100	3.82 ± 0.0098	3.37 ± 0.0096	4.96 ± 0.0089	3.48 ± 0.0084	3.23 ± 0.0085	52 ± 0.0077
$59\{0.3,4,1,(8,6)\}$	6.40 ± 0.0106	7	06	4.26 ± 0.0105	47 ± 0.009	. 02	.94 ± 0.0091	3.16 ± 0.0086
$60\{0.35,4,1,(8,6)\}$	7.03 ± 0.0110	5.80 ± 0.0113	12	12	. 88 ± 0.0096	4.51 ± 0.0097	. 57 ± 0.0096	79 ± 0.0093
$61\{0.15,3,0.5,(8,8)\}$	$6.91 \pm$	6.15 ± 0.0131	5.94 ± 0.0129	5.56 ± 0.0129	6.53 ± 0.0127	5.89 ± 0.0126	74 ± 0.0124	23 ± 0.0123
62 \{0.2,3,0	9.	8.16 ± 0.0144	06 ± 0.0143	7.42 ± 0.0143	57 ± 0.0137	71 ± 0.0137	. 3	6.90 ± 0.0135
$63\{0.25,3,0.5,(8,8)\}$	11.08 ± 0.0150	50	10.01 ± 0.0151	51	10.22 ± 0.0141	9.27 ± 0.0142	9.37 ± 0.0144	. 47 ± 0.0142
64 \{0.3,3,0.5,(12.71 ± 0.0151	11.54 ± 0.0153	11.72 ± 0.0155	10.84 ± 0.0155	11.63 ± 0.0143	0.70 ± 0.0145	0.87 ± 0.0146	.94 ± 0.0146
$65\{0.35,3,0.5,(8,8)\}$	13.99 ± 0.0150	12.88 ± 0.0154	26 ± 0.0154	. 22 ± 0.0156	2.80 ± 0.014	1.89 ± 0.0145	2.15 ± 0.01	. 21 ± 0.0146
$66\{0.15,4,0.5,(8,8)\}$	3.90 ± 0.0089	2.30 ± 0.0081	1.67 ± 0.0074	1.41 ± 0.0069	3.54 ± 0.0080	1.89 ± 0.0067	1.43 ± 0.0064	. 00 ± 0.0052
$67\{0.2,4,0.5,(8,8)\}$	4.79 ± 0.0104	3.22 ± 0.0098	4	88	1	8	0	1.58 ± 0.0066
$68\{0.25,4,0.5,(8,8)\}$	5.71 ± 0.0115	4.13 ± 0.0111	3.82 ± 0.0110	3.29 ± 0.0105	4.75 ± 0.0099	3.02 ± 0.0087	.02 ± 0.0091	22 ± 0.0078
69 \{0.3,4, 0.5, (. 55 ± 0.0123	5.03 ± 0.0121	87 ± 0.0121	30 ± 0.011	5.30 ± 0.0104	3.58 ± 0.0094	77 ± 0.009	0088
$70\{0.35,4,0.5,(8,8)\}$	7.26 ± 0.0129	5.87 ± 0.0128	8	5.26 ± 0.0125	8 ± 0.0108	.12 ± 0.0100	. 44	49
$71\{0.15,3,0.75,(8,8)\}$	7.17 ± 0.0133	6.39 ± 0.0134	6.11 ± 0.0129	5.68 ± 0.0132	6.78 ± 0.0127	6.13 ± 0.0129	. 90 ± 0.0125	01
$72\{0.2,3,0.75,(8,8)\}$	9.48 ± 0.0145	8.44 ± 0.0146	8.24 ± 0.0143	7.65 ± 0.0147	8.81 ± 0.0137	7.97 ± 0.0139	82 ± 0.0137	0.0139
$73\{0.25,3,0.75,(8,8)\}$				9.43 ± 0.0155	10.54 ± 0.0141	9.58 ± 0.0144	9.59 ± 0.0144	8.69 ± 0.0145
0.3,3,0.75,	13.03	11.85 ± 0.015	12.03 ± 0.015	11.06 ± 0.0158	11.96 ± 0.0142	1.00 ± 0.0147	1.12 ± 0.0146	
$75\{0.35,3,0.75,(8,8)\}$	1	23 ± 0.015	. 55 ± 0.0	. 52 ± 0.01	.14 ± 0.01	2.21 ± 0.01	2.42 ± 0.01	48 ± 0.0149
$76\{0.15,4,0.75,(8,8)\}$	4.19 ± 0.0089	. 2 ± 0.0084	. 075	0071	. 0080	2.16 ± 0.0069	59 ± 0.0066	. 13 ± 0.005
77 \{0.2,4,0.75, (8,8)\}	12 ± 0.0104	3.52 ± 0.0099	2.92 ± 0.0095	50 ± 0.0091	4.48 ± 0.0091	. 75 ± 0.0079	2.43 ± 0.0081	76 ± 0.0
$78\{0.25,4,0.75,(8,8)\}$	6.02 ± 0.0115	4.46 ± 0.0112	4.01 ± 0.0110	3.52 ± 0.0107	5.09 ± 0.0098	3.35 ± 0.0088	3.26 ± 0.0092	43 ± 0.00
79 \{0.3,4,0.75, (8,8	6.87 ± 0.0122	5.33 ± 0.0122	5.15 ± 0.0121	. 54 ± 0.0119	5.63 ± 0.0104	3.91 ± 0.0096	4.02 ± 0.0100	3.10 ± 0.0090
$80\{0.35,4,0.75,(8,8)$. 62 ± 0.0128	6.22 ± 0.0129	13 ± 0.0129	5.56 ± 0.0128	.12 ± 0.0107	4.46 ± 0.0102	4.72	3.76 ± 0.0097
$81\{0.15,3,1,(8,8)\}$	7.43 ± 0.0133	6.61 ± 0.0137	6.26 ± 0.0130	5.84 ± 0.0136	$7.01 \pm$	6.35 ± 0.0131	6.04 ± 0.0126	. 50.01
$82\{0.2,3,1,(8,8)\}$	9.74 ± 0.0144	8.70 ± 0.0149	8.51 ± 0.0145	7.83 ± 0.0150	9.11 ± 0.0136	8.23 ± 0.0141	8.06 ± 0.0139	7.26 ± 0.0142
$83\{0.25,3,1,(8,8)\}$	11.73	0.	. 153	9.67 ± 0.0158	10.84 ± 0.0140	9.85 ± 0.0147	9.83 ± 0.014	8.93 ± 0.014
$84\{0.3,3,1,(8,8)\}$	13.38 ± 0.0149	18 ± 0.0158	. 28 ± 0.015	29 ± 0.01	. 26 ± 0.01	1.31 ± 0.01	$1.38 \pm$. 0151
$85\{0.35,3,1,(8,8)\}$	14.	13.53 ± 0.0158	13.82 ± 0.0155	12.79 ± 0.0162	13.48 ± 0.013	12.53 ± 0.0149	2.69 ± 0.014	1.72 ± 0.0152
$86\{0.15,4,1,(8,8)\}$. 50 ± 0.0090	2.91 ± 0.0085	1.97 ± 0.0076	1.71 ± 0.0073	4.13 ± 0.0081	2.44 ± 0.0070	1.75 ± 0.0067	1.28 ± 0.0055
87 \{0.2,4,1, (8,8)\}	5.46 ± 0.0104	3.84 ± 0.0101	3.10 ± 0.0096	2.68 ± 0.0093	4.80 ± 0.0091	3.07 ± 0.0081	2.62 ± 0.0082	.93 ± 0.0070
$88\{0.25,4,1,(8,8)\}$	6.37 ± 0.0115	4.79 ± 0.0114	4.28 ± 0.0112	3.75 ± 0.0109	5.42 ± 0.0098	3.67 ± 0.0090	3.49 ± 0.0093	2.63 ± 0.0082
$89\{0.3,4,1,(8,8)\}$	7.23 ± 0.0122	5.69 ± 0.0123	5.41 ± 0.0122	4.80 ± 0.0121	5.97 ± 0.0103	4.24 ± 0.0097	4.29 ± 0.0101	3.34 ± 0.0091
$90\{0.35,4,1,(8,8)\}$	7.99 ± 0.0127	6.55 ± 0.0130	6.43 ± 0.0130	5.80 ± 0.0129	6.47 ± 0.0107	4.78 ± 0.0103	4.98 ± 0.0106	4.02 ± 0.0099

Table A.2: Average cost per time unit and 95% confidence interval for each instance of small asymmetric test bed

Instance$\left\{\hat{T}, \gamma,\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{i}, \beta_{i}\right)\right\}$		Average cost per time unit and 95% confidence interval of heuristic n							
		$\stackrel{1}{\text { SDSR }}$	$\stackrel{2}{\text { SDSR-R }}$	$\stackrel{3}{\mathrm{SDDR}}$	$\begin{gathered} 4 \\ \text { SDDR-R } \end{gathered}$	$\stackrel{5}{\text { DDSR }}$	$\stackrel{6}{\text { DDSR-R }}$	$\stackrel{7}{\operatorname{DDDR}}$	$\begin{gathered} 8 \\ \text { DDDR-R } \end{gathered}$
	\{3,0.5,(4,2), (8,4)\}	$6.09 \pm$	66 ± 0.0107	. 02 ± 0.0100	7 ± 0	5.82 ± 0.0100	5.49 ± 0.0106	5.78 ± 0.0100	5.54 ± 0.0105
2	(4,2),	3.74 ± 0.0086	0.0078	77	77	3.40 ± 0.0080	35 ± 0.0071	52 ± 0.0069	68
3	$\{3,0.75,(4,2),(8,4)\}$	6.04 ± 0.0100	5.64 ± 0.0108	6.03 ± 0.0098	5.77 ± 0.0106	5.79 ± 0.0099	5.43 ± 0.0106	5.76 ± 0.0097	57 ± 0.0105
	$\{4,0.75,(4,2),(8,4)\}$	4.20 ± 0.0086	3.38 ± 0.0084	3.49 ± 0.0081	3.39 ± 0.0083	3.72 ± 0.0080	2.82 ± 0.0075	3.04 ± 0.0072	. 78 ± 0.0074
	\{3,1,(4,2),(8,4)\}	6.44 ± 0.0101	6.02 ± 0.0111	6.41 ± 0.0098	6.17 ± 0.0109	6.20 ± 0.0099	5.87 ± 0.0110	6.17 ± 0.0097	.99 ± 0.0109
6	$\{4,1,(4,2),(8,4)\}$	4.33 ± 0.0086	3.46 ± 0.0083	3.59 ± 0.0079	3.48 ± 0.0081	3.91 ± 0.0080	2.96 ± 0.0074	3.18 ± 0.0070	2.95 ± 0.0072
	\{3,0.5,(8,4), (8,4)\}	8.34 ± 0.0114	7.82 ± 0.0121	8.18 ± 0.0114	7.89 ± 0.0120	7.92 ± 0.0114	7.45 ± 0.0121	7.83 ± 0.0113	52 ± 0.0120
	\{4,0.5, (8,4), (8,4)\}	4.63 ± 0.0098	3.62 ± 0.0093	3.85 ± 0.0093	3.58 ± 0.0091	4.05 ± 0.0090	3.00 ± 0.0084	3.30 ± 0.0083	. 94 ± 0.0082
	\{3,0.75,(8,4),(8,4)\}	8.73 ± 0.0113	4 ± 0.0123	57 ± 0.0112	8.28 ± 0.0122	8.30 ± 0.0113	7.80 ± 0.0123	20 ± 0.0112	. 89 ± 0.0122
	0 \{4,0.75,(8,4),(8,4)\}	4.36 ± 0.0093	3.53 ± 0.0090	3.63 ± 0.0087	3.44 ± 0.0088	3.92 ± 0.0086	2.91 ± 0.0080	3.17 ± 0.0078	2.87 ± 0.0079
	$\{3,1,(8,4),(8,4)\}$	7.36 ± 0.0112	6.84 ± 0.0123	7.28 ± 0.0109	7.09 ± 0.0121	7.07 ± 0.0111	6.61 ± 0.0122	7.07 ± 0.0108	. 80 ± 0.0120
	$\{4,1,(8,4),(8,4)\}$	5.55 ± 0.0099	4.54 ± 0.0099	4.79 ± 0.0095	4.55 ± 0.0097	4.86 ± 0.0091	3.81 ± 0.0089	4.17 ± 0.0085	78 ± 0.0087
	$3\{3,0.5,(12,6),(8,4)\}$	9.10 ± 0.0130	8.47 ± 0.0136	8.88 ± 0.0129	8.54 ± 0.0136	8.61 ± 0.0130	8.13 ± 0.0136	8.44 ± 0.0128	8.25 ± 0.0136
	$\{4,0.5,(12,6),(8,4)\}$	4.22 ± 0.0102	3.18 ± 0.0094	3.37 ± 0.0094	3.14 ± 0.0092	3.73 ± 0.0094	2.67 ± 0.0085	2.95 ± 0.0085	61 ± 0.0082
	$\{3,0.75,(12,6),(8,4)\}$	8.12 ± 0.0127	7.54 ± 0.0136	8.02 ± 0.0126	7.69 ± 0.0134	7.73 ± 0.0126	7.30 ± 0.0135	7.68 ± 0.0124	. 42 ± 0.0133
	$\{4,0.75,(12,6),(8,4)\}$	4.26 ± 0.0100	3.31 ± 0.0093	3.46 ± 0.0091	3.30 ± 0.0091	3.81 ± 0.0091	2.85 ± 0.0084	3.05 ± 0.0082	2.78 ± 0.0081
	7 \{3,1,(12,6),(8,4)\}	8.64 ± 0.0128	8.12 ± 0.0139	8.56 ± 0.0125	8.22 ± 0.0137	8.22 ± 0.0127	7.80 ± 0.0138	8.21 ± 0.0123	7.94 ± 0.0136
	$8\{4,1,(12,6),(8,4)\}$	4.27 ± 0.0098	3.37 ± 0.0091	3.49 ± 0.0089	3.38 ± 0.0089	3.85 ± 0.0090	2.94 ± 0.0083	3.18 ± 0.0080	.94 ± 0.0080
	$\{3,0.5,(20,10),(8,4)\}$	10.61 ± 0.0172	9.90 ± 0.0177	10.48 ± 0.0171	9.94 ± 0.0177	10.15 ± 0.0171	9.51 ± 0.0177	9.91 ± 0.0171	. 61 ± 0.0176
	$\{4,0.5,(20,10),(8,4)\}$	5.26 ± 0.0134	3.99 ± 0.0124	4.22 ± 0.0126	3.85 ± 0.0119	4.54 ± 0.0123	3.37 ± 0.0115	3.64 ± 0.0114	3.18 ± 0.0109
	$\{3,0.75,(20,10),(8,4)\}$	10.88 ± 0.0172	10.12 ± 0.0180	10.66 ± 0.0171	0.11 ± 0.0179	0.37 ± 0.0171	9.75 ± 0.0180	0.19 ± 0.0170	. 82 ± 0.0179
	$\{4,0.75,(20,10),(8,4)\}$	5.50 ± 0.0138	4.13 ± 0.0125	4.50 ± 0.0128	4.06 ± 0.0122	4.77 ± 0.0126	3.56 ± 0.0117	3.92 ± 0.0116	. 49 ± 0.0113
	$\{3,1,(20,10),(8,4)\}$	10.20 ± 0.0170	9.29 ± 0.0179	9.73 ± 0.0169	9.28 ± 0.0179	9.69 ± 0.0170	8.99 ± 0.0178	9.34 ± 0.0167	9.03 ± 0.0178
	$\{4,1,(20,10),(8,4)\}$	6.25 ± 0.0140	5.01 ± 0.0134	5.34 ± 0.0134	4.92 ± 0.0130	5.47 ± 0.0130	4.29 ± 0.0125	4.63 ± 0.0122	. 20 ± 0.0122
	$\{3,0.5,(4,2),(8,6)\}$	9.63 ± 0.0117	8.69 ± 0.0123	. 11 ± 0.0117	8.59 ± 0.0122	8.91 ± 0.0115	8.12 ± 0.0119	8.45 ± 0.011	.99 ± 0.0118
	$\{4,0.5,(4,2),(8,6)\}$	5.06 ± 0.0102	4.06 ± 0.0098	4.25 ± 0.0096	4.04 ± 0.0098	4.26 ± 0.0091	3.09 ± 0.0083	3.43 ± 0.0082	.99 ± 0.0081
	$\{3,0.75,(4,2),(8,6)\}$	9.19 ± 0.0118	8.20 ± 0.0124	8.77 ± 0.0116	8.25 ± 0.0123	8.52 ± 0.0115	7.84 ± 0.0121	8.10 ± 0.0112	7.75 ± 0.0120
	$8\{4,0.75,(4,2),(8,6)\}$	4.39 ± 0.0094	3.43 ± 0.0090	3.47 ± 0.0085	3.36 ± 0.0088	3.88 ± 0.0085	2.75 ± 0.0076	2.95 ± 0.0073	2.65 ± 0.0073
	$9\{3,1,(4,2),(8,6)\}$	10.37 ± 0.0117	9.36 ± 0.0126	9.88 ± 0.0115	9.34 ± 0.0126	9.63 ± 0.0115	8.82 ± 0.0123	9.10 ± 0.0111	. 75 ± 0.0122
	$\{4,1,(4,2),(8,6)\}$	5.13 ± 0.0098	4.20 ± 0.0097	4.32 ± 0.0091	4.20 ± 0.0096	4.43 ± 0.0087	3.33 ± 0.0081	3.66 ± 0.0078	3.29 ± 0.0079
	\{3,0.5,(8,4), (8,6)\}	9.78 ± 0.0127	8.97 ± 0.0132	9.53 ± 0.0126	9.03 ± 0.0131	9.12 ± 0.0124	8.50 ± 0.0129	8.88 ± 0.0123	8.48 ± 0.0129
	$2\{4,0.5,(8,4),(8,6)\}$	± 0.0106	3.75 ± 0.0099	. 89 ± 0.0098	099	4.20 ± 0.0094	2.95 ± 0.0085	3.21 ± 0.0084	2.81 ± 0.0082
	$\{3,0.75,(8,4),(8,6)\}$	8.33 ± 0.0124	7.59 ± 0.0131	8.12 ± 0.0121	7.75 ± 0.0129	7.91 ± 0.0121	7.31 ± 0.0128	7.68 ± 0.0117	7.34 ± 0.0126
	$4\{4,0.75,(8,4),(8,6)\}$	4.79 ± 0.0102	3.77 ± 0.0098	3.79 ± 0.0092	3.74 ± 0.0095	4.20 ± 0.0091	2.99 ± 0.0082	3.32 ± 0.0081	2.93 ± 0.0079
	$\{3,1,(8,4),(8,6)\}$	26 ± 0.0125	8.53 ± 0.0135	10 ± 0.0120	8.62 ± 0.0132	8.66 ± 0.0122	8.07 ± 0.0132	8.61 ± 0.0117	. 22 ± 0.0128
	$6\{4,1,(8,4),(8,6)\}$	5.46 ± 0.0105	4.46 ± 0.0103	. 61 ± 0.0099	4.44 ± 0.0102	4.71 ± 0.0093	3.57 ± 0.0088	3.88 ± 0.0085	3.53 ± 0.0085
	7 \{3,0.5,(12,6), (8,6)\}	9.36 ± 0.0142	8.61 ± 0.0146	9.22 ± 0.0142	8.71 ± 0.0147	8.86 ± 0.0139	8.21 ± 0.0143	8.58 ± 0.0137	8.21 ± 0.0144
	$\{4,0.5,(12,6),(8,6)\}$	4.66 ± 0.0110	3.40 ± 0.0101	3.48 ± 0.0099	3.27 ± 0.0097	4.10 ± 0.0099	2.71 ± 0.0086	2.96 ± 0.0086	2.62 ± 0.0083
	$\{3,0.75,(12,6),(8,6)\}$	$10.89 \pm$	10.05 ± 0.0149	10.61 ± 0.0139	0.09	138	9.51 ± 0.0146	0.01 ± 0.0136	. 48 ± 0.0145
	$0\{4,0.75,(12,6),(8,6)\}$	5.03 ± 0.0110	3.82 ± 0.0103	3.96 ± 0.0100	3.75 ± 0.0100	4.39 ± 0.0099	3.12 ± 0.0089	3.40 ± 0.0087	3.04 ± 0.0086
	$1\{3,1,(12,6),(8,6)\}$	9.85 ± 0.0139	9.06 ± 0.0149	9.71 ± 0.0136	9.22 ± 0.0147	9.23 ± 0.0135	8.62 ± 0.0146	9.11 ± 0.0131	8.79 ± 0.0143
	$2\{4,1,(12,6),(8,6)\}$	4.64 ± 0.0105	66 ± 0.0099	73 ± 0.0095	.59 ± 0.0096	4.12 ± 0.0094	3.05 ± 0.0086	3.28 ± 0.008	2.98 ± 0.0082
	$3\{3,0.5,(20,10),(8,6)\}$	12.43 ± 0.0	$33 \pm$	76 ± 0.0188	$18 \pm$	$1.79 \pm$. $79 \pm$.11 ± 0	56 ± 0.0192
	$4\{4,0.5,(20,10),(8,6)\}$	5.36 ± 0.0137	3.81 ± 0.0123	4.03 ± 0.0125	3.71 ± 0.0119	4.60 ± 0.0124	3.12 ± 0.0110	3.48 ± 0.0112	2.97 ± 0.0105
	$\{3,0.75,(20,10),(8,6)\}$	10.45 ± 0.0176	9.48 ± 0.0181	10.12 ± 0.0174	9.62 ± 0.0180	9.79 ± 0.0172	9.10 ± 0.0178	9.63 ± 0.0171	. 15 ± 0.0177
	$6\{4,0.75,(20,10),(8,6)\}$	5.27 ± 0.0133	3.96 ± 0.0122	11 ± 0.0122	3.84 ± 0.0118	4.55 ± 0.0120	3.30 ± 0.0110	3.57 ± 0.010	.14 ± 0.0105
	7 \{3,1,(20,10), (8,6)\}	12.00 ± 0.0182	\pm	. 78 ± 0.	1.20 ± 0	1.29 ± 0.0179	. 49 ± 0.	1.15 ± 0.0177	. 65 ± 0.0188
	$8\{4,1,(20,10),(8,6)\}$	6.19 ± 0.0142	4.79 ± 0.0133	5.13 ± 0.0132	4.80 ± 0.0129	5.46 ± 0.0130	4.02 ± 0.0120	4.41 ± 0.0118	3.90 ± 0.0115
	\{3,0.5,(4,2), (8,8)\}	8.84 ± 0.0136	7.72 ± 0.0134	8.09 ± 0.0131	7.55 ± 0.0133	8.18 ± 0.0129	7.23 ± 0.0128	7.55 ± 0.0124	. 06 ± 0.0127
	0 \{4,0.5, (4,2), (8,8)\}	3.97 ± 0.0100	3.07 ± 0.0095	2.89 ± 0.0086	2.97 ± 0.0092	3.43 ± 0.0089	2.25 ± 0.0073	2.45 ± 0.0074	2.15 ± 0.0070
	1 \{3,0.75,(4,2), (8,8)\}	10.52 ± 0.0137	9.26 ± 0.0140	9.74 ± 0.0134	9.08 ± 0.0139	9.58 ± 0.0130	8.52 ± 0.0133	8.99 ± 0.0127	8.47 ± 0.0133
	$2\{4,0.75,(4,2),(8,8)\}$	5.71 ± 0.0113	4.51 ± 0.0110	4.58 ± 0.0104	4.50 ± 0.0109	4.76 ± 0.0098	3.36 ± 0.0087	3.76 ± 0.0087	3.23 ± 0.0084
	3 \{3,1,(4,2), (8,8)\}	10.31 ± 0.0137	9.17 ± 0.0142	9.77 ± 0.0132	9.05 ± 0.0140	9.53 ± 0.0130	8.53 ± 0.0135	9.01 ± 0.0125	8.48 ± 0.0134
	4 \{4,1,(4,2),(8,8)\}	4.77 ± 0.0103	3.79 ± 0.0099	3.72 ± 0.0089	3.82 ± 0.0098	4.23 ± 0.0091	2.97 ± 0.0078	3.19 ± 0.0076	2.91 ± 0.0075
	$5\{3,0.5,(8,4),(8,8)\}$	9.62 ± 0.0144	8.70 ± 0.0145	9.18 ± 0.0140	8.59 ± 0.0143	8.95 ± 0.0137	8.19 ± 0.0138	8.50 ± 0.0133	8.10 ± 0.0136
	$6\{4,0.5,(8,4),(8,8)\}$	5.62 ± 0.0120	4.26 ± 0.0112	4.27 ± 0.0108	4.20 ± 0.0111	4.71 ± 0.0104	3.15 ± 0.0090	3.51 ± 0.0091	3.01 ± 0.0086
	7 \{3,0.75, (8,4), (8,8)\}	11.12 ± 0.0145	10.22 ± 0.0151	10.86 ± 0.0142	10.15 ± 0.0148	10.30 ± 0.0138	9.42 ± 0.0144	9.94 ± 0.0135	9.35 ± 0.0141
	8 \{4,0.75, (8,4), (8,8)\}	5.94 ± 0.0118	4.60 ± 0.0114	4.71 ± 0.0109	4.49 ± 0.0111	5.07 ± 0.0103	3.50 ± 0.0091	3.91 ± 0.0091	3.35 ± 0.0088
	$9\{3,1,(8,4),(8,8)\}$	9.28 ± 0.0140	8.42 ± 0.0147	9.15 ± 0.0135	8.79 ± 0.0146	8.62 ± 0.0133	7.93 ± 0.0141	8.48 ± 0.0128	8.17 ± 0.0139
	0 \{4,1,(8,4), (8,8)\}	5.50 ± 0.0114	4.38 ± 0.0110	. 47 ± 0.0102	4.44 ± 0.0108	4.69 ± 0.0098	3.45 ± 0.0089	3.79 ± 0.0086	3.43 ± 0.0086
	$\{3,0.5,(12,6),(8,8)\}$	11.84 ± 0.0161	10.89 ± 0.0164	11.31 ± 0.0159	10.61 ± 0.0162	11.00 ± 0.0154	10.03 ± 0.0158	10.33 ± 0.0152	9.88 ± 0.0157

Table A.2: - continued from previous page

	Average cost per time unit and 95% confidence interval of heuristic n							
Instance $\left\{\hat{T}, \gamma,\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{i}, \beta_{i}\right)\right\}$	$\begin{gathered} 1 \\ \text { SDSR } \end{gathered}$	$\stackrel{2}{\text { SDSR-R }}$	$\begin{gathered} 3 \\ \text { SDDR } \end{gathered}$	$\begin{gathered} 4 \\ \text { SDDR-R } \end{gathered}$	$\begin{gathered} 5 \\ \text { DDSR } \end{gathered}$	$\begin{gathered} 6 \\ \text { DDSR-R } \end{gathered}$	$\begin{gathered} \quad 7 \\ \operatorname{DDDR} \end{gathered}$	$\begin{gathered} 8 \\ \text { DDDR-R } \end{gathered}$
$62\{4,0.5,(12,6),(8,8)\}$	4.51 ± 0.0115	3.23 ± 0.0103	3.24 ± 0.0099	3.20 ± 0.0101	3.95 ± 0.0102	2.56 ± 0.0085	2.77 ± 0.0085	2.41 ± 0.0081
$63\{3,0.75,(12,6),(8,8)\}$	11.88 ± 0.0158	10.82 ± 0.0163	11.62 ± 0.0156	11.01 ± 0.0163	11.04 ± 0.0151	10.20 ± 0.0157	10.77 ± 0.0149	10.28 ± 0.0156
$64\{4,0.75,(12,6),(8,8)\}$	5.62 ± 0.0124	4.40 ± 0.0119	4.47 ± 0.0113	4.36 ± 0.0116	4.84 ± 0.0109	3.35 ± 0.0096	3.77 ± 0.0096	3.30 ± 0.0093
$65\{3,1,(12,6),(8,8)\}$	10.87 ± 0.0156	9.86 ± 0.0164	10.83 ± 0.0153	10.20 ± 0.0164	10.21 ± 0.0150	9.25 ± 0.0158	10.05 ± 0.0145	9.52 ± 0.0156
$66\{4,1,(12,6),(8,8)\}$	5.37 ± 0.0119	4.25 ± 0.0114	4.27 ± 0.0106	4.24 ± 0.0111	4.68 ± 0.0104	3.39 ± 0.0093	3.66 ± 0.0091	3.29 ± 0.0089
$67\{3,0.5,(20,10),(8,8)\}$	10.99 ± 0.0193	10.01 ± 0.0195	10.73 ± 0.0191	10.18 ± 0.0195	10.31 ± 0.0188	9.51 ± 0.0190	10.05 ± 0.0187	9.57 ± 0.0190
$68\{4,0.5,(20,10),(8,8)\}$	5.13 ± 0.0141	3.84 ± 0.0128	3.94 ± 0.0128	3.69 ± 0.0124	4.35 ± 0.0125	2.97 ± 0.0109	3.27 ± 0.0112	2.80 ± 0.0104
$69\{3,0.75,(20,10),(8,8)\}$	13.08 ± 0.0192	11.87 ± 0.0196	12.77 ± 0.0190	12.06 ± 0.0197	12.18 ± 0.0185	11.17 ± 0.0190	11.97 ± 0.0183	11.32 ± 0.0190
$70\{4,0.75,(20,10),(8,8)\}$	5.87 ± 0.0141	4.49 ± 0.0133	4.57 ± 0.0129	4.33 ± 0.0127	5.03 ± 0.0126	3.49 ± 0.0112	3.84 ± 0.0112	3.33 ± 0.0106
$71\{3,1,(20,10),(8,8)\}$	14.93 ± 0.0196	13.76 ± 0.0206	14.66 ± 0.0194	13.87 ± 0.0205	13.96 ± 0.0190	12.89 ± 0.0200	13.66 ± 0.0188	12.90 ± 0.0199
$72\{4,1,(20,10),(8,8)\}$	5.61 ± 0.0135	4.25 ± 0.0126	4.29 ± 0.0121	4.09 ± 0.0121	4.97 ± 0.0121	3.44 ± 0.0107	3.69 ± 0.0106	3.32 ± 0.0103

Table A.3: Average cost per time unit and 95% confidence interval for each instance of large symmetric test bed: heuristic 1-4

Instance		Average cost per time unit and 95% confidence interval of heuristic n			
		1	2	3	4
	$\left\{\|\mathcal{N}\|,\left\|\mathcal{N}^{d}\right\|, \hat{T}, N, \lambda_{i}, \gamma, \alpha_{i}, \beta_{i}\right\}$	SDSR	SDSR-R	SDDR	SDDR-R
1		45.94 ± 0.188	29.08 ± 0.201	40.62 ± 0.223	27.96 ± 0.207
2	$\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	138.20 ± 0.484	59.57 ± 0.262	126.02 ± 0.844	57.46 ± 0.345
3	$\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}} 7, L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	75.69 ± 0.333	50.12 ± 0.205	72.74 ± 0.407	41.03 ± 0.172
4	$\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	208.91 ± 1.086	238.58 ± 1.479	212.52 ± 1.148	244.66 ± 1.590
5	$\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	28.96 ± 0.145	12.46 ± 0.067	24.61 ± 0.118	12.03 ± 0.058
6	$\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	124.99 ± 0.525	32.76 ± 0.144	108.62 ± 0.532	35.37 ± 0.230
	$\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	57.04 ± 0.285	25.09 ± 0.166	51.88 ± 0.259	20.56 ± 0.078
	$\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	194.37 ± 1.108	238.18 ± 1.453	200.44 ± 1.363	236.35 ± 1.300
9	$\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	24.93 ± 0.130	23.63 ± 0.087	27.56 ± 0.146	24.10 ± 0.094
10	$\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	54.68 ± 0.405	49.27 ± 0.251	55.67 ± 0.217	50.77 ± 0.228
11	$\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	24.63 ± 0.106	21.96 ± 0.121	25.93 ± 0.124	22.45 ± 0.144
12	$\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	58.49 ± 0.263	37.69 ± 0.253	48.73 ± 0.239	36.74 ± 0.151
13	$\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	21.63 ± 0.082	13.87 ± 0.060	15.02 ± 0.068	10.50 ± 0.077
14	$\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	37.02 ± 0.248	24.36 ± 0.168	29.17 ± 0.120	22.14 ± 0.080
15	$\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	19.89 ± 0.070	12.57 ± 0.065	15.42 ± 0.082	11.60 ± 0.074
16	$\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left[1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	46.46 ± 0.204	22.41 ± 0.078	30.79 ± 0.139	19.54 ± 0.068
17	$\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	165.91 ± 0.863	153.87 ± 0.954	167.73 ± 0.906	155.71 ± 0.607
18	$\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}} 7, L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	330.70 ± 1.753	308.16 ± 2.311	330.73 ± 2.249	308.01 ± 2.156
19	$\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2}, L 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	184.69 ± 1.090	184.63 ± 0.923	182.71 ± 0.987	184.43 ± 1.125
20	$\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	343.39 ± 1.889	340.27 ± 1.837	344.74 ± 1.655	340.58 ± 2.384
21	$\left.\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right], L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	167.37 ± 0.619	153.74 ± 0.630	165.95 ± 1.079	163.75 ± 1.146
22	$\left.\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right], L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	324.08 ± 2.236	299.98 ± 2.100	322.57 ± 1.161	300.76 ± 1.594
23	$\left.\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil, L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	175.67 ± 0.949	178.01 ± 0.890	177.75 ± 1.333	176.97 ± 1.256
	$\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil, L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\| 7, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	336.66 ± 2.491	332.99 ± 1.965	338.71 ± 2.168	333.30 ± 2.466
25	$\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	90.86 ± 0.618	69.22 ± 0.249	104.80 ± 0.639	70.32 ± 0.464
26	$\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N} \right\rvert\,}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	267.05 ± 1.736	140.82 ± 0.732	199.28 ± 0.737	140.37 ± 0.898
27	$\left.\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N} \right\rvert\,}\right\rceil, L \frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	156.34 ± 1.048	69.62 ± 0.299	121.76 ± 0.828	68.60 ± 0.398
28	$\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	335.01 ± 1.642	139.42 ± 0.530	336.39 ± 1.716	132.25 ± 0.939
29	$\left.\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil, L \frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	35.31 ± 0.247	19.16 ± 0.077	52.18 ± 0.245	21.55 ± 0.144
	$\left.\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right], L \frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	255.47 ± 1.405	53.87 ± 0.323	309.13 ± 1.855	82.57 ± 0.570
31	$\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.05 \cdot \alpha_{i}\right\}$	148.47 ± 0.713	39.21 ± 0.200	155.19 ± 0.869	65.41 ± 0.399

Table A.3: - continued from previous page

Table A.3: - continued from previous page

| | | Average cost per time unit and 95% confidence interval of heuristic n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Continued on next page

Table A.3: - continued from previous page

Instance$\left\{\|\mathcal{N}\|,\left\|\mathcal{N}^{d}\right\|, \hat{T}, N, \lambda_{i}, \gamma, \alpha_{i}, \beta_{i}\right\}$	Average cost per time unit and 95% confidence interval of heuristic n			
	SDSR	$\stackrel{2}{2} \text { SDSR-R }$	$\stackrel{3}{\text { SDDR }}$	$\stackrel{4}{\text { SDDR-R }}$
$124\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil},\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}\right.$	888.47 ± 3.465	374.17 ± 2.731	882.25 ± 5.205	378.01 ± 1.625
$125\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}$	122.24 ± 0.501	70.23 ± 0.471	298.63 ± 1.851	75.20 ± 0.48
$126\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}$	597.48 ± 3.047	150.03 ± 1.065	759.68 ± 5.622	191.37 ± 0.670
$127\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}$	377.58 ± 2.832	113.38 ± 0.703	385.71 ± 2.083	118.69 ± 0.653
$128\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}$	854.57 ± 4.358	248.48 ± 1.590	861.13 ± 6.458	320.78 ± 1.251
$129\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	52.81 ± 0.380	31.98 ± 0.154	48.54 ± 0.209	31.35 ± 0.125
$130\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	238.52 ± 1.527	63.96 ± 0.307	139.15 ± 0.668	62.72 ± 0.270
$131\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	145.55 ± 0.771	48.20 ± 0.217	125.53 ± 0.916	43.57 ± 0.309
$\left.132\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil}\right] \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	724.28 ± 3.621	980.39 ± 5.294	730.73 ± 4.311	981.15 ± 4.023
$133\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	66.80 ± 0.254	19.29 ± 0.091	68.39 ± 0.376	29.49 ± 0.124
$134\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left[1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	182.52 ± 1.059	34.53 ± 0.242	208.10 ± 1.041	47.82 ± 0.201
$135\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	136.01 ± 1.020	250.22 ± 1.676	205.29 ± 1.109	469.14 ± 3.519
$\left.136\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil, L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	694.89 ± 3.891	933.38 ± 5.974	694.31 ± 4.652	938.39 ± 5.443
$137\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	31.21 ± 0.197	28.63 ± 0.163	30.28 ± 0.145	28.83 ± 0.150
$138\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	55.31 ± 0.409	48.28 ± 0.256	53.62 ± 0.349	47.09 ± 0.353
$139\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	38.91 ± 0.280	27.19 ± 0.193	36.53 ± 0.252	28.37 ± 0.108
$140\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	54.63 ± 0.202	38.33 ± 0.192	51.57 ± 0.232	37.70 ± 0.147
$141\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	12.27 ± 0.043	9.48 ± 0.068	10.09 ± 0.066	7.36 ± 0.055
$142\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	42.03 ± 0.273	26.62 ± 0.109	29.46 ± 0.209	21.78 ± 0.150
$143\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	9.78 ± 0.058	8.75 ± 0.040	10.47 ± 0.071	8.47 ± 0.036
$144\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$	44.73 ± 0.300	23.78 ± 0.083	33.40 ± 0.150	24.12 ± 0.106
$145\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$	385.33 ± 1.541	344.78 ± 1.793	375.43 ± 2.440	337.63 ± 1.756
$146\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\llcorner 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$	1169.63 ± 5.380	1018.14 ± 3.564	1178.95 ± 4.480	1018.10 ± 3.563
$147\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\llcorner 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$	662.50 ± 4.505	698.26 ± 3.980	662.48 ± 4.240	706.11 ± 4.590
$148\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil}\right.\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$	1417.57 ± 7.938	1467.47 ± 9.098	1427.90 ± 10.424	1460.26 ± 5.111
$\left.149\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil, L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$	390.55 ± 1.953	211.85 ± 1.229	388.52 ± 2.875	404.43 ± 1.496
$150\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right], L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$	1117.43 ± 6.258	1011.51 ± 3.540	1130.80 ± 7.689	1002.29 ± 5.312
$151\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil},\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}\right.$	611.93 ± 4.345	690.81 ± 3.799	685.92 ± 2.538	777.43 ± 5.753
$152\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$	1392.08 ± 6.960	1403.55 ± 7.720	1394.12 ± 7.807	1406.39 ± 6.469
$153\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil},\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}\right.$	95.29 ± 0.343	71.77 ± 0.517	98.90 ± 0.405	71.90 ± 0.395
$154\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$	301.19 ± 1.596	149.33 ± 0.762	211.97 ± 1.060	146.05 ± 1.022
$155\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N} \right\rvert\,}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$	281.98 ± 1.241	81.54 ± 0.318	205.63 ± 1.172	80.07 ± 0.336
$\left.156\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2}, L 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil}, \downarrow \frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$	990.33 ± 3.961	178.76 ± 1.287	982.26 ± 4.911	167.26 ± 0.853
$157\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}\right.$	72.28 ± 0.376	24.88 ± 0.097	62.67 ± 0.370	28.89 ± 0.205
$158\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}\right.$	430.40 ± 1.894	62.70 ± 0.238	638.80 ± 3.769	78.66 ± 0.488
$159\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}\right.$	224.00 ± 1.411	45.12 ± 0.284	268.86 ± 1.506	61.71 ± 0.383
$160\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}\right.$	962.91 ± 3.948	114.36 ± 0.686	1055.30 ± 4.643	836.65 ± 5.020
$161\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$	68.63 ± 0.357	37.72 ± 0.140	55.19 ± 0.287	35.47 ± 0.259
$162\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$	239.80 ± 1.487	78.83 ± 0.292	139.08 ± 0.862	75.77 ± 0.386
$\left.163\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2}, L 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$	141.40 ± 0.877	60.50 ± 0.454	117.55 ± 0.670	55.75 ± 0.290
$\left.\left.164\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2}, L 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil, L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$	809.92 ± 4.617	1007.99 ± 5.242	786.28 ± 2.831	1020.50 ± 7.552
$165\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$	86.21 ± 0.431	32.76 ± 0.131	75.92 ± 0.296	38.54 ± 0.177
$166\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$	281.15 ± 2.052	63.65 ± 0.369	253.12 ± 1.797	71.98 ± 0.367
$167\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left[1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$	142.27 ± 0.683	54.11 ± 0.298	180.02 ± 1.224	362.81 ± 2.612
$168\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$	795.39 ± 4.534	1038.92 ± 6.857	768.01 ± 5.607	1057.65 ± 5.182
$169\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$	45.99 ± 0.304	41.05 ± 0.205	39.19 ± 0.219	34.81 ± 0.132

Continued on next page

Table A.3: - continued from previous page

Table A.3: - continued from previous page

	Average cost per time unit and 95% confidence interval of heuristic n			
Instance	1	2	3	4
$\left\{\|\mathcal{N}\|,\left\|\mathcal{N}^{d}\right\|, \hat{T}, N, \lambda_{i}, \gamma, \alpha_{i}, \beta_{i}\right\}$	SDSR	SDSR-R	SDDR	SDDR-R

$\left.216\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N} \right\rvert\,}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\} \quad 3386.14 \pm 16.9313380 .74 \pm 20.2843371 .04 \pm 22.9233366 .76 \pm 17.507$ $\left.217\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.218\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.219\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $220\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $221\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N} \right\rvert\,}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $222\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $223\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $224\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $225\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $226\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N} \right\rvert\,}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $227\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N |}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $\left.228\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $\left.229\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $230\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $\left.231\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $232\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $\left.233\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $\left.234\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $235\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $236\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N}\right\rceil},\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}\right.$ $\left.237\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $238\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N}\right\rceil},\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}\right.$ $239\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $\left.240\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $241\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $242\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $243\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $244\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $245\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $246\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $247\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $248\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $249\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $250\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N} \right\rvert\,}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $251\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $252\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $253\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $254\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $255\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ | $256\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\} \quad 2427.68 \pm 9.225$ |
| :--- |

Table A.4: Average cost per time unit and 95% confidence interval for each instance of large symmetric test bed: heuristic 5-8

			Average cost per time unit and 95% confidence interval of heuristic n			
	Instance		5	6	7	DDSR

Table A.4: - continued from previous page

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | Average cost per time unit and 95% confidence interval of heuristic n |

[^4]Table A.4: - continued from previous page

Table A.4: - continued from previous page
Average cost per time unit and 95% confidence interval of heuristic n

Instance
$\left\{\|\mathcal{N}\|,\left\|\mathcal{N}^{d}\right\|, \hat{T}, N, \lambda_{i}, \gamma, \alpha_{i}, \beta_{i}\right\}$
$138\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$

DDSR DDSR-R DDDR DDDR-R
$52.81 \pm 0.312 \quad 44.75 \pm 0.161 \quad 56.02 \pm 0.202$ $39.77 \pm 0.183 \quad 26.60 \pm 0.184 \quad 34.22 \pm 0.222$ $52.62 \pm 0.284 \quad 32.07 \pm 0.218 \quad 49.92 \pm 0.265$ $12.38 \pm 0.063 \quad 8.32 \pm 0.035 \quad 9.36 \pm 0.049$ $42.28 \pm 0.266 \quad 22.39 \pm 0.150 \quad 31.50 \pm 0.220$ $10.45 \pm 0.073 \quad 6.67 \pm 0.039 \quad 10.91 \pm 0.082$ $44.47 \pm 0.311 \quad 15.37 \pm 0.088 \quad 31.11 \pm 0.140$ $196.22 \pm 0.883 \quad 90.98 \pm 0.646 \quad 194.43 \pm 0.933$ $392.37 \pm 2.825212 .95 \pm 1.129393 .45 \pm 2.518$ $233.66 \pm 1.636148 .80 \pm 0.655 \quad 234.27 \pm 1.570$ $435.68 \pm 2.658322 .72 \pm 2.259437 .26 \pm 2.580$ $156.35 \pm 0.876 \quad 40.49 \pm 0.190 \quad 156.20 \pm 1.015$ $292.81 \pm 1.55292 .58 \pm 0.398 \quad 293.68 \pm 1.762$ $170.74 \pm 1.281 \quad 71.74 \pm 0.337 \quad 198.53 \pm 0.814$ $338.49 \pm 2.065191 .94 \pm 0.960334 .01 \pm 1.637$ $95.68 \pm 0.679 \quad 67.71 \pm 0.318 \quad 97.54 \pm 0.585$ $272.22 \pm 1.307133 .50 \pm 0.681213 .44 \pm 1.537$ $228.11 \pm 1.209 \quad 68.94 \pm 0.421 \quad 161.40 \pm 1.178$ $502.35 \pm 2.462 \quad 116.01 \pm 0.789 \quad 499.79 \pm 2.199$ $65.52 \pm 0.373 \quad 17.98 \pm 0.070 \quad 62.45 \pm 0.375$ $290.99 \pm 1.775 \quad 40.93 \pm 0.147 \quad 276.04 \pm 1.021$ $183.58 \pm 1.285 \quad 26.28 \pm 0.187 \quad 181.75 \pm 1.181$ $416.07 \pm 1.498 \quad 47.61 \pm 0.309 \quad 398.12 \pm 1.792$ $67.64 \pm 0.440 \quad 32.30 \pm 0.126 \quad 57.07 \pm 0.348$ $207.46 \pm 1.328 \quad 64.47 \pm 0.361 \quad 140.40 \pm 0.660$ $123.22 \pm 0.567 \quad 42.13 \pm 0.211 \quad 106.92 \pm 0.428$ $293.03 \pm 1.788 \quad 91.10 \pm 0.683 \quad 295.24 \pm 1.033$ $79.22 \pm 0.404 \quad 27.76 \pm 0.136 \quad 70.27 \pm 0.513$ $213.68 \pm 1.047 \quad 45.09 \pm 0.171 \quad 198.00 \pm 1.089$ $107.40 \pm 0.795 \quad 29.08 \pm 0.183 \quad 103.26 \pm 0.372$ $239.91 \pm 1.176 \quad 63.32 \pm 0.393 \quad 237.86 \pm 1.023$ $45.21 \pm 0.231 \quad 38.97 \pm 0.238 \quad 38.90 \pm 0.194$ $65.73 \pm 0.394 \quad 56.62 \pm 0.209 \quad 70.58 \pm 0.423$ $36.06 \pm 0.206 \quad 29.39 \pm 0.215 \quad 37.43 \pm 0.191$ $109.30 \pm 0.590 \quad 62.64 \pm 0.370 \quad 85.17 \pm 0.383$ $13.27 \pm 0.082 \quad 11.10 \pm 0.051 \quad 16.02 \pm 0.093$ $83.53 \pm 0.376 \quad 62.89 \pm 0.459 \quad 52.73 \pm 0.295$ $39.80 \pm 0.251 \quad 27.84 \pm 0.142 \quad 29.92 \pm 0.168$ $94.19 \pm 0.593 \quad 50.70 \pm 0.218 \quad 76.55 \pm 0.452$ $223.38 \pm 0.782 \quad 111.20 \pm 0.589 \quad 223.70 \pm 0.828$ $444.36 \pm 2.977 \quad 264.99 \pm 1.537 \quad 441.69 \pm 2.341$ $256.18 \pm 1.921 \quad 165.86 \pm 1.178 \quad 259.05 \pm 1.243$ $478.19 \pm 1.769 \quad 352.63 \pm 1.622 \quad 478.58 \pm 2.632$ $179.89 \pm 0.953 \quad 60.05 \pm 0.360 \quad 184.94 \pm 0.962$ $343.89 \pm 1.754 \quad 148.69 \pm 0.743 \quad 346.28 \pm 1.835$ $194.83 \pm 1.188 \quad 92.98 \pm 0.604 \quad 204.85 \pm 0.983$
45.53 ± 0.219 25.51 ± 0.094 31.81 ± 0.204 5.67 ± 0.042 15.95 ± 0.083 6.17 ± 0.043 14.17 ± 0.105 89.38 ± 0.518 203.11 ± 0.853 146.60 ± 0.718 317.55 ± 2.350 53.15 ± 0.260 93.23 ± 0.475 98.51 ± 0.729 195.67 ± 1.057 69.53 ± 0.521 132.13 ± 0.687 67.08 ± 0.463 112.33 ± 0.472 22.33 ± 0.143 49.10 ± 0.280 33.89 ± 0.227 57.50 ± 0.288 32.03 ± 0.144 62.47 ± 0.362 40.99 ± 0.205 87.31 ± 0.471 26.31 ± 0.103 43.39 ± 0.282 31.33 ± 0.160 60.48 ± 0.242 35.89 ± 0.133 56.21 ± 0.225 29.66 ± 0.154 53.93 ± 0.237 10.96 ± 0.069 32.35 ± 0.181 18.80 ± 0.115 41.10 ± 0.251 113.18 ± 0.453 264.87 ± 1.086 171.96 ± 0.671 355.84 ± 1.886 110.19 ± 0.408 148.89 ± 0.759 156.14 ± 0.609

Table A.4: - continued from previous page

	$\underline{\text { Average cost per time unit and } 95 \% \text { confidence interval of heuristic } n}$			
Instance $\left\{\|\mathcal{N}\|,\left\|\mathcal{N}^{d}\right\|, \hat{T}, N, \lambda_{i}, \gamma, \alpha_{i}, \beta_{i}\right\}$	$\stackrel{5}{\text { DDSR }}$	$\begin{gathered} 6 \\ \text { DDSR-R } \end{gathered}$	$\stackrel{7}{\text { DDDR }}$	$\begin{gathered} 8 \\ \text { DDDR-F } \end{gathered}$

$\left.184\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $185\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.186\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.187\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N T}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.188\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.189\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L^{\frac{2}{10}} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $190\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}} 7, \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}\right.$ $191\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}} 7, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}\right.$ $\left.192\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2}, L 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right], L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $193\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|^{2},\left[1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, \left.L \frac{1}{10} \cdot \right\rvert\, \mathcal{N}^{d}{ }_{\mid\rceil}, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}\right.$ $\left.\left.194\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2}, L 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $195\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right],\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $196\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|^{2},\left[1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $197\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}} 7, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $198\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right],\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $199\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right],\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $200\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.201\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|^{2}, L 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, \left.\frac{L}{10} \cdot \right\rvert\, \mathcal{N}^{d}{ }^{1}\right], U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $202\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $203\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|^{2},\left[1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\left.\frac{2}{10} \cdot \right\rvert\, \mathcal{N}^{d}{ }^{1}\right], U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}\right.$ $204\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|^{2}, L 1 \cdot \sqrt{\left.\left.\frac{|\mathcal{N}|}{N}\right\rceil,\left\lfloor\left.\frac{2}{10} \cdot \right\rvert\, \mathcal{N}^{d}{ }^{1}\right], U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}}\right.\right.$ $\left.205\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right], L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $206\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.207\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.208\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.209\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2}, L 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $210\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $211\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.212\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right], L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $213\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right], L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $214\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}} 7, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}\right.$ $215\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\left.\frac{1}{10} \cdot \right\rvert\, \mathcal{N}^{d}{ }^{1}\right], U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $216\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right],\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.217\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.218\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2}, L 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 1, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.219\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $220\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $221\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $222\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N}\right\rceil}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $223\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $224\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.\left.225\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2}, L 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $\left.226\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $\left.227\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|^{2}, L 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, \left.L \frac{1}{10} \cdot \right\rvert\, \mathcal{N}^{d}{ }^{1}\right], U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $228\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|^{2},\left[1 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N}\right\rceil},\left[\left.\frac{1}{10} \cdot \right\rvert\, \mathcal{N}^{d}{ }^{1}\right], U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}\right.\right.$ $\left.229\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$
$376.32 \pm 2.559 \quad 231.68 \pm 0.880 \quad 380.96 \pm 2.743$ $101.16 \pm 0.364 \quad 75.83 \pm 0.349 \quad 105.43 \pm 0.696$ $367.83 \pm 2.464168 .99 \pm 0.997 \quad 271.84 \pm 2.012$ $255.26 \pm 1.302 \quad 80.26 \pm 0.417 \quad 179.80 \pm 1.295$ $612.46 \pm 2.940 \quad 173.30 \pm 0.797 \quad 589.27 \pm 3.241$ $64.60 \pm 0.297 \quad 35.28 \pm 0.152 \quad 76.63 \pm 0.330$ $405.36 \pm 2.351 \quad 89.20 \pm 0.660 \quad 444.92 \pm 2.625$ $235.71 \pm 1.202 \quad 52.97 \pm 0.254 \quad 233.12 \pm 1.282$ $518.25 \pm 3.887110 .06 \pm 0.605495 .14 \pm 2.971$ $143.51 \pm 0.517 \quad 73.33 \pm 0.477 \quad 126.78 \pm 0.710$ $398.21 \pm 2.389107 .12 \pm 0.557 \quad 258.27 \pm 1.240$ $252.07 \pm 1.714 \quad 68.46 \pm 0.486 \quad 210.82 \pm 1.328$ $562.46 \pm 3.037131 .90 \pm 0.699557 .66 \pm 1.952$ $56.60 \pm 0.283 \quad 12.19 \pm 0.051 \quad 74.25 \pm 0.401$ $379.37 \pm 1.745 \quad 30.35 \pm 0.106 \quad 370.31 \pm 2.037$ $187.46 \pm 1.237 \quad 24.29 \pm 0.172 \quad 186.03 \pm 1.172$ $425.60 \pm 2.128 \quad 42.93 \pm 0.275 \quad 420.80 \pm 2.946$ $57.69 \pm 0.306 \quad 51.14 \pm 0.292 \quad 61.92 \pm 0.223$ $138.50 \pm 0.734 \quad 118.23 \pm 0.698 \quad 140.36 \pm 0.926$ $50.49 \pm 0.237 \quad 39.18 \pm 0.208 \quad 53.01 \pm 0.223$ $137.78 \pm 0.951 \quad 77.23 \pm 0.502 \quad 127.88 \pm 0.857$ $26.17 \pm 0.126 \quad 16.16 \pm 0.116 \quad 34.76 \pm 0.212$ $49.92 \pm 0.329 \quad 23.91 \pm 0.148 \quad 68.47 \pm 0.288$ $33.85 \pm 0.213 \quad 14.47 \pm 0.071 \quad 53.57 \pm 0.332$ $101.32 \pm 0.476 \quad 22.07 \pm 0.150 \quad 77.35 \pm 0.503$ $483.91 \pm 2.129220 .60 \pm 1.103481 .24 \pm 1.732$ $952.37 \pm 3.333506 .76 \pm 3.446952 .09 \pm 5.713$ $556.89 \pm 3.954339 .43 \pm 1.290558 .44 \pm 2.513$ $1015.36 \pm 6.803714 .08 \pm 3.3561036 .72 \pm 7.568$ $369.86 \pm 2.589 \quad 88.85 \pm 0.560 \quad 381.67 \pm 1.756$ $726.20 \pm 3.631 \quad 224.07 \pm 1.681 \quad 721.52 \pm 5.267$ $417.95 \pm 1.546 \quad 179.15 \pm 0.734 \quad 465.45 \pm 2.607$ $744.55 \pm 2.829383 .71 \pm 2.417 \quad 794.67 \pm 4.132$ $215.38 \pm 0.797 \quad 143.23 \pm 1.003 \quad 326.80 \pm 1.144$ $669.00 \pm 4.884289 .76 \pm 2.173856 .94 \pm 3.171$ $550.84 \pm 3.085139 .27 \pm 0.836 \quad 577.89 \pm 2.658$ $1209.81 \pm 5.202261 .73 \pm 1.1521198 .37 \pm 6.951$ $151.79 \pm 0.911 \quad 42.68 \pm 0.213 \quad 238.24 \pm 0.953$ $680.42 \pm 3.062 \quad 70.20 \pm 0.498 \quad 895.33 \pm 4.119$ $470.16 \pm 2.492 \quad 49.08 \pm 0.260 \quad 492.91 \pm 3.549$ $995.65 \pm 7.368 \quad 93.32 \pm 0.532 \quad 901.45 \pm 4.417$ $136.73 \pm 0.697 \quad 62.10 \pm 0.286 \quad 129.74 \pm 0.830$ $466.03 \pm 2.004149 .13 \pm 1.044390 .54 \pm 1.523$ $287.00 \pm 1.292 \quad 91.86 \pm 0.340 \quad 265.26 \pm 1.989$ $631.38 \pm 2.273 \quad 175.62 \pm 1.089 \quad 620.02 \pm 4.278$ $166.89 \pm 0.668 \quad 47.58 \pm 0.257 \quad 183.54 \pm 0.771$
229.08 ± 0.985 75.75 ± 0.439 168.14 ± 0.639 76.37 ± 0.512 174.84 ± 1.119 40.23 ± 0.237 91.61 ± 0.330 53.64 ± 0.290 110.00 ± 0.693 72.84 ± 0.408 102.96 ± 0.607 66.95 ± 0.355 124.78 ± 0.811 11.99 ± 0.068 36.62 ± 0.238 23.20 ± 0.123 39.36 ± 0.216 50.63 ± 0.329 118.81 ± 0.547 40.15 ± 0.281 78.27 ± 0.485 17.23 ± 0.098 25.22 ± 0.126 14.99 ± 0.060 22.62 ± 0.120 214.49 ± 0.922 509.44 ± 2.904 331.87 ± 2.091 709.92 ± 4.402 122.23 ± 0.794 225.17 ± 1.689 252.45 ± 1.136 374.37 ± 1.535 150.36 ± 0.647 295.03 ± 1.623 149.20 ± 1.059 255.01 ± 1.811 58.94 ± 0.224 102.36 ± 0.543 72.95 ± 0.445 203.06 ± 1.320 61.90 ± 0.279 143.18 ± 0.745 84.31 ± 0.304 165.96 ± 1.195 65.17 ± 0.332

Table A.4: - continued from previous page

Instance	Average cost per time unit and 95% confidence interval of heuristic n			
	5	6	7	8
$\left\{\|\mathcal{N}\|,\left\|\mathcal{N}^{d}\right\|, \hat{T}, N, \lambda_{i}, \gamma, \alpha_{i}, \beta_{i}\right\}$	DDSR	DDSR-R	DDDR	DDDR-R
$230\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$	404.16 ± 2.061	52.38 ± 0.251	347.79 ± 1.739	54.02 ± 0.297
$231\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$	220.12 ± 1.321	46.49 ± 0.246	229.89 ± 1.632	61.57 ± 0.252
$232\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$	466.78 ± 2.381	75.13 ± 0.398	454.53 ± 2.227	93.33 ± 0.504
$233\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \frac{\left.\sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil}{\frac{L \mathcal{N}}{}}\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}\right.$	64.99 ± 0.266	57.44 ± 0.236	76.31 ± 0.305	60.18 ± 0.439
$\left.234\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil}\right\rceil L^{\frac{2}{10}} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$	143.14 ± 0.601	119.32 ± 0.752	149.56 ± 0.987	123.08 ± 0.886
$235\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$	81.05 ± 0.559	66.18 ± 0.351	82.34 ± 0.305	65.99 ± 0.271
$236\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$	218.19 ± 1.418	124.40 ± 0.610	192.66 ± 0.828	119.59 ± 0.706
$237\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$	47.73 ± 0.167	33.94 ± 0.139	42.95 ± 0.159	26.86 ± 0.175
$238\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$	71.34 ± 0.321	47.21 ± 0.194	81.34 ± 0.455	37.51 ± 0.154
$239\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$	49.10 ± 0.363	24.32 ± 0.136	50.99 ± 0.331	22.17 ± 0.126
$240\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$	242.87 ± 1.579	89.26 ± 0.544	181.69 ± 1.072	62.30 ± 0.424
$241\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	533.54 ± 3.628	253.58 ± 0.964	531.93 ± 2.660	254.47 ± 1.221
$242\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	998.80 ± 5.693	534.41 ± 3.474	999.15 ± 5.096	525.76 ± 3.155
$243\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2}, L 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	577.45 ± 2.483	348.36 ± 2.543	574.21 ± 4.249	350.50 ± 1.437
$244\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil},\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}\right.$	1064.26 ± 6.173	744.29 ± 5.508	1071.99 ± 6.432	749.02 ± 4.869
$245\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left.\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	408.53 ± 1.552	105.85 ± 0.476	406.78 ± 2.278	114.88 ± 0.448
$246\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	762.97 ± 2.747	265.72 ± 1.541	767.17 ± 4.373	264.24 ± 1.744
$247\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	427.40 ± 2.906	182.71 ± 0.932	422.47 ± 2.915	172.26 ± 1.292
$248\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	895.43 ± 5.283	529.47 ± 2.065	883.47 ± 4.594	513.36 ± 3.799
$249\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	255.54 ± 1.789	183.17 ± 1.007	330.17 ± 2.245	187.82 ± 1.089
$250\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	862.27 ± 3.104	334.48 ± 2.274	737.16 ± 4.644	345.99 ± 1.903
$251\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	576.21 ± 3.169	171.60 ± 0.961	544.61 ± 2.396	171.54 ± 0.841
$252\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil},\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}\right.$	1312.57 ± 7.088	302.26 ± 1.662	1312.71 ± 6.957	306.44 ± 1.073
$253\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	176.47 ± 0.635	60.69 ± 0.449	372.17 ± 2.010	65.78 ± 0.283
$254\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	615.95 ± 4.004	114.20 ± 0.856	977.31 ± 5.180	143.89 ± 0.676
$255\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	522.50 ± 2.717	89.57 ± 0.493	542.86 ± 2.280	120.40 ± 0.710
$256\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	1078.46 ± 5.500	149.60 ± 0.898	1051.05 ± 3.784	193.10 ± 0.734

Table A.5: Average cost per time unit and 95% confidence interval for each instance of large asymmetric test bed: heuristic 1-4

Instance ${ }^{\text {a }}$	Average cost per time unit and 95% confidence interval of heuristic n			
	1	2	3	4
$\left\{\|\mathcal{N}\|,\left\|\mathcal{N}^{d}\right\|, \hat{T}, N, \lambda_{i}, \gamma, \alpha_{i}, \beta_{i}\right\}$	SDSR	SDSR-R	SDDR	SDDR-R
$\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2}, L 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}} 7, L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\| 7, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	22.12 ± 0.086	12.09 ± 0.091	17.85 ± 0.130	12.39 ± 0.066
$2\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	59.24 ± 0.243	23.84 ± 0.162	47.82 ± 0.273	23.09 ± 0.152
$3 \quad\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	32.99 ± 0.208	18.70 ± 0.071	30.85 ± 0.213	19.76 ± 0.122
$4\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil}, \downarrow \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	88.72 ± 0.435	104.96 ± 0.577	90.95 ± 0.437	105.96 ± 0.689
$\left.\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil, L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	16.59 ± 0.105	7.42 ± 0.055	12.93 ± 0.066	7.19 ± 0.047
$\left.6 \quad\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil, L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	48.55 ± 0.252	14.04 ± 0.105	32.37 ± 0.214	13.02 ± 0.090
$7\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	28.48 ± 0.205	12.92 ± 0.089	40.42 ± 0.299	58.54 ± 0.340
$\left.8 \quad\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil, L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	84.19 ± 0.446	101.44 ± 0.680	83.35 ± 0.475	101.10 ± 0.677
$9 \quad\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	10.85 ± 0.049	10.24 ± 0.065	11.16 ± 0.057	10.06 ± 0.057
$10\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	22.37 ± 0.078	20.32 ± 0.089	22.52 ± 0.095	20.75 ± 0.131
$\left.11\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil, L \frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}$	11.71 ± 0.052	9.38 ± 0.070	11.65 ± 0.052	9.35 ± 0.056
$\underline{12\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.001 ; 0.01], 1,50,0.05 \cdot \alpha_{i}\right\}}$	29.69 ± 0.146	20.02 ± 0.114	25.86 ± 0.186	18.70 ± 0.138
				nued on next page

Table A.5: - continued from previous page

Table A.5: - continued from previous page

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | Average cost per time unit and 95% confidence interval of heuristic n |

Table A.5: - continued from previous page

Table A.5: - continued from previous page

Continued on next page

Table A.5: - continued from previous page

Table A.5: - continued from previous page

Instance ${ }^{\mathrm{a}}$$\left\{\|\mathcal{N}\|,\left\|\mathcal{N}^{d}\right\|, \hat{T}, N\right.$	Average cost per time unit and 95% confidence interval of heuristic n			
	$\begin{gathered} 1 \\ \text { SDSR } \end{gathered}$	$\stackrel{2}{\text { SDSR-R }}$	$\begin{gathered} 3 \\ \operatorname{SDDR} \end{gathered}$	$\begin{gathered} 4 \\ \text { SDDR-R } \end{gathered}$
$\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	1012.06 ± 7.489	140.24 ± 8.552	1006.10 ± 6.640	142.09 ± 4.5
$\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil},\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}\right.$	2133.81 ± 15.790	2071.99 ± 8.910	2126.74 ± 9.145	069.60 ± 10.555
$\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left[1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	603.07 ± 2.533	449.18 ± 2.785	598.47 ± 2.214	456.07 ± 1.916
$\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left[1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	1710.02 ± 8.721	1531.01 ± 8.727	1707.55 ± 7.342	1504.59 ± 9.930
$\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left[1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left.L \frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	960.21 ± 5.281	1062.78 ± 6.377	961.02 ± 5.190	1078.47 ± 5.932
$\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	2048.46 ± 11.471	2131.39 ± 10.444	2059.13 ± 14.826	130.37 ± 11.078
$\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	163.69 ± 0.769	115.25 ± 0.703	215.61 ± 1.488	121.79 ± 0.743
$\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left.\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	506.06 ± 2.378	265.11 ± 1.935	405.98 ± 3.045	259.64 ± 1.428
$\left.\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left[1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil, L \frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	407.41 ± 1.630	124.86 ± 0.737	354.79 ± 1.632	121.10 ± 0.799
$\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	1643.96 ± 5.754	343.81 ± 1.341	1655.72 ± 10.431	312.59 ± 2.282
$\left\{100,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right],\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	95.06 ± 0.352	59.37 ± 0.338	184.65 ± 1.016	60.92 ± 0.366
$\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	677.72 ± 2.779	143.13 ± 0.615	964.93 ± 6.658	185.57 ± 0.724
$\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil\right.$, $\left.\left\llcorner\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	353.74 ± 1.415	80.28 ± 0.586	327.48 ± 1.572	90.36 ± 0.651
$\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil}\right],\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	1627.15 ± 9.600	250.96 ± 1.355	1923.82 ± 14.044	1600.92 ± 7.524

${ }^{\mathrm{a}}$ Here, $\alpha_{i}=50$ means $U[50 ; 100]$ and $\alpha_{i}=500$ means $U[100 ; 500]$.

Table A.6: Average cost per time unit and 95% confidence interval for each instance of large asymmetric test bed: heuristic 5-8

Table A.6: - continued from previous page

Table A.6: - continued from previous page
Average cost per time unit and 95% confidence interval of heuristic n

Instance ${ }^{\text {a }}$
$\left\{|\mathcal{N}|,\left|\mathcal{N}^{d}\right|, \hat{T}, N, \lambda_{i}, \gamma, \alpha_{i}, \beta_{i}\right\}$

5	6	7	8
DDSR	DDSR-R	DDDR	DDDR-R

$70\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.05 \cdot \alpha_{i}\right\} 142.13 \pm 0.85319 .26 \pm 0.110 \quad 127.02 \pm 0.749$ $71\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 71.63 \pm 0.380 \quad 12.46 \pm 0.066 \quad 65.76 \pm 0.270$ $72\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.05 \cdot \alpha_{i}\right\} 160.03 \pm 0.86430 .29 \pm 0.121 \quad 158.79 \pm 0.746$ $73\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 36.05 \pm 0.227 \quad 32.36 \pm 0.165 \quad 36.29 \pm 0.261$ $74\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 90.92 \pm 0.482 \quad 78.46 \pm 0.518 \quad 86.52 \pm 0.545$ $75\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 39.21 \pm 0.286 \quad 32.23 \pm 0.187 \quad 39.31 \pm 0.279$ $76\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 90.14 \pm 0.658 \quad 52.91 \pm 0.254 \quad 82.07 \pm 0.476$ $77\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 13.89 \pm 0.049 \quad 9.66 \pm 0.071 \quad 12.15 \pm 0.060$ $78\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 63.31 \pm 0.418 \quad 35.30 \pm 0.159 \quad 44.92 \pm 0.243$ $79\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 24.84 \pm 0.114 \quad 11.68 \pm 0.051 \quad 21.34 \pm 0.126$ $80\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.05 \cdot \alpha_{i}\right\} 69.45 \pm 0.438 \quad 21.52 \pm 0.114 \quad 55.94 \pm 0.308$ $81\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 207.90 \pm 1.143122 .11 \pm 0.488209 .34 \pm 1.298$ $82\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 389.57 \pm 1.909252 .50 \pm 1.515390 .85 \pm 1.954$ $83\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 217.64 \pm 1.480163 .10 \pm 1.158216 .45 \pm 1.493$ $84\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 377.71 \pm 2.833296 .93 \pm 2.168378 .28 \pm 1.929$ $85\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 187.02 \pm 1.02964 .70 \pm 0.278 \quad 185.75 \pm 1.077$ $86\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 299.48 \pm 1.138113 .18 \pm 0.804309 .75 \pm 1.951$ $87\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 174.48 \pm 0.83791 .40 \pm 0.521 \quad 174.19 \pm 1.202$ $88\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 306.38 \pm 2.083178 .69 \pm 1.322310 .52 \pm 1.118$ $89\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 135.45 \pm 0.610106 .40 \pm 0.458142 .50 \pm 0.955$ $90\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 356.19 \pm 1.354196 .63 \pm 0.728300 .87 \pm 1.986$ $91\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 214.89 \pm 0.988 \quad 80.60 \pm 0.282 \quad 205.78 \pm 1.296$
 $3\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 162.90 \pm 0.88044 .50 \pm 0.276 \quad 182.62 \pm 0.822$ $94\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 312.51 \pm 1.938 \quad 49.72 \pm 0.293 \quad 361.44 \pm 1.735$ $\left.95\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N}\right\rceil}\right\rceil \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 167.05 \pm 0.885 \quad 26.63 \pm 0.154137 .39 \pm 1.017$ $96\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.05 \cdot \alpha_{i}\right\} \quad 352.36 \pm 2.255 \quad 47.79 \pm 0.306 \quad 348.44 \pm 2.125$ $97\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 91.79 \pm 0.542 \quad 51.32 \pm 0.195 \quad 78.00 \pm 0.413$ $98\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 239.32 \pm 1.005 \quad 97.34 \pm 0.399210 .89 \pm 1.434$ $99\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 132.27 \pm 0.860 \quad 58.68 \pm 0.381 \quad 122.65 \pm 0.429$ $100\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 252.81 \pm 1.567116 .89 \pm 0.818253 .50 \pm 1.344$ $101\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 75.76 \pm 0.568 \quad 27.12 \pm 0.119 \quad 81.12 \pm 0.487$ $102\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} 195.87 \pm 0.88146 .41 \pm 0.283183 .21 \pm 1.008$ $103\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} 85.50 \pm 0.445 \quad 26.63 \pm 0.141 \quad 81.85 \pm 0.598$ $104\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} 198.53 \pm 1.29062 .77 \pm 0.395 \quad 198.60 \pm 1.072$ $105\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 37.57 \pm 0.244 \quad 34.46 \pm 0.248 \quad 41.51 \pm 0.241$ $106\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 100.71 \pm 0.735 \quad 91.43 \pm 0.448 \quad 104.28 \pm 0.553$ $107\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 40.15 \pm 0.165 \quad 34.95 \pm 0.196 \quad 44.48 \pm 0.298$ $108\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 118.89 \pm 0.773 \quad 70.86 \pm 0.432 \quad 98.69 \pm 0.395$ $109\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 16.43 \pm 0.066 \quad 13.62 \pm 0.060 \quad 26.05 \pm 0.151$ $110\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 68.35 \pm 0.273 \quad 46.14 \pm 0.254 \quad 57.38 \pm 0.252$ $111\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 53.00 \pm 0.276 \quad 29.98 \pm 0.147 \quad 41.53 \pm 0.228$ $112\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 98.52 \pm 0.404 \quad 49.40 \pm 0.296 \quad 75.52 \pm 0.446$ $113\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 237.62 \pm 1.735145 .37 \pm 0.552234 .70 \pm 1.713$ $114\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 425.42 \pm 2.127288 .16 \pm 1.844424 .15 \pm 2.333$ $115\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N}\right\rceil},\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 235.94 \pm 1.133175 .92 \pm 1.091234 .10 \pm 1.171\right.$
22.03 ± 0.110
12.27 ± 0.080
35.91 ± 0.165
31.73 ± 0.140
78.95 ± 0.466
31.48 ± 0.161
52.80 ± 0.264
7.28 ± 0.028
23.92 ± 0.093
11.44 ± 0.059
19.98 ± 0.122
119.28 ± 0.513
250.66 ± 1.454
163.68 ± 0.737
294.14 ± 2.147
81.20 ± 0.487
136.45 ± 0.955
93.42 ± 0.448
180.66 ± 1.102
107.35 ± 0.526
195.20 ± 0.800
85.79 ± 0.635
142.47 ± 0.969
59.45 ± 0.262
66.03 ± 0.258
24.66 ± 0.101
50.40 ± 0.192
49.03 ± 0.353
93.79 ± 0.328
54.79 ± 0.389
109.66 ± 0.570
27.82 ± 0.100
46.71 ± 0.308
25.48 ± 0.171
59.69 ± 0.430
36.00 ± 0.130
89.05 ± 0.606
34.70 ± 0.163
64.37 ± 0.380
15.64 ± 0.100
34.23 ± 0.144
23.08 ± 0.168
41.19 ± 0.185
142.36 ± 1.068
281.10 ± 1.911
174.04 ± 1.044

Table A.6: - continued from previous page
Average cost per time unit and 95% confidence interval of heuristic n

Instance ${ }^{\mathrm{a}}$
$\left\{|\mathcal{N}|,\left|\mathcal{N}^{d}\right|, \hat{T}, N, \lambda_{i}, \gamma, \alpha_{i}, \beta_{i}\right\}$
DDSR DDSR-R DDDR DDDR-R
$\left.116\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{\mid \mathcal{N}}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}$ $\left.117\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right], L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 202.78 \pm 0.953 \quad 78.42 \pm 0.282 \quad 204.35 \pm 1.512$ $118\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 358.67 \pm 1.255161 .93 \pm 0.761363 .60 \pm 2.654$ $\left.119\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 187.98 \pm 1.29799 .42 \pm 0.467186 .55 \pm 0.858$ $\left.120\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\} \quad 336.20 \pm 1.446220 .78 \pm 0.949333 .29 \pm 1.866$ $121\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\left.\frac{2}{10} \cdot \right\rvert\, \mathcal{N}^{d}{ }_{\mid\rceil}, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}\right.\right.$ $122\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{\mid \mathcal{N T}}{N}\right\rceil}\right], L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}$ $123\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N}\right\rceil}, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}$ $124\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\left.\frac{|\mathcal{N}|}{N}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}}\right.\right.$ $125\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right],\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}$ $126\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|_{\mid}, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}\right.$ $127\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}$ $128\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right],\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 4,500,0.05 \cdot \alpha_{i}\right\}\right.$ $\left.\left.129\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2}, L 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.130\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $131\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil\right.$, $\left.\left.L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.132\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $133\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $134\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.135\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $136\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right],\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.137\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.138\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $139\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.140\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.141\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N} \right\rvert\,}\right], L_{\frac{2}{10}} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.142\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $143\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}\right.$ $144\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N} \right\rvert\,}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,50,0.1 \cdot \alpha_{i}\right\}$ $145\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right], L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $146\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right], L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $147\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right], L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $148\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $149\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}} 7, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}\right.$ $150\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right],\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 1, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}\right.$ $\left.151\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right], L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $152\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right], L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.153\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.154\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2}, L 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right], L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $155\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.156\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $157\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $158\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right], L^{2} \cdot \frac{\mathcal{N}^{d}}{}|1|, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.159\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $160\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|^{2},\left[1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,50,0.1 \cdot \alpha_{i}\right\}$ $\left.161\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$
$148.69 \pm 0.907115 .63 \pm 0.740181 .88 \pm 1.055$ $408.03 \pm 2.367230 .85 \pm 1.339364 .89 \pm 1.824$ $264.27 \pm 1.031110 .21 \pm 0.727224 .33 \pm 1.301$ $513.91 \pm 3.803202 .57 \pm 1.458510 .83 \pm 3.780$ $178.60 \pm 0.643 \quad 73.58 \pm 0.390 \quad 181.42 \pm 0.907$ $386.81 \pm 2.28298 .18 \pm 0.668422 .41 \pm 2.366$ $252.82 \pm 1.46673 .44 \pm 0.264247 .44 \pm 1.683$ $460.59 \pm 3.178131 .43 \pm 0.631425 .19 \pm 1.828$ $19.94 \pm 0.136 \quad 10.66 \pm 0.078 \quad 17.06 \pm 0.128$ $77.22 \pm 0.363 \quad 23.49 \pm 0.139 \quad 53.96 \pm 0.367$ $39.15 \pm 0.141 \quad 11.66 \pm 0.063 \quad 32.36 \pm 0.197$ $104.69 \pm 0.660 \quad 31.97 \pm 0.125 \quad 105.38 \pm 0.400$ $24.51 \pm 0.142 \quad 7.48 \pm 0.026 \quad 22.13 \pm 0.108$ $63.39 \pm 0.431 \quad 11.67 \pm 0.082 \quad 40.37 \pm 0.206$ $32.95 \pm 0.247 \quad 7.64 \pm 0.054 \quad 30.80 \pm 0.157$ $81.86 \pm 0.450 \quad 16.94 \pm 0.122 \quad 78.91 \pm 0.410$ $10.62 \pm 0.045 \quad 10.30 \pm 0.040 \quad 11.32 \pm 0.067$ $22.56 \pm 0.086 \quad 20.15 \pm 0.141 \quad 23.48 \pm 0.110$ $12.25 \pm 0.073 \quad 10.00 \pm 0.068 \quad 11.93 \pm 0.084$ $44.42 \pm 0.262 \quad 22.25 \pm 0.091 \quad 32.67 \pm 0.170$ $13.12 \pm 0.070 \quad 11.11 \pm 0.049 \quad 7.85 \pm 0.042$ $15.04 \pm 0.066 \quad 11.06 \pm 0.040 \quad 10.56 \pm 0.067$ $11.57 \pm 0.065 \quad 6.98 \pm 0.045 \quad 9.34 \pm 0.033$ $50.51 \pm 0.379 \quad 19.46 \pm 0.095 \quad 33.67 \pm 0.219$ $81.08 \pm 0.543 \quad 38.85 \pm 0.218 \quad 81.35 \pm 0.537$ $156.26 \pm 0.85983 .27 \pm 0.300 \quad 156.07 \pm 0.780$ $88.66 \pm 0.372 \quad 55.10 \pm 0.198 \quad 87.79 \pm 0.518$ $168.32 \pm 0.606120 .14 \pm 0.577171 .38 \pm 0.703$ $66.36 \pm 0.292 \quad 19.60 \pm 0.092 \quad 69.13 \pm 0.346$ $117.44 \pm 0.787 \quad 45.48 \pm 0.318 \quad 118.13 \pm 0.721$ $72.23 \pm 0.347 \quad 37.89 \pm 0.250 \quad 73.49 \pm 0.323$ $135.93 \pm 0.61283 .15 \pm 0.491 \quad 144.45 \pm 1.040$ $36.79 \pm 0.199 \quad 25.31 \pm 0.177 \quad 33.71 \pm 0.152$ $128.29 \pm 0.539 \quad 62.65 \pm 0.457 \quad 93.92 \pm 0.573$ $89.06 \pm 0.338 \quad 27.37 \pm 0.142 \quad 60.67 \pm 0.431$ $215.12 \pm 1.183 \quad 54.76 \pm 0.361 \quad 212.11 \pm 0.870$ $29.66 \pm 0.151 \quad 13.50 \pm 0.063 \quad 25.01 \pm 0.163$ $115.63 \pm 0.543 \quad 24.04 \pm 0.168 \quad 77.59 \pm 0.497$ $75.52 \pm 0.430 \quad 15.37 \pm 0.069 \quad 50.21 \pm 0.286$ $177.44 \pm 1.295 \quad 33.27 \pm 0.186 \quad 168.43 \pm 0.977$ $36.52 \pm 0.172 \quad 20.24 \pm 0.087 \quad 30.41 \pm 0.140$
338.69 ± 2.134
119.48 ± 0.514
162.21 ± 1.054
98.97 ± 0.435
223.21 ± 0.826
116.84 ± 0.432
232.35 ± 1.417
110.05 ± 0.418
202.04 ± 1.394
69.62 ± 0.459
107.71 ± 0.539
85.86 ± 0.352
148.27 ± 1.023
10.59 ± 0.060
21.90 ± 0.107
11.34 ± 0.051
30.14 ± 0.211
7.76 ± 0.049
11.34 ± 0.050
7.17 ± 0.051
20.05 ± 0.098
10.30 ± 0.061
19.83 ± 0.091
9.52 ± 0.063
18.81 ± 0.105
4.89 ± 0.024
7.48 ± 0.030
5.94 ± 0.029
14.89 ± 0.074
37.55 ± 0.161
83.14 ± 0.582
53.99 ± 0.378
122.54 ± 0.711
41.82 ± 0.159
60.58 ± 0.394
36.68 ± 0.136
95.60 ± 0.335
25.54 ± 0.161
61.32 ± 0.380
25.74 ± 0.188
53.46 ± 0.262
13.39 ± 0.094
24.21 ± 0.155
15.94 ± 0.078
37.66 ± 0.230
19.30 ± 0.131

Table A.6: - continued from previous page

	Average cost per time unit and 95% confidence interval of heuristic n			
Instance ${ }^{\text {a }}$	5	6	7	8
$\left\{\|\mathcal{N}\|,\left\|\mathcal{N}^{d}\right\|, \hat{T}, N, \lambda_{i}, \gamma, \alpha_{i}, \beta_{i}\right\}$	DDSR	DDSR-R	DDDR	DDDR-R

$162\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N}\right\rceil}, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $163\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $164\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.165\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.166\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.167\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $168\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $169\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $170\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $171\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $172\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $173\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $174\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $175\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $176\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.177\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $178\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N |}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.179\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $180\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N}\right\rceil}, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.\left.181\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2}, L 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.182\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2}, L 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right| 7, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $183\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}} 7, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $184\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $185\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $186\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.\left.187\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2}, L 1 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N} \right\rvert\,}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $188\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N}\right\rceil}, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $189\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.190\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $191\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $192\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,50,0.1 \cdot \alpha_{i}\right\}$ $\left.193\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.194\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.195\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.196\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $07\left\{100\left(0.4 \cdot\left|N^{d}\right|\right)^{2},\left[1.5 \cdot \sqrt{|N|}, \frac{1}{1} \cdot\left|N^{d}\right|, U 0.001,0.01,1,500,0.1 \cdot \alpha_{i}\right\}-72.91 \pm 0.2314 .81 \pm 0.104\right.$ $\left.198\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\} \quad 229.13 \pm 0.917 \quad 20.06 \pm 0.116 \quad 192.92 \pm 0.907$ $199\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\} \quad 96.42 \pm 0.376 \quad 12.31 \pm 0.087 \quad 81.95 \pm 0.303$ $\left.200\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\} \quad 265.08 \pm 0.98129 .93 \pm 0.108 \quad 263.05 \pm 1.499$ $\left.201\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.202\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.203\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.204\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$ $205\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right.$ $206\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right.$ $207\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\} \quad 31.59 \pm 0.130 \quad 16.20 \pm 0.081 \quad 28.70 \pm 0.198$
$\left.\alpha_{i}\right\} \quad 72.91 \pm 0.423 \quad 14.81 \pm 0.104 \quad 66.10 \pm 0.251$
41.26 ± 0.169
$120.06 \pm 0.85244 .43 \pm 0.253 \quad 87.14 \pm 0.619$ $73.18 \pm 0.315 \quad 30.71 \pm 0.111 \quad 67.97 \pm 0.483$ $155.37 \pm 1.072 \quad 68.83 \pm 0.248 \quad 155.03 \pm 0.853$ $48.11 \pm 0.221 \quad 23.03 \pm 0.081 \quad 37.84 \pm 0.174$ $117.23 \pm 0.832 \quad 36.25 \pm 0.225 \quad 87.43 \pm 0.437$ $60.63 \pm 0.358 \quad 23.66 \pm 0.114 \quad 53.74 \pm 0.306$ $133.92 \pm 0.53656 .91 \pm 0.233124 .63 \pm 0.511$ $15.66 \pm 0.113 \quad 14.59 \pm 0.099 \quad 17.29 \pm 0.085$ $34.02 \pm 0.245 \quad 29.42 \pm 0.150 \quad 35.59 \pm 0.128$ $24.99 \pm 0.130 \quad 19.87 \pm 0.103 \quad 25.36 \pm 0.150$ $77.41 \pm 0.356 \quad 47.50 \pm 0.171 \quad 66.03 \pm 0.489$ $21.31 \pm 0.134 \quad 20.54 \pm 0.082 \quad 12.58 \pm 0.054$ $41.14 \pm 0.284 \quad 31.66 \pm 0.190 \quad 33.16 \pm 0.159$ $27.38 \pm 0.162 \quad 20.24 \pm 0.073 \quad 21.50 \pm 0.075$ $133.14 \pm 0.546 \quad 77.00 \pm 0.293 \quad 82.01 \pm 0.525$ $108.58 \pm 0.391 \quad 62.95 \pm 0.315 \quad 108.29 \pm 0.455$ $205.15 \pm 1.272131 .33 \pm 0.630205 .72 \pm 1.029$ $116.84 \pm 0.80681 .85 \pm 0.426 \quad 117.54 \pm 0.705$ $214.70 \pm 1.524168 .18 \pm 1.211214 .91 \pm 0.903$ $91.69 \pm 0.578 \quad 42.80 \pm 0.197 \quad 87.96 \pm 0.413$ $171.49 \pm 1.16693 .23 \pm 0.559 \quad 171.68 \pm 1.082$ $93.58 \pm 0.646 \quad 57.38 \pm 0.413 \quad 93.12 \pm 0.466$ $188.75 \pm 0.698133 .62 \pm 0.922186 .62 \pm 0.858$ $73.28 \pm 0.381 \quad 46.72 \pm 0.182 \quad 60.47 \pm 0.375$ $194.27 \pm 0.79792 .11 \pm 0.405 \quad 138.88 \pm 0.750$ $145.85 \pm 0.613 \quad 50.47 \pm 0.353 \quad 100.06 \pm 0.640$ $310.00 \pm 1.829110 .80 \pm 0.776309 .59 \pm 1.331$ $64.64 \pm 0.297 \quad 33.91 \pm 0.220 \quad 49.90 \pm 0.339$ $167.52 \pm 0.65363 .95 \pm 0.339 \quad 113.71 \pm 0.796$ $121.59 \pm 0.535 \quad 40.36 \pm 0.182 \quad 87.81 \pm 0.606$ $279.33 \pm 1.89997 .75 \pm 0.371263 .81 \pm 0.950$ $100.88 \pm 0.545 \quad 43.79 \pm 0.263 \quad 84.70 \pm 0.584$ $251.91 \pm 1.20969 .54 \pm 0.341 \quad 183.71 \pm 1.066$ $147.96 \pm 0.68135 .67 \pm 0.260 \quad 125.48 \pm 0.803$ $330.76+1.32386 .96+0.600-329.18+1.448$ $45.85 \pm 0.238 \quad 42.98 \pm 0.198 \quad 47.52 \pm 0.171$ $84.89 \pm 0.467 \quad 74.00 \pm 0.377 \quad 84.41 \pm 0.346$ $47.06 \pm 0.344 \quad 32.33 \pm 0.200 \quad 41.07 \pm 0.259$ $93.41 \pm 0.430 \quad 45.41 \pm 0.313 \quad 78.60 \pm 0.283$ $22.53 \pm 0.104 \quad 14.75 \pm 0.105 \quad 19.40 \pm 0.130$ $31.13 \pm 0.190 \quad 15.65 \pm 0.108 \quad 26.71 \pm 0.166$ +
29.69 ± 0.193
65.61 ± 0.446
18.05 ± 0.094
33.84 ± 0.152
22.93 ± 0.096
58.88 ± 0.218
15.02 ± 0.075
29.73 ± 0.113
19.77 ± 0.103
41.99 ± 0.227
9.72 ± 0.046
22.62 ± 0.133
16.25 ± 0.086
44.59 ± 0.254
61.81 ± 0.334
131.33 ± 0.683 82.75 ± 0.612 164.83 ± 1.203 53.75 ± 0.258 95.59 ± 0.468 57.39 ± 0.425 134.95 ± 0.769 43.39 ± 0.182 88.78 ± 0.559 49.50 ± 0.208 104.87 ± 0.703 29.27 ± 0.158 60.09 ± 0.397 39.41 ± 0.185 93.38 ± 0.570 44.10 ± 0.322 66.36 ± 0.385 35.95 ± 0.262 79.80 ± 0.519 19.87 ± 0.129 19.80 ± 0.107 11.41 ± 0.074 32.58 ± 0.156 42.86 ± 0.193 71.96 ± 0.403 31.32 ± 0.163 44.29 ± 0.244 12.75 ± 0.084 13.24 ± 0.068 14.55 ± 0.084

Table A.6: - continued from previous page
Average cost per time unit and 95% confidence interval of heuristic n

Instance ${ }^{\mathrm{a}}$
$\left\{|\mathcal{N}|,\left|\mathcal{N}^{d}\right|, \hat{T}, N, \lambda_{i}, \gamma, \alpha_{i}, \beta_{i}\right\}$

5	6	7	8
DDSR	DDSR-R	DDDR	DDDR-R

$208\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 1,500,0.1 \cdot \alpha_{i}\right\}$
$209\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $210\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $211\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $212\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $213\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $214\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $215\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $216\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $217\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.218\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $219\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $220\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $221\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $222\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N} \right\rvert\,}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $223\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $224\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 1,500,0.1 \cdot \alpha_{i}\right\}$ $\left.225\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $226\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $\left.227\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $\left.228\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $229\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right.$ $230\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\} \quad 270.50 \pm 2.02946 .33 \pm 0.306 \quad 233.05 \pm 0.979$ $231\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\} \quad 132.86 \pm 0.917 \quad 29.37 \pm 0.153 \quad 120.09 \pm 0.757$ $232\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\} \quad 319.59 \pm 1.342 \quad 62.30 \pm 0.380 \quad 320.13 \pm 2.209$ $\left.233\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\llcorner 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil, L \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $234\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $235\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $\left.236\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N}\right\rceil}\right\rceil, ~ ᄂ \frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $237\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $238\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $239\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $240\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.001 ; 0.01], 4,500,0.1 \cdot \alpha_{i}\right\}$ $241\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $242\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $243\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $244\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\llcorner 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $245\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $246\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $247\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $248\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\llcorner\frac{1}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $249\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $250\left\{180,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $251\left\{100,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$ $252\left\{180,\left(0.6 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1 \cdot \sqrt{\left.\frac{|\mathcal{N}|}{N}\right\rceil},\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}\right.$ $253\left\{100,\left(0.4 \cdot\left|\mathcal{N}^{d}\right|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{|\mathcal{N}|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left|\mathcal{N}^{d}\right|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$
23.10 ± 0.134
$0.66 \pm 0.457 \quad 26.05 \pm 0.112 \quad 61.55 \pm 0.326$
$305.29 \pm 1.771146 .14 \pm 0.716300 .32 \pm 2.132$ $556.08 \pm 3.559283 .24 \pm 2.096556 .43 \pm 3.728$ $328.81 \pm 1.480191 .70 \pm 1.035329 .60 \pm 1.384$ $636.93 \pm 2.229449 .71 \pm 2.024639 .62 \pm 3.390$ $259.81 \pm 1.27369 .76 \pm 0.502 \quad 269.70 \pm 1.672$ $441.12 \pm 2.470141 .91 \pm 1.036442 .93 \pm 3.012$ $226.80 \pm 1.47482 .93 \pm 0.290 \quad 310.94 \pm 1.399$ $487.06 \pm 3.263266 .51 \pm 1.173485 .52 \pm 2.670$ $138.58 \pm 0.582100 .26 \pm 0.451181 .47 \pm 0.871$ $392.87 \pm 2.082174 .10 \pm 1.114368 .38 \pm 1.510$ $339.91 \pm 2.039105 .05 \pm 0.420273 .65 \pm 1.861$ $780.13 \pm 3.511167 .60 \pm 1.257781 .89 \pm 4.770$ $91.37 \pm 0.530 \quad 32.86 \pm 0.246 \quad 185.52 \pm 1.150$ $366.07 \pm 1.977 \quad 44.62 \pm 0.330 \quad 379.21 \pm 2.199$ $274.76 \pm 1.51135 .05 \pm 0.245 \quad 280.55 \pm 1.459$ $612.28 \pm 4.28667 .05 \pm 0.255 \quad 573.08 \pm 2.006$ $103.68 \pm 0.746 \quad 46.90 \pm 0.202 \quad 77.47 \pm 0.449$ $331.28 \pm 1.19389 .50 \pm 0.671241 .10 \pm 1.664$ $166.75 \pm 0.850 \quad 51.61 \pm 0.351 \quad 140.68 \pm 0.619$ $383.00 \pm 1.340109 .65 \pm 0.658376 .33 \pm 1.656$ $68.82 \pm 0.255 \quad 22.30 \pm 0.100 \quad 79.98 \pm 0.544$ $56.48 \pm 0.220 \quad 49.00 \pm 0.343 \quad 50.83 \pm 0.315$ $96.20 \pm 0.616 \quad 83.65 \pm 0.586 \quad 99.60 \pm 0.428$ $81.42 \pm 0.415 \quad 55.21 \pm 0.210 \quad 71.86 \pm 0.474$ $132.29 \pm 0.833 \quad 74.91 \pm 0.390 \quad 110.92 \pm 0.510$ $32.70 \pm 0.128 \quad 26.50 \pm 0.114 \quad 26.83 \pm 0.164$ $100.25 \pm 0.461 \quad 70.00 \pm 0.266 \quad 71.57 \pm 0.508$ $50.38 \pm 0.373 \quad 30.36 \pm 0.206 \quad 41.55 \pm 0.307$ $132.46 \pm 0.636 \quad 58.53 \pm 0.299 \quad 106.01 \pm 0.541$ $332.95 \pm 1.299169 .25 \pm 0.677334 .13 \pm 2.072$ $634.11 \pm 4.502356 .07 \pm 2.243635 .77 \pm 3.815$ $380.53 \pm 1.712243 .73 \pm 1.365384 .78 \pm 2.693$ $653.62 \pm 4.902461 .59 \pm 2.816667 .68 \pm 4.340$ $268.40 \pm 1.369 \quad 79.24 \pm 0.578 \quad 264.10 \pm 1.637$ $476.00 \pm 3.570181 .18 \pm 0.670474 .61 \pm 2.848$ $280.37 \pm 1.234135 .30 \pm 0.825282 .15 \pm 1.044$ $512.55 \pm 2.358296 .59 \pm 1.097522 .07 \pm 2.036$ $163.06 \pm 0.669109 .84 \pm 0.428 \quad 209.20 \pm 0.732$ $461.47 \pm 2.446239 .35 \pm 0.838391 .27 \pm 2.387$ $347.47 \pm 2.50298 .89 \pm 0.593 \quad 307.67 \pm 1.938$ $858.54 \pm 6.010231 .93 \pm 0.905858 .35 \pm 3.176$ $96.14 \pm 0.596 \quad 50.13 \pm 0.376 \quad 181.33 \pm 1.070$
136.53 ± 0.983 280.65 ± 1.684 192.04 ± 0.999 457.45 ± 2.150 94.08 ± 0.358 139.77 ± 0.769 239.57 ± 1.605 259.71 ± 1.870 101.95 ± 0.551 176.62 ± 1.095 107.32 ± 0.773 162.35 ± 0.828
38.03 ± 0.281
58.29 ± 0.431
49.04 ± 0.275 118.74 ± 0.665

45.68 ± 0.192

86.50 ± 0.329
50.65 ± 0.355
104.47 ± 0.418
24.35 ± 0.093
46.41 ± 0.255
29.83 ± 0.164
60.56 ± 0.236
45.20 ± 0.316
82.80 ± 0.389
52.79 ± 0.391
76.61 ± 0.398
17.54 ± 0.068
39.98 ± 0.160
21.90 ± 0.103
46.58 ± 0.219
166.11 ± 0.997
354.49 ± 1.950
233.59 ± 1.705
468.83 ± 1.875
78.02 ± 0.289
180.23 ± 0.901
130.04 ± 0.728
304.54 ± 1.370
113.11 ± 0.599
234.26 ± 1.663
102.09 ± 0.613
217.88 ± 1.569
52.20 ± 0.313

Table A.6: - continued from previous page
Average cost per time unit and 95% confidence interval of heuristic n

Instance ${ }^{\text {a }}$ $\left\{\|\mathcal{N}\|,\left\|\mathcal{N}^{d}\right\|, \hat{T}, N, \lambda_{i}, \gamma, \alpha_{i}, \beta_{i}\right\}$	$\begin{gathered} 5 \\ \text { DDSR } \end{gathered}$	$\begin{gathered} 6 \\ \text { DDSR-R } \end{gathered}$	$\begin{gathered} 7 \\ \text { DDDR } \end{gathered}$	$\begin{gathered} 8 \\ \text { DDDR-R } \end{gathered}$
$254\left\{180,\left(0.4 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\frac{\|\mathcal{N}\|}{N}}\right\rceil,\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}$	530.43 ± 3.713	113.34 ± 0.453	630.46 ± 2.837	131.65 ± 0.922
$255\left\{100,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil},\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}\right.$	293.97 ± 1.999	56.59 ± 0.419	279.92 ± 1.176	60.93 ± 0.366
$256\left\{180,\left(0.6 \cdot\left\|\mathcal{N}^{d}\right\|\right)^{2},\left\lfloor 1.5 \cdot \sqrt{\left.\frac{\|\mathcal{N}\|}{N}\right\rceil},\left\lfloor\frac{2}{10} \cdot\left\|\mathcal{N}^{d}\right\|\right\rceil, U[0.01 ; 0.05], 4,500,0.1 \cdot \alpha_{i}\right\}\right.$	742.04 ± 3.636	141.06 ± 0.522	669.54 ± 2.410	172.06 ± 1.204

[^0]: ${ }^{1}$ NVDO. (2017, January 22). Maintenance en Service Logistiek slaan handen in één. Retrieved from: http://www.nvdo.nl/ nieuws/maintenance-en-service-logistiek-slaan-handen-ineen-3418/

[^1]: ${ }^{1}$ The well-know curse of dimensionality refers to the size of both the state space, action space and outcome space that increases rapidly in a high-dimensional MDP like we have formulated in Section 4 (Powell (2007)).
 ${ }^{2}$ An MDP is unichain if the transition matrix corresponding to every deterministic stationary policy consists of a single recurrent class and a (possibly empty) set of transient states (Puterman, 2014).

[^2]: ${ }^{3}$ For each average cost optimal stationary policy, the associated Markov chain has no two disjoint closed sets (Tijms, 1994).

[^3]: ${ }^{1}$ The Manhattan distance between two points in a grid is based on a strictly horizontal and/or vertical path (that is, along the grid lines), as opposed to the diagonal or 'as the crow flies' distance. The Manhattan distance is equal to the sum of the horizontal and vertical components.

[^4]: Continued on next page

