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Management Summary

Problem:
Given a service region consisting of several machines, repair base stations and service engineers.
Costs occur if a machine breaks down and a repairman does not reach it within the established
time window.

The goal is to minimize costs by finding a smart policy to manage the service engineers.

Approaches used:
• Compliance tables

• Heuristic approach

• Approximate Dynamic Programming

• Markov Decision Theory

Results:
– Accurate estimation of the repair gives significant advantage only in case of large repair times.

– Compliance tables perform well only for the systems with small distances.

– The heuristic policy increases the fraction of calls answered in time in up to 60% compared
to a static policy and compliance tables.

– The ADP approach outperforms all other approaches.

– If the repair times are large, the exact optimal policy is obtained from Markov Decision
theory.

Practical advice:
1. In case of limited computational resources, use heuristic approach.

2. If there is one given system and the time is not very limited, use ADP approach to obtain
high-performing policy.

3. In case of large repair times use the policy described in Section 9.2.
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1 Introduction
Buying expensive products (such as complex machines or software) a company wants assurance
that the product will have a long lifetime with a low downtime percentage. One of the ways a
manufacturer can assure this is to provide post-sale support of the product. Post-sale support
includes, for example, installation, warranties, provision of spare parts and maintenance service
contracts. In the modern world with demanding customers and new products released to the
market every day, providing good post-sale support is an important competitive advantage for
manufacturers [27].

As it is impossible to guarantee no-failure operation of a machine, corrective maintenance is an
essential part of post-sale support. The aim of corrective maintenance is to restore the operation
of a failed product in the shortest possible time. The challenge for the manufacturer is that the
corrective maintenance is performed unpredictably because the machine’s failure time is not known
a priori. The time between the failure is detected and a service engineer arrives at the location
of the failed machine is a good measure of the quality of corrective maintenance provided by a
manufacturer. In practice, the service level (i.e. the percentage of failures that should be fixed
within particular time window) is usually fixed in the repair contract between a manufacturer and
a buyer. If this service level is not met, the manufacturer pays a penalty to the buyer. This also
affects the reputation of the manufacturer.

To meet these service level agreements, the manufacturer should have a dispersed network of
service facilities such as spare part warehouses (if relevant) and engineers for field service, which
allows a quick response when a failure is reported. Construction and control of this network
requires finding a balance between customer satisfaction and low operational costs, which is not
always easy [26]. Customer satisfaction requires low response times for new failures. This can only
be ensured by having a service facility close to each customer with sufficient spare parts stock and a
ready-to-go service engineer. But maintaining a lot of service facilities is costly for a manufacturer.
So the limited operational costs lead to a network of a limited number of service facilities that
should be wisely operated to provide good coverage of the customers.

Problem
The goal of this thesis is to find a policy to manage field service engineers that helps manufacturers
to meet the agreements with customers. We ignore spare parts management as, first, it is well
studied in the literature (see [16] for the overview of this area) and, second, does not necessarily
apply to all application domains (consider, for example, software systems support). Moreover,
real-time management of the service engineers is a difficult problem in itself, which received little
attention in the research literature.

The global service network of a manufacturer is typically divided into several service regions
with several customer locations operating one or more machines in each of them. These service
regions are operated independently by different management centers. Apart from the machines,
a service region consists of several repairmen and repair base stations. Base stations are places,
where the repairmen spend their free time and prepare for future work.

There are three questions to be answered to design a service network for a given service region:

1. (strategic) Where should the base stations be located?

2. (tactical) How many repairmen are needed?

3. (operational) How to manage the repairmen to achieve the best performance?

Our study is focused on the last question, so we assume that the number of repairmen in the
region and the locations of the base stations are given and they are not allowed to change.

When one of the machines breaks down, the management center receives a call from the cus-
tomer. Then the manager decides how to react to the call: he can either dispatch an idle service
engineer to repair the machine, or wait until one of the busy engineers finishes his job and then
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Figure 1.1: Example of a decision to make. A call arrives from cus-
tomer location 6. Orange circles show the places that can be reached
by each repairman within the time limit set in the service agreement.

dispatch this engineer. After the repair the service the manager sends the engineer, that just
finished, either to one of the base stations or to one of the other customers with broken machines.

When a repairman is dispatched to repair a broken machine, other customers, that he was
responsible for, receive less coverage. This can potentially cause the situation when a call arrives
from one of them and there is no repairman to reach the place in time, so a penalty has to be
paid. To avoid this situation, it can be beneficial to reposition idle repairmen, so that they provide
better coverage of the region.

Our goal is to find the optimal policy to manage the service engineers, where optimal means
that this policy minimizes the long-term costs caused by violations of the service level agreement.
This is a complicated problem, as making a decision requires finding a good balance between
the possible costs from failures that were already reported and future failures. Dispatching and
relocation decisions increase the coverage in one part of the region and decreases the coverage of
another part.

Consider for example a situation depicted in Figure 1.1, where the call arrives from a customer
location 6 and the manager has to decide which repairman (from base station 1 or base station 2)
to dispatch. The first repairman is closer to the customer, so he can arrive earlier. But if he is
dispatched customer locations 1-5 stay uncovered. If a failure occurs in one of these locations, it
can not be fixed in time.

Approach
A policy can be divided into two parts: relocation policy and dispatching policy.

• The relocation policy prescribes the location of the idle service engineers according to the
system state. It answers two questions:

– Should the idle repairmen be relocated from their current locations to new base stations?
– To which base station should a repairman that just finished a repair be sent?

• The dispatching policy is responsible for managing received calls, so it answers the following
two questions:

– When should a repairman be dispatched immediately when a failure is reported or should
we wait for some repairmen to finish their jobs?

– Which repairman should be dispatched to the customer?

4



Depending on the approach, relocation and dispatching decisions can either be optimized sep-
arately, or as a combined policy.

The traditional technique to find optimal policies for such problems is Markov Decision theory.
However, the system that we consider is so complicated that these results can not be used in
practice due to the high computational complexity and the high memory usage.

For systems where the optimal policy can not be obtained, the goal is to find a policy perform-
ing as close to the optimal as possible. There are different approaches to find such policies. We
focus our study on heuristics and approximate dynamic programming. The former includes finding
separate heuristics for dispatching and relocation that, when used together, show a high perfor-
mance. The Approximate Dynamic Programming (ADP) approach improves the dispatching and
relocation jointly. It approximates the methods of Markov Decision theory in a way that reduces
computational times.

Contribution
The contribution of this thesis is as follows:

1. We discuss several scalable heuristics both for relocation and dispatching decisions and com-
pare their performance by means of simulation. This comparison is done for systems with
different properties, such as geography of the region and workload, to observe how the perfor-
mance of each policy depends on the system properties. For small instances the performance
of these heuristic policies is also compared to the performance of the optimal policy obtained
from Markov Decision theory results.

2. We propose an ADP approach for this problem. This approach helps to overcome the curse
of dimensionality for the systems of realistic size and outputs a policy close to optimal.

3. We obtain theoretical results for the systems with heavy and light traffic. Heavy load regimes
are associated with either long average service time or high frequency of failures, while light
load regimes mean low service time or rare failures. For some regimes these results give the
explicit optimal policy and for other regimes a scalable algorithm to numerically compute
this policy.

Thesis outline
The rest of the thesis is organized as follows. Section 2 gives an overview of related literature. In
Section 3, we describe the model of the system according to Markov process theory. Assumptions
and decisions made to construct this model are also discussed in this section. Section 4 introduces
an approximation to expected covered demand, an important objective function used to construct
policies in next sections.

Different dispatching and relocation policies are discussed in Sections 5 and 6, respectively.
These sections also contain the simulation results used to compare the performance of the policies
considered. The approximate dynamic programming approach is discussed in Section 7.

In Section 8, we consider a discrete-time version of the considered process. This model gives the
opportunity to apply the policy iteration algorithm to find the optimal policy for small instances.
The performance of the obtained policy is compared to the performance of the best policies from
Sections 5 and 6.

In Section 9, we consider the process under several extreme regimes (such as large repair times
or large arrival rate of the calls) and find the optimal policies under these regimes analytically.

Finally, Section 10 contains conclusions and discussion.
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2 Related work
To our knowledge, there are just a few works on real-time service engineer management (see, for
example, [7] or [20]), but they consider different settings of the problem, for example ignore geo-
graphical locations of the engineers and focus only on the assignment problem. However, there is
a closely related well-studied field of the emergency service management, and ambulance manage-
ment specifically. In this section we briefly outline the results from the ambulance management
that are relevant to our study. For an extensive overview of recent optimization models in location,
relocation and dispatching of ambulances, we refer to Bélanger et al. [6].

We organize our literature review according to the methods used in the discussed studies. First,
we discuss the approach when the problem is formulated as an integer linear problem. Then the
results obtained from Markov Decision theory, several heuristics, that were successfully used as
relocation and dispatching policies. Finally, the approximate dynamic programming approach to
the problem.

2.1 ILP-based approaches
The first work in this field was devoted not to operational decisions, but to facility location prob-
lems. The results of this work play a key role in future research, so we start our review with several
studies about facility location problems and continue with operational decisions research.

The aim of the earliest work was to find a good position of the available servers in order to
maximize the number of calls answered in time or to minimize the average response time, i.e. the
time between the arrival of a call and the arrival of a server to the call location.

For instance, the maximal coverage problem, first described by Church and ReVelle [8], finds
the allocation of the servers that maximizes the number of demand locations that can be reached
by at least one server within the time threshold. The problem is formulated as an integer linear
programming problem (ILP) and can be solved even for large systems.

Later, Daskin [9, 10] improved this model by taking into account the busy time of the servers
and constructed a new model called MEXCLP (maximal expected coverage location problem).
First the busy fraction of each server was assumed known from practice, but later the correction
factor derived by Larson [22] was used to estimate the probabilities and the objective function of
this method.

There are also other approaches to the problem such as Double Standard Model [13], Maximum
Availability Location Problem [30] and others. The survey by Li et al. [24] gives a good overview
of these methods as well as of the possible heuristics to reduce computational time for big systems.

In all above mentioned policies when one server is going to answer the call, other servers stay
at the same locations, which can result in a coverage gap. Relocation policies such as compliance
tables deal with this problem. A compliance table is a policy where the location of the servers
depends on the number of available servers. Every time this number changes (i.e. when a call
arrives and when a service is finished) idle servers are repositioned respectively. In 2006, Gendreau
et al. [15] introduced a method called MECRP (maximum expected coverage relocation problem)
to compute compliance tables where for each number of available servers the coverage is maximized.
It was later extended by Van Barneveld et al. [4] to incorporate busy time of the servers.

The problem of choosing a server that is best to dispatch to the accident can also be formulated
as an ILP problem. According to the computational study of Jagtenberg et al., it can even
outperform other dispatching policies that use more information about the state of the system
[19].

2.2 Markov decision theory approach
One of the approaches to find the exact optimal policy is to model the system as a Markov decision
process with either continuous or discrete time. For small systems, with just a few servers the
optimal policy can be found by policy or value iteration or by exact dynamic programming [17, 32].
But for realistic-sized systems the state space is too large and the problem is intractable from the
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computational perspective. One way to address this problem was considered by Jagtenberg et
al. [17]. Instead of finding the exact optimal policy they performed only several steps of value
iteration algorithm and compared the results for different numbers of steps with other policies.

Katehakis and Levine [21] formulated an MDP for a server assignment problem, where costs
occur every time a job is assigned to a server and they depend on a pair of a job and a server. They
considered the system under heavy and light traffic regimes, meaning large service time and small
arrival rate respectively. In case of light traffic, they developed an efficient algorithm to compute
optimal assignment policy. For a system under heavy traffic, they proved that the policy always
choosing a server with minimal costs is the optimal policy.

2.3 Heuristic solutions
Another approach is not to calculate the decision for each situation in advance, but to make
decisions in real time. This can be applied to both relocation and dispatching.

Gendreau et al. [14] were the first to propose a real-time server relocation model [6]. It is based
on the Double Standard Model, proposed earlier by the same authors, and maximizes the demand
covered by at least two vehicles. It also minimizes the relocation costs, so the relocation history
is taken into account. Another relocation model, maximizing the preparedness of the system (i.e.
the capacity of the system to answer future demands), was introduced by Andersson and Värbrand
[1]. They also proposed a method to find a relocation scheme minimizing the travel times.

In 2015, Jagtenberg et al. [18] proposed a heuristic for redeployment of the servers that just
finished the service. The heuristic is based on calculating the expected covered demand and
choosing the new location of the server according to the result. This work was continued in later
paper by Van Barneveld et al. [3]. They allowed relocation not only after the service completion
but also right after the dispatching of a server. They also studied how different restrictions, such
as the restriction on the maximum distance of relocation, influence the performance of the system.
Two types of regions, a rural and an urban one, were considered and it was shown that the optimal
strategy depends on the type of the region.

The same ideas can be used for making the dispatching decisions. Gendreau et al. [14] pro-
posed to choose among all servers, that can reach the incident in time, the one that leads to the
minimal relocation time. Anderson et al. [1] proposed to dispatch the ambulance that causes the
smallest decrease in preparedness. Jagtenberg et al. used expected covered demand instead of
unpreparedness and showed that their dispatching policy outperforms the commonly used closest-
first dispatching policy [19]. Also the possibility of waiting for a busy server to finish the service,
instead of dispatching an idle repairman, was shown to reduce the costs [2].

2.4 Approximate Dynamic Programming
In 2010, Maxwell et al. [25] used an ADP approach combined with approximate policy iteration for
the ambulance management problem. They considered the problem of optimal redeployment of the
ambulances after completion of the service for a system with no other types of relocation and fixed
closest-first dispatching policy and approximated the value function by a linear combination of
basis functions such as the number of uncovered demand locations and etc. An iterative procedure
was used to tune the parameters of the approximation. Later, Schmid [29] used the same framework
to optimize the dispatching policy and the redeployment of an ambulance after a service.

Finally, Nasrollahzadeh et al. [28] considered the general problem of dispatching and relocation
of the ambulances with possibility to reposition the idle ambulances and to put an incoming call
into the queue instead of immediate dispatching of a repairman. Their approximation is based
on five basis functions that do not only characterize the current state, but also the possible next
states. The result was compared to the best practices from the literature and outperformed them
for the considered system.

Our study differs from the previous work in two ways. First, we consider the model where
once a machine is broken, it can not be an origin of new incidents, so the demand produced from

7



demand nodes is not unlimited. According to our knowledge there are no previous works on similar
systems. Limited population was studied in queuing theory [12], but not in the service network
design.

The second difference is that we do not only look for the optimal policy for one given system,
but consider several systems with different parameters (such as the average service duration, the
average distance and topology of the region) and study how the relations between these parameters
affect the performance of different policies.
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3 Model description
In this section we model the considered system as a Markov decision process. It is an event-based
process with continuous state space. We also discuss the assumptions made and several parameters
of the system that affect the performance of different policies.

3.1 Service region
The service region is represented by the set of the demand nodes K = {1, . . . ,K} and the set of
the base stations R = {1, . . . , R}. It is possible to travel from any location to any location, the
traveling distances are known and deterministic. There is a capital good installed in each demand
node. Several machines are installed at the same place are modeled as different demand nodes
with the same location.

There are M repairmen in the system. Each repairman can be in one of three states: either
resting at a base station, or doing a repair in a demand node, or traveling. It is forbidden for a
repairman to stay idle somewhere except for the base stations. The number of repairmen that stay
at the same station at the same time is not limited.

The time limit within which a repairman has to reach a broken machine to avoid paying a
penalty is given. We consider only the service regions where each demand node can be reached
within this time limit from at least one base station.

The distribution of the working time of each machine and the distribution of the service time
are known. In practice, these distributions can be obtained from historical data.

3.2 Assumptions and restrictions
There are several assumptions that we made to model the process:

1. The time that a machine works after repair is exponentially distributed with rate λ. This
parameter is the same for all machines.

2. The time it takes to repair a machine is exponentially distributed with rate µ. This parameter
is the same for all machines.

3. Traveling times are deterministic.

4. There is no preemption. A repairman can not stop a repair process and travel somewhere
else. If a repairmen is traveling to some location, he has to reach this location before being
relocated somewhere else.

Restrictions determine the set of possible actions. There are restrictions on dispatching decisions
and on relocation decisions.

When a call arrives, it can either be immediately answered by one of the idle repairmen or can
be put in the queue. There are only two types of moments when a repairman can be dispatched
to a call from the queue. First, a repairman that just finished a repair in some demand node can
be redeployed to another demand node. Second, when a traveling idle repairman arrives at his
destination, he can be dispatched to answer a call from the queue.

The relocation can only be performed at two types of moments: either when repairman is
dispatched to answer a call, or when a repairman finished a repair of one of machines. If a new
call is put in the queue then relocation is not allowed. In the case when a new call is first put in
the queue and then one of the traveling repairmen arrived at his destination and is dispatched to
this call, the relocation is again not allowed. Only one repairman can be relocated at a time.

3.3 State space
Each capital good can be in one of three states: working, being in repair or waiting for a repairman
to come. As there are K capital goods their state is described by a vector

κ = (κ1, . . . , κK) ,
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where

κk =


0, if machine k is working;
−1, if machine k is in repair;
t, if machine k is waiting for a repairman for time t.

For each repairman m, m = 1, . . . ,M , his location mm is described by his destination lm (a
demand node or a base station) and the distance dm left to this location:

mm = (lm, dm) , m = 1, . . . ,M.

If the repairman is not traveling but he is either resting at a base station or doing a repair at a
demand node, his destination is equal to his current location and the distance is equal to 0. So the
state of all repairmen is described by the vector

m = (m1, . . . ,mM ) .

Note that the destination and the remaining distance does not describe the explicit location
of the repairman, but since he can not change the destination until he reaches it, the former is
sufficient to describe the dynamics of the system.

The state of the system is the combination of the state of the repairmen m and the state of the
capital goods κ.

To describe the process we consider only the moments, when one of the following events happens:

• a call arrives from a demand node;

• a repair in a demand node is finished;

• a repairman arrives at a demand node;

• a repairman arrives at a base station.

At all other moments of time there is no uncertainty and no actions can be taken.
It is essential to know the type e of the event that happened and the time t, when it happened.

Therefore, in each considered moment the state of the process is described by the tuple

s = (t, e,m, κ) .

We denote by t(s), e(s), lm(s), dm(s) and κk(s) the corresponding components of this tuple.
The set S of all possible states of the process is infinite. Note also that as the time is included

in the state s the process never visits the same state twice.

3.4 Action space
The set of possible actions depends on the state s of the system and is mostly determined by the
type of event e. We consider each of four types of the possible events described in section 3.3 and
describe the set of possible actions for it.

Type 1. A call arrives from demand node k.

In this case the action consists of a dispatching decision and a relocation decision. Denote by
F (s) the set of all idle repairmen, F (s) = {m ∈ 1, . . . ,M | lm(s) ∈ R}. Then either one of the
repairmen from F (s) can be dispatched, or the call can be placed in queue. Define Xm = 1 if a
repairman m ∈ F (s) is assigned to the call, and Xm = 0 otherwise.

We only allow to relocate one repairman at a time, so the relocation action is described by the
repairman that is relocated, and the base station that he is relocated to. Define Ymr = 1 if the
repairman m ∈ F (s) is relocated to the base station r, and Ymr = 0 otherwise.

10



Then an action is described by a pair of a dispatching vector X and a relocation matrix Y .
The action space in state s is given by

A1(s) =

{
(X,Y ) |

∑
m∈F(s)

Xm ≤ 1;
∑

m∈F(s),
r∈R

Ymr ≤ 1;

∑
m∈F(s),
r∈R

XmYmr = 0;
(

1−
∑

m∈F(s)

Xm

) ∑
m∈F(s),
r∈R

Ymr = 0

}
,

where the constraints ensure that not more than one repairman is dispatched, not more than one
repairman is relocated, the relocated repairman differs from the dispatched repairman and the
relocation is forbidden if the call is placed in queue.

Type 2. A repair in demand node k by repairman m is finished.

In this case the action consists of two actions: redeployment of the repairman m and relocation.
The repairman can be sent either to rest in one of the base stations or to do a repair in one of
the demand nodes from the queue. Denote the set of all demand nodes waiting in the queue in
state s by Q(s). Define Xl = 1, if the repairman that just became idle is dispatched to a location
l ∈ Q(s) ∪ R, and Xl = 0 otherwise. To describe the relocation decision define Ynr = 1, if the
repairman m ∈ F (S) is relocated to the base station r, and Ynr = 0 otherwise.

Then an action is described by a pair of a redeployment vector X and a relocation matrix Y
and the set of all possible actions in state s is given by

A2(s) =

{
(X,Y ) |

∑
l∈Q(s)∪R

Xl = 1;
∑

n∈F(s),
r∈R

Ynr ≤ 1

}
,

where the constraints ensures that the repairman is redeployed to only one location and at most
one repairman is relocated.

Type 3. Repairman m arrives at base station r.

When a repairman m arrives at a base station he can either be left to rest at this station or be
dispatched to one the demand nodes from the queue. If we denote again the set of all demand
nodes in the queue in state s by Q(s) and define Xk = 1, if repairman m is dispatched to demand
node k, and Xk = 0 otherwise, then an action is described by vector X and the set of all possible
actions in state s is

A3(s) =

{
X |

∑
k∈Q(s)

Xk ≤ 1

}
.

Note that if the queue is empty, then there are no possible actions for this type of states and the
repairman is always left at the same base stations.

Type 4. Repairman m arrives at demand node k.

Then the repairman starts the repair process and there are no available actions:

A4(s) = ∅.

3.5 Transitions
The evolution of the process from state sn can be characterized by action an, random element
ω(sk, ak) and function Φ as

sn+1 = Φ (sn, an, ω(sn, an)) .
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The random element determines the event of state sn+1. Denote by d(sn, an) the minimum of
all non-zero distances remaining for the repairmen to travel after taking action an in state sn. If no
events of first two types (arrival of a call or end of repair) occurs then in state sn+1 time is equal to
t(sn+1) = t(sn) + d(sn, an) and the event is the arrival of a repairman with the shortest remaining
distance at his destinations. If there are no traveling repairmen in the system after taking action
an in state sn then set d(sn, an) =∞.

Denote the set of all working machines after taking action an in state sn by W(sn) and the
state of all machines in repair by H(sn). The time from the state sn till the first break of each
machine from W(sn) is exponentially distributed with rate λ. The time from state sn till the end
of repair in each of demand nodes from H(sn) is exponentially distributed with rate µ. So the time
from state sn to the closest event of the first two types is exponentially distributed with rate

η(sn) = λW (sn) + µH(sn),

whereW (sn) = |W(sn)| andH(sn) = |H(sn)|, as the minimum of several exponential distributions.
If this time is less than d(sn, an) then the next event is either a call arrival or an end of repair.

So, if in state sn action an is taken, the probability that the next event is

• the arrival of a call from demand node k ∈ W(sn) is

λ

η(sn)
e−η(sn)d(sn,an)

if W(sn) 6= ∅, and 0 otherwise;

• the end of repair in demand node k ∈ H(sn) is

µ

η(sn)
e−η(sn)d(sn,an)

if H(sn) 6= ∅, and 0 otherwise;

• the arrival of a repairman at his destination is

1− e−η(sn)d(sn,an)

if there are any traveling repairmen, and 0 otherwise.

The time until the next event is distributed as the minimum of exponentially distributed with
rate η(sn) random variable and d(sn, an).

When the next event and the time until this event are known, the function Φ gives the location
of all repairmen and the state of all capital goods. The distances remaining to travel are decreased
by this time and the waiting time of the capital goods are increased by this time. If action an
includes repositioning of some of the repairmen then their destinations and remaining distances
change according to the action. If the event in state sn+1 is the end of repair at (arrival of a
repairman at) demand node k then the state of this demand node is changed from −1 (κk(sn)) to
0 (−1).

3.6 Costs
If a call arrives from demand node k and a repairman does not reach this demand node in time
TL, then a large penalty is paid. In this case also a small penalty is paid per every time unit until
a repairman arrives at this demand node. Our goal is to minimize the long run average penalty for
a given system. All travel costs and other operational costs are neglected. We assume the large
penalty for a late arrival equal to 1 and the small penalty equal to ε.

Denote by c (sn, an, sn+1) the costs that are charged during the transition from state sn to state
sn+1 when action an is taken. The costs for being late are equal to the number of machines which
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waiting time exceeded time limit in the time period (tn, tn+1]. The small costs for each machine is
the time in this time period that this machine stayed broken. Then in total

c (sn, an, sn+1) =
∑

k=1,...,K

I {κk(sn+1) ≥ TL} I {κk(sn) < TL}+

+ ε
∑

k=1,...,K

I {κk(sn+1) ≥ TL}min (tn+1 − tn, κk(sn+1)− TL) ,

where κk(sn) is the state of demand node k in state sn.
It is important to note that our main goal is to maximize the fraction of calls answered in time.

The small penalty ε is introduced only to prevent the situation of leaving some machines broken
forever, which is optimal in long-term perspective but not realistic. So ε is set to be small. In the
computational experiments, we set ε = 0.001, so it does not affect the optimal policy.

3.7 Parameters of the system
In this section we discuss the important parameters of the system and how they affect the optimal
policy. Table 3.1 contains all numeric parameters of the system. Another parameter of the system
is the map density. Figure 3.1 gives an example of maps of three different densities, from low to
high.

The relations between these parameters define the properties of the system. The same general
type of policies may be optimal for one system and show low performance for the others. The most
important relations are the map density, the relation between µ̂ and λ and the relation between µ̂,
and µ.

Map density

The map density represents the relation between the average distance between nodes in the service
region and the time limit for answering for a call. The more dense the map is the smaller this ratio
is. It can affect the optimal policy in several ways.

If the map is sparse, then the distances between the base stations are large and relocation
between them can take undesirably long time. Each demand node is on average covered by only
one base station so it is important that at least one repairman is present there.

In dense maps the distances between the demand nodes are rather small, so it can be the case
that it is better to wait for some repairman to finish a repair in a demand node nearby instead of
dispatching an idle repairman (see section 5.2 for more details).

Relation between µ̂ and λ

If the map and the number of repairmen are fixed, this relation influences the load of the system.
If µ is increased with fixed λ the system becomes more loaded and this leads to decrease in number
of calls answered in time.

K number of demand nodes
R number of repairmen base stations
M number of repairmen

1/λ average time a capital good works after repair
1/µ average time it takes to repair a capital good
TL time limit after which the penalty should be paid
1/µ̂ average time it takes to answer a call (includes traveling time and repairing time)

Table 3.1: Parameters of the system
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Figure 3.1: Example of maps of density 0.3, 1 and 2 and the same
time limit 10. Edges represent distances that can be reached in the
time limit.
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This relation plays an impotant role in steady-state distribution of the approximating process
discussed in Section 4.1.

Relation between µ and µ̂

When a repairman is busy, he is either doing a repair in a demand node, or traveling to a demand
node. This relation shows which activity takes more time on average.

If µ is very close to µ̂ it means that the traveling distances are very small compared to the time
it takes to repair a capital good. In extreme cases we can ignore the traveling times and assume
that all relocations are done immediately.

If µ is much larger than µ̂, then the traveling distances are significant and the policy optimal
for small distances can be not optimal any more. For example, relocation of the idle repairmen
between the base stations can decrease the performance of the system (see Section 6.4 for further
details).
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4 Expected covered demand
Given the locations of the repairmen, the expected covered demand estimates the long-term fraction
of calls that will be answered in time. This is done under the assumption that the repairmen
return to the same location after completion of the service, but this estimation is also used for
other policies.

Expected covered demand plays an important role in several well-performing heuristic relocation
and dispatching policies from the ambulance domain [5, 18, 19]. We use this metric for one of
dispatching and several relocation policies (see Sections 5 and 6). It is also used in Section 7 as
one the basis functions for Approximate Dynamic Programming approach.

In this section, we introduce an approximation to the expected covered demand for our type of
systems and construct the allocation of repairmen that maximizes it. In addition, the behaviour
of the approximating process described in Section 4.1 gives an idea of the behaviour of the original
process.

4.1 Approximating process
In this section we construct the process C = {Cn, n = 1, 2, . . . }, that approximates the number of
broken capital goods in the nth state of the original process sn, n = 1, 2, . . . , so

Cn = | {k ∈ K | κk(s) 6= 0 or e = "a call arrived fro demand node k"} |

We compute the steady-state distribution of this process and observe its dependence of the
system parameters.

The time that a machine stays working is exponentially distributed with rate λ. To make Cn a
Markov process, we assume that the time a machine stays broken is also exponentially distributed
with rate µ̂. This time includes the traveling time of a repairman and the duration of the repair.
If the call was put in queue because there were no available repairmen, the waiting time in the
queue is not included.

The state space of the process C is {0, 1, . . . ,K}, so it is a finite-state process. From state Cn
with k broken capital goods there are three possible transitions:

• The event in state sn+1 is of type "a call arrives". Then Cn+1 = k + 1. The rate of this
transition is equal to λ(K − k). (This transition is not possible if k = K.)

• The event in state sn+1 is of type "a repair ends". Then Cn+1 = k − 1. The rate of this
transition µ̂ · # capital goods in repair = µ̂ · min{k,M}. (This transition is not possible if
k = 0.)

• The event in state sn+1 is of type "a repairman arrives at his destination". Then Cn+1 = k.

If we omit the third type of transitions, then the process C still illustrates the dynamics of the
number of the broken machines, but it is a finite-state birth-death process and we can calculate
its steady-state distribution.

Figure 4.1: State diagram of the process C.
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Let us denote P (k) the stationary probability of being in state k. Then the balance equations
for Cn can be formulated as follows:

λKP (0) = µ̂P (1),

(λ(K − k) + µ̂k)P (k) = λ(K − k + 1)P (k − 1) + µ̂(k + 1)P (k + 1), k = 2, . . . ,M − 1,

(λ(K − k) + µ̂M)P (k) = λ(K − k + 1)P (k − 1) + µ̂MP (k + 1), k = M, . . . ,K − 1,

µ̂MP (K) = λP (K − 1).

(4.1.1)
One can check that

P (k) =


(
K
k

) (
λ
µ̂

)k
P (0), k = 0, . . . ,M − 1,

k!
M !Mk−M

(
K
k

) (
λ
µ̂

)k
P (0), k = M, . . . ,K

(4.1.2)

is the solution of the balance equations.
Adding the normalization equation

∑K
k=0 P (k) = 1 to the system we get

P (0) =

[
M−1∑
k=0

(
K

k

)(
λ

µ̂

)k
+

K∑
k=M

k!

M !Mk−M

(
K

k

)(
λ

µ̂

)k]−1
. (4.1.3)

Using these formulas one can calculate P (k) for k = 0, . . .K. Example 4.1.1 gives the idea of
the behaviour of P (k) for different relations between λ and µ̂ and between K and M .

Example 4.1.1. In this example we calculate steady-state distribution for one system and explore
how it depends on the number of repairmen and the average working time. The number of capital
goods K = 20, so there are 21 states, µ̂ is fixed to 1 and λ is fixed to 0.8.

The probability of being in each state for the number of repairmen M = 3, 8, 11, 15 is given
in Figure 4.2. One can see that the decrease in number of repairmen shifts the distribution to
the right. This happens because with less repairmen capital goods have to wait longer to be
repaired. But after some value, increasing number of repairmen does not change the distribution
a lot (compare M = 11 and M = 15).

Next, we fix M = 6 and vary the parameter λ. Note that we do not have to vary µ̂ after
that as {P (k), k = 0, . . . ,K − 1} depends only on ratio λ/µ̂. The steady state distributions for
λ = 0.2, 0.4, 0.6 and 0.8 can be found in Figure 4.3. We see again that with increase of λ the load
of the system increases and the distribution shifts to the right.

In the next sections we use the probability that there are m busy repairmen to construct
compliance tables. If Sm is the event of having m busy repairmen in the system, then

P(Sm) =

{
P (m), m = 1, . . . ,M − 1,∑K
k=M P (k), m = M.

(4.1.4)

Finally, one of the interesting parameters of the system is the load. We define the load ρ as the
average fraction of time that one repairman is busy. Given the steady state distribution, the load
can be computed as total busy time of all repairmen divided by the number of repairmen:

ρ =
1

M

M∑
m=1

mP (Sm) . (4.1.5)

One can see that from obtained expressions for P (k) the load is increasing in λ and K and
decreasing in µ̂ and M , which coincides with common sense.
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Figure 4.2: The steady state distribution for
K = 20, µ̂ = 1, λ = 0.8 and various M .

Figure 4.3: The steady state distribution for
K = 20, µ̂ = 1, M = 6 and various λ.

Example 4.1.2. We fix again K = 20 and µ̂ = 1 and observe the load for different values of
parameters λ (0.2, 0.8 and 1.2) and M (from 1 to 15). The results can be found in Figure 4.4.
Note that for 1 and 2 repairmen in the system the busy fraction equals (or is very close) to 1 for
all considered values of λ. And then from a certain number of repairmen the load decreases. This
number of repairmen increases on λ.

4.2 Expected covered demand approximation
Let us consider a system where relocation is not allowed. It means that each repairman is assigned
to one base station and he returns to this base station every time he becomes idle. Suppose that
the system is in state s, when all repairmen are at base stations.

Assume that according to the chosen dispatching policy if a call arrives from demand node k,
we first send repairman m(k)

1 , then, if he is busy, repairman m(k)
2 , and etc. Assume also that first

we try to send the repairmen that can reach the demand node from their base stations and then, if
all of them are busy, the repairmen that can not arrive on time. An example of such a dispatching
policy is the closest-first dispatching policy that always dispatches a repairman from the closest
base station.

The call is answered in time if the dispatched repairman m(k)
i can reach it in time.

To compute the probability that repairman m(k)
i is dispatched (so all repairmen m(k)

1 , . . . ,m
(k)
i−1

are busy), we follow the procedure introduced by Larson [22, 23] and apply it to the birth-death
process introduced in Section 4.1. If Bi is the event that repairman m(k)

i is busy, Fi is the event
that he is idle and Sm is the event that there are m busy repairmen in the system, then

P (B1 . . . Bi−1Fi) =

M∑
m=i

P (B1 . . . Bi−1Fi|Sm)P(Sm)

=

M∑
m=i

P(Sm)P (Fi|SmB1 . . . Bi−1)P (Bi−1|SmB1 . . . Bi−2) . . .P (B1|Sm) . (4.2.1)

The probability P (Sm) that m repairmen are busy was computed in Section 4.1. Other terms
can be approximated assuming that all repairmen have the same load and are independent of each
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Figure 4.4: The load of the system with K = 20 and µ̂ = 1 and
various parameters λ and M .

other. Under this assumption,

P (B1|Sm) =
m

M

P (B2|SmB1) =
m− 1

M − 1
...

P (Fi|SmB1 . . . Bi−1) = 1− m− i+ 1

M − i+ 1
=

M −m
M − i+ 1

.

(4.2.2)

Finally we can approximate

P (B1 . . . Bi−1Fi) =

M∑
m=i−1

P(Sm)P (Fi|SmB1 . . . Bi−1)P (Bi−1|SmB1 . . . Bi−2) . . .P (B1|Sm)

≈
M∑

m=i−1
P(Sm) · M −m

M − i+ 1
· · · · · m

M
=

M∑
m=i−1

(M −m)P(Sm) · m!(M − i)!
(m− i+ 1)!M !

. (4.2.3)

Let us denote

Pi =

M∑
m=i−1

(M −m)P(Sm) · m!(M − i)!
(m− i+ 1)!M !

, i = 1, . . . ,M. (4.2.4)

Now we introduce the binary variables zki, where zki equals 1 only if for the demand node
k the ith closest repairmen can reach it in time. The probability that a call from demand node
k will be answered in time is

∑M
i=1 Pizki and the total fraction of calls answered in time can be

approximated by
1

K

K∑
k=1

M∑
i=1

Pizki. (4.2.5)
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Note that for a given system all parameters needed to calculate expression (4.2.5) are known
except for the parameter µ̂. This parameter is hard to calculate in practice as it depends on the
policy. For computational study we first assume µ̂ = 1/(TL + 1/µ) and then run some iterations
of simulation to find a better approximation for µ̂.

4.3 Optimal repairmen allocation
Recall that we consider a system where relocation is not allowed. Fix the dispatching policy to the
policy described in Section 4.2, when each demand node has preference list of the base stations.
Under this restrictions to optimize the performance of the system we need to find the optimal
assignment of the repairmen to the base stations. As the expected covered demand is the fraction
of calls that will be answered in time for a given configuration, our goal is to find the assignment
that maximizes the expected covered demand.

This problem can be formulated as an integer linear programming problem with decision vari-
ables xr, r = 1, . . . , R, representing the number of repairmen at base station r, and zki, the
indicators that repairman m(k)

i can reach demand node k in time. The objective function is the
approximation (4.2.5) of expected covered demand.

The total number of repairmen is M , so
R∑
r=1

xr = M.

The variables zki, k = 1, . . . ,K, i = 1, . . . ,M , and the variables xr, r = 1, . . . , R, are connected by
the equation

M∑
i=1

zki =
∑
r∈Nk

xr, k = 1, . . . ,K,

where Nk is the set of all bases from which demand node k can be reached in time.
The whole problem can be formulated as the following integer linear programming problem:

max

K∑
k=1

M∑
i=1

Pizki

s.t.
M∑
i=1

zki =
∑
r∈Nk

xr, k = 1, . . . ,K

R∑
r=1

xr = M

xr = 0, 1, 2, . . . r = 1, . . . R

zki ∈ {0, 1} k = 1, . . . ,K, r = 1, . . . , R.

(4.3.1)

Note that the equalities in the constraints can be relaxed to inequalities, so the final problem
is

max

K∑
k=1

M∑
i=1

Pizki

s.t.
M∑
i=1

zki ≤
∑
r∈Nk

xr, k = 1, . . . ,K

R∑
r=1

xr ≤M

xr = 0, 1, 2, . . . r = 1, . . . R

zki ∈ {0, 1} k = 1, . . . ,K, r = 1, . . . , R.

(4.3.2)
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The total number of decision variables is R +KM and the total number of constraints equals
K + 1, so the problem can be solved in O((R+KM)2 + (R+KM)(K + 1)).

Example 4.3.1. Consider a map from Figure 4.5, where K = 10 and R = 5. Set M = 6, λ = 0.01
and µ̂ = 0.05. Then the solution for the linear programming problem is

(0, 2, 3, 0, 1) ,

which means that stations 1 and 4 are empty, two repairmen are assigned to station 2, three
repairmen – to station 3 and one repairman – to station 5.

Figure 4.5: Example of a map of the service region with 10 demand
nodes and 5 base stations. If a demand node can be reached in time
from a base station, they are connected by an edge.
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5 Dispatching policy
The dispatching policy is responsible for managing the calls that already arrived. It decides when
and which repairman is assigned to each call. Recall that, once a repairman is assigned to a call,
the assignment can not be changed.

When a failure occurs, a customer wants a repairman to arrive as soon as possible. However,
when a repairman is dispatched from one of the base stations, the coverage of the customers around
this base station decreases, which may lead to high costs in future. So a good dispatching decision
finds a balance between immediate costs for a call and possible future costs from low coverage of
the region.

In Section 5.1, we consider three heuristic dispatching policies. The first one is the closest-first
dispatching policy widely used in practice and two other policies aim to optimize the coverage and
the expected covered demand, respectively.

Under all of these policies, an incoming call can be put into the queue only if there are no
idle repairmen. In all other cases someone has to be dispatched immediately. Next, we consider a
policy where it is allowed to put a call in the queue for any state of the system. A more detailed
description of this policy can be found in Section 5.2. A comparison of all considered policies based
on the simulation results for systems with different properties can be found in Section 5.3.

In this chapter no relocation is allowed, so after the completion of a service a repairman returns
to his previous base station and stays there until new dispatching. The assignment of the repairmen
to the base stations is chosen to maximize the expected covered demand and can be found as a
solution to the ILP problem 4.3.2 described in Section 4.3.

5.1 Dispatching policies without waiting
Recall that in state s, where the event e is the arrival of a call, the set of all possible actions is
described by a vector X that represents the dispatching decision, and a matrix Y that represents
the relocation decision. As in this chapter relocation is not allowed, all elements of the matrix Y
are always set to 0. The relocation matrix Y is also zero for the states with the event e of the
second type ("a repair in demand node k is finished").

In this section, once a call arrives in the system with at least one idle repairman, it should be
answered immediately. If F(s) is the set of all repairmen that are not assigned to any call in state
s, then for any state s with F(s) 6= ∅ and event e of type "a call arrives from demand node k",
the set of possible actions is

A1(s) =

{
(X,Y ) |

∑
m∈F(s)

Xm = 1,
∑

m∈F(s),
r∈R

Ymr = 0

}
.

If F(s) = ∅, then call is put in queue and no decision should be made.
Note also that under these restrictions the set of possible actions for states with the event of

type "a repairman m arrives at a base station r" is empty, as a call can not be put in queue is
there is a traveling and therefore idle repairman in the system.

Consider a state s with the event e = "a call arrives from the demand node k" and F(s) 6= ∅.
To describe the dispatching policy, we need to calculate the vector X depending on state s.

The most simple and most widely used in practice dispatching policy is the so-called closest-first
policy. Under this policy, when a call arrives the closest idle repairmen is always dispatched. So

Xm = 1 ⇐⇒ m = argmin
n∈F(s)

(dist (ln, k) + dn) ,

where dist (ln, k) is the distance between the destination of the repairman n and the source of
the call, the demand node k.
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Example 5.1.1. Consider a system with K = 6 demand nodes, R = 2 repairmen bases andM = 3
repairmen in the state shown in Figure 5.1. A call from demand node 1 arrives. The repairmen 2
at base station 2 is the closest one, so he is dispatched to fix the machine.

Figure 5.1: System for examples 5.1.1 - 5.2.1. Numbers on edges
show the distance between nodes. Repairman 1 is doing a repair at
demand node 2. Repairmen 2 and 3 are at base stations.

It is easy to see that the closest-first policy is not always the optimal one. If in example 5.1.1
repairman 2 is dispatched instead of repairman 3, then the resulting system can perform better
when the next call arrives. To avoid such situations one can dispatch not the closest repairman,
but the one that leaves the system in state with better expected performance.

One of the possible estimators of the expected system performance is coverage, i.e. the number
of demand nodes covered by at least one repairman. When a call arrives for each idle repairman
m, that can reach demand node k in time, the coverage of the system without him is calculated:

coverage(m) =
∑

k′:κk′=0

I {∃n ∈ F(s) : n 6= m, dist(lm, k
′) ≤ TL} .

Then the repairman with the biggest coverage(m) is dispatched. If there are no repairmen that can
reach the source of the call in time, then the remaining coverage is calculated for all idle repairmen
and then, again, the one with the biggest remaining coverage is dispatched.

Example 5.1.2. Consider again the situation from the Example 5.1.1. Then the coverage after
dispatching of the repairman 2 is 3 and after dispatching the repairman 3 is 1. So according to the
described policy the repairman 2 should be dispatched.

Note that the coverage only estimates the performance of the system for the next call. To
estimate it for longer time one can calculate the expected covered demand, the fraction of calls
that will be answered in time by the system. Similar to coverage first we calculate the expected
covered demand after dispatching each of the repairmen m, that can reach the demand node in
time, and dispatch the one with the highest remaining expected covered demand. If there are no
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repairmen that can reach the demand node in time, we do the same for all repairmen from the set
F(s).

As the expected covered demand is hard to compute, for computational study we use the
approximation described in Section 4.2.

Example 5.1.3. For the same case as in examples 5.1.1 and 5.1.2 expected covered demand after
dispatching of repairmen 2 and 3 is 0.45 and 0.15, respectively. So again the repairman 2 is
dispatched.

Even though the closest-first policy is much simpler than the other two dispatching policies, the
computational results for ambulance service networks showed that the difference in the performance
between the closest-first policy and the expected covered demand based policy is small [17]. We
discuss the computational results for our system under these three policies in Section 5.3 below.

5.2 Dispatching policies with waiting
Under the dispatching policies discussed in the previous section, it is mandatory to dispatch an
idle repairman when a call arrives. However, if in the situation shown in Figure 5.1 we know that
the repairman busy at demand node 2 is going to finish his repair earlier than any other repairman
can reach demand node 1, it may be better to wait for him to finish and then dispatch him to
demand node 2.

Inspired by this example, we extend the closest-first dispatching policy to the dispatching policy
that chooses the repairman with the smallest response time. If it is a repairman that is now busy
with a repair at some demand node, then the call is placed in queue and the repairman is dispatched
there later.

For a repairman m, whose destination is a base station r, i.e. lm = r, the response time to a
call from the demand node k is

rt(k,m) = dm + dist(lm, k).

For a repairman m, whose destination is a demand node k′, lm = k′, the response time consists
of the distance still left to demand node k′, the length of repair and the distance from demand
node k′ to demand node k. If the length of repair trepair is not known, it can be estimated from
its distribution. Then the expected response time equals

rt(k,m) = dm + Etrepair + dist(k′, k).

We consider two situations: when the length of repair can be estimated upon arrival of the
repairman to the demand node and when it stays unknown. For the computational study of the
second situation it is estimated by the 80th percentile of the repair time distribution.

Repairmanm = argminn rt(k, n) that minimizes the response time is assigned to the call. Ifm ∈
F(s) then Xm = 1 and he is dispatched immediately (so now lm = k and dm = dm(s)+dist(lm, k)).
If repairman m is busy with some repair then the call is placed in queue.

Example 5.2.1. Consider the situation from Figure 5.1. Assume that we know that the repairman
busy at demand node 2 is going to be free in 1 time unit and that the traveling speed is one. Then
repairmen 1, 2 and 3 can be in demand node 1 in time 3, 4 and 5, respectively. Repairman 2 has
the smallest response time and so he is dispatched, which means that he first finishes his repair at
demand node 2 and then goes to answer the new call.

More sophisticated dispatching policies based on maximizing the coverage and the expected
covered demand can also be extended to the case when waiting is allowed. To this end, for all
busy repairmen the distances to other demand nodes should be increased by remaining busy time.
After this adjustment the coverage and the expected covered demand are calculated as before.
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5.3 Computational results and conclusions
In this section we consider the performance of policies described in Sections 5.1 and 5.2. To this
end, we generate systems with different parameters and compare the fraction of calls answered in
time under each of the policies.

In particular, we consider the following five dispatching policies:

1. Closest-first dispatching policy (without waiting).

2. Dispatching policy based on maximizing the coverage (without waiting).

3. Dispatching policy based on maximizing expected covered demand (without waiting).

4. Minimal response time dispatching policy with unknown remaining repair time.

5. Minimal response time dispatching policy with known remaining repair time.

The last two policies allow waiting and the first three do not. The difference between policies 4
and 5 is in estimation of response time of repairmen busy at some demand node. For policy 4, the
remaining repair time is set to 80th percentile of repair time distribution. For policy 5, we assume
that once a repairman arrived at demand node he knows how much time the repair will take.

Relocation is not allowed and the starting state for all policies is the same, chosen to maximize
expected covered demand (see Section 4.3).

Table 5.2 contains results of the simulation for the first three policies, numbered P1, P2 and
P3, respectively, for different value of M , TL, ST and the map density. One can see that there is
no policy that performs best for all systems. In most cases the third policy performs better than
the second, but the relation with the first policy can differ depending on the system.

Next, we compare the first and the last two policies. Simulation results for these policies can
be found in Table 5.2. For most of the systems both policies with waiting outperform (or at
least perform equal) the traditional closest-first policy. Observed improvement increases with the
increase of map density. This happens because in dense maps it is more likely that the demand
nodes are close to each other. For most of the systems the improvement also increases with the
increase of traveling times (but not when traveling times are too big).

Comparing the performance of policies 4 and 5 one can see that for most of the considered
system accurate estimation of remaining repair time gives only a small improvement.
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M Map TL ST = 5 ST = 10 ST = 20 ST = 50
dens. P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

10

0.3

5 0.92 0.92 0.93 0.88 0.88 0.89 0.78 0.79 0.78 0.44 0.44 0.42
10 0.81 0.79 0.79 0.76 0.73 0.74 0.60 0.57 0.57 0.33 0.33 0.31
20 0.38 0.36 0.37 0.32 0.32 0.32 0.29 0.28 0.28 0.25 0.25 0.24
50 0.23 0.24 0.24 0.26 0.26 0.26 0.22 0.23 0.23 0.22 0.22 0.21

1

5 0.96 0.97 0.97 0.94 0.95 0.95 0.89 0.90 0.89 0.61 0.62 0.60
10 0.91 0.92 0.91 0.86 0.87 0.87 0.76 0.76 0.76 0.44 0.45 0.42
20 0.59 0.56 0.57 0.54 0.54 0.53 0.45 0.45 0.45 0.29 0.30 0.29
50 0.34 0.34 0.35 0.34 0.34 0.34 0.37 0.37 0.37 0.28 0.29 0.28

2

5 0.99 1.00 1.00 0.98 0.98 0.98 0.94 0.95 0.95 0.75 0.75 0.73
10 0.97 0.97 0.98 0.95 0.95 0.96 0.90 0.90 0.90 0.62 0.63 0.61
20 0.87 0.86 0.86 0.81 0.82 0.81 0.73 0.72 0.73 0.47 0.47 0.46
50 0.53 0.52 0.52 0.49 0.49 0.50 0.50 0.50 0.50 0.45 0.45 0.44

13

0.3

5 0.98 0.98 0.98 0.96 0.97 0.97 0.92 0.93 0.94 0.80 0.81 0.79
10 0.94 0.94 0.95 0.92 0.93 0.93 0.88 0.89 0.89 0.68 0.68 0.67
20 0.84 0.82 0.82 0.73 0.68 0.69 0.64 0.60 0.62 0.44 0.43 0.42
50 0.32 0.33 0.33 0.32 0.32 0.32 0.29 0.30 0.30 0.28 0.29 0.28

1

5 0.99 1.00 1.00 0.98 0.99 0.99 0.97 0.97 0.97 0.86 0.88 0.87
10 0.98 0.98 0.99 0.96 0.96 0.97 0.94 0.95 0.95 0.80 0.82 0.80
20 0.90 0.89 0.91 0.91 0.91 0.91 0.84 0.83 0.83 0.62 0.61 0.60
50 0.44 0.45 0.45 0.43 0.43 0.43 0.44 0.45 0.45 0.40 0.40 0.40

2

5 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.93 0.94 0.94
10 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.90 0.91 0.91
20 0.98 0.98 0.98 0.96 0.96 0.97 0.93 0.94 0.94 0.81 0.79 0.79
50 0.65 0.63 0.63 0.60 0.60 0.60 0.58 0.56 0.56 0.58 0.58 0.58

16

0.3

5 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.98 0.93 0.94 0.94
10 0.98 0.99 0.99 0.96 0.97 0.97 0.95 0.96 0.96 0.90 0.91 0.91
20 0.94 0.95 0.96 0.92 0.92 0.93 0.91 0.90 0.91 0.81 0.81 0.80
50 0.51 0.51 0.51 0.52 0.50 0.53 0.48 0.46 0.48 0.41 0.41 0.41

1

5 1.00 1.00 1.00 0.99 1.00 1.00 0.99 0.99 1.00 0.96 0.97 0.97
10 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.94 0.95 0.95
20 0.97 0.98 0.98 0.97 0.97 0.97 0.95 0.96 0.97 0.89 0.90 0.90
50 0.68 0.67 0.68 0.63 0.61 0.63 0.61 0.60 0.60 0.53 0.53 0.53

2

5 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 0.99 0.99
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.99
20 0.99 0.99 1.00 0.99 0.99 1.00 0.98 0.98 0.99 0.96 0.96 0.97
50 0.90 0.89 0.90 0.88 0.86 0.87 0.82 0.80 0.80 0.78 0.77 0.75

Table 5.1: Fraction of calls answered in time for dispatching policies P1-P3.
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M Map TL ST = 5 ST = 10 ST = 20 ST = 50
dens. P1 P4 P5 P1 P4 P5 P1 P4 P5 P1 P4 P5

10

0.3
5 0.92 0.95 0.96 0.88 0.90 0.92 0.79 0.81 0.83 0.48 0.49 0.48
10 0.80 0.91 0.90 0.74 0.85 0.87 0.61 0.73 0.77 0.31 0.41 0.42
20 0.37 0.83 0.85 0.33 0.80 0.78 0.31 0.54 0.64 0.21 0.23 0.31
50 0.24 0.64 0.54 0.23 0.52 0.52 0.22 0.43 0.41 0.21 0.22 0.21

1
5 0.97 0.97 0.98 0.94 0.94 0.96 0.86 0.87 0.88 0.63 0.59 0.59
10 0.92 0.96 0.97 0.88 0.90 0.92 0.74 0.81 0.83 0.48 0.50 0.55
20 0.60 0.93 0.91 0.59 0.83 0.86 0.44 0.63 0.78 0.31 0.30 0.43
50 0.35 0.76 0.77 0.32 0.71 0.70 0.33 0.57 0.60 0.30 0.28 0.30

2
5 0.99 0.99 0.99 0.98 0.98 0.99 0.94 0.95 0.95 0.72 0.73 0.73
10 0.97 0.98 0.98 0.94 0.96 0.97 0.89 0.91 0.92 0.65 0.64 0.66
20 0.86 0.97 0.97 0.83 0.94 0.94 0.72 0.79 0.88 0.49 0.53 0.63
50 0.54 0.88 0.87 0.50 0.84 0.87 0.45 0.71 0.72 0.43 0.34 0.43

13

0.3
5 0.98 0.98 0.98 0.96 0.95 0.97 0.92 0.93 0.92 0.79 0.79 0.79
10 0.94 0.97 0.97 0.93 0.94 0.94 0.88 0.90 0.91 0.69 0.73 0.73
20 0.77 0.92 0.94 0.78 0.90 0.91 0.67 0.79 0.84 0.43 0.56 0.69
50 0.31 0.83 0.77 0.31 0.77 0.77 0.30 0.69 0.70 0.28 0.41 0.56

1
5 0.99 0.99 0.99 0.98 0.99 0.99 0.95 0.96 0.97 0.86 0.86 0.86
10 0.97 0.99 0.98 0.97 0.96 0.97 0.94 0.93 0.95 0.81 0.78 0.81
20 0.91 0.96 0.96 0.88 0.95 0.96 0.80 0.89 0.92 0.62 0.67 0.80
50 0.44 0.89 0.90 0.42 0.83 0.84 0.42 0.79 0.81 0.40 0.47 0.66

2
5 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.94 0.87 0.90
10 0.99 0.98 0.99 0.99 0.98 0.99 0.97 0.96 0.97 0.91 0.85 0.91
20 0.98 0.95 0.98 0.97 0.95 0.98 0.94 0.93 0.96 0.82 0.83 0.90
50 0.64 0.93 0.91 0.64 0.93 0.91 0.58 0.90 0.93 0.53 0.61 0.82

16

0.3
5 0.99 0.99 0.99 0.98 0.98 0.99 0.97 0.98 0.97 0.94 0.92 0.91
10 0.98 0.98 0.99 0.97 0.97 0.98 0.96 0.95 0.96 0.90 0.90 0.90
20 0.94 0.97 0.97 0.92 0.94 0.96 0.90 0.93 0.95 0.81 0.81 0.89
50 0.52 0.90 0.88 0.47 0.89 0.89 0.48 0.83 0.85 0.40 0.64 0.79

1
5 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.99 0.99 0.96 0.94 0.94
10 0.98 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.94 0.93 0.90
20 0.98 0.98 0.98 0.97 0.96 0.97 0.94 0.94 0.97 0.89 0.87 0.91
50 0.70 0.94 0.93 0.65 0.92 0.91 0.59 0.89 0.91 0.56 0.76 0.84

2
5 1.00 1.00 0.99 0.99 0.99 0.99 1.00 0.98 0.98 0.98 0.97 0.95
10 1.00 0.99 0.99 1.00 0.99 0.99 1.00 0.98 0.98 0.97 0.93 0.94
20 0.99 0.98 0.98 0.99 0.96 0.99 0.99 0.95 0.97 0.95 0.90 0.94
50 0.90 0.96 0.96 0.86 0.96 0.96 0.86 0.92 0.94 0.77 0.83 0.93

Table 5.2: Fraction of calls answered in time for dispatching policies P1, P4 and P5.
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6 Relocation policy
The relocation policy is responsible for the location of idle repairmen. The simplest relocation
policy is static policy, where each repairman is assigned to a base station and he returns there
every time he becomes idle. In Section 4.3, we discussed how to compute the assignment of the
repairmen that maximizes the expected covered demand.

However, when a repairman is dispatched to a call, a large area of the region may become un-
covered and it may be optimal to change the location of other repairmen. Recall that in our system
we allow one idle repairman to change his destination at the moment when another repairman is
dispatched or when another repairman becomes idle.

In this section we consider three relocation policies and compare them with the static policy, and
among each other. The first two policies are compliance tables constructed according to different
algorithms. A compliance table relocation policy is a policy where the location of the repairmen
depends only on the number of idle repairmen. The advantage of the compliance tables is the fact
that they are precomputed (so can be used even for big systems) and easy to use.

The third policy is heuristic relocation policy based on the DMEXCLP heuristic introduced
by Jagtenberg et al. [18]. The main difference of this policy from the compliance table is that
decisions are made in real time, so that more information about the state of the system can be used.
We consider two versions of this policy, with no restrictions and with restrictions on relocation, in
Section 6.3.

Section 6.4 contains simulation results for all of this policies combined with dispatching policy
described in Section 5.2.

6.1 MCRP compliance tables
The compliance table relocation policy is the policy where the location of the repairmen depends
only on the number of idle repairmen. The location and the number of the busy repairmen is
neglected, as well as the state of the capital goods. It allows to decrease the number of considered
situations and compute the actions even for big systems.

For a system with M repairmen, a compliance table consists of M levels. Level m contains
the allocation of the repairmen when there are m idle repairmen in the system. If one of them
is dispatched to a demand node, other repairmen are relocated according to level m − 1. If a
repairman finishes a repair in a demand node, then he is redeployed and the other repairmen are
relocated according to level m+ 1.

As the configuration of the idle repairmen may change after dispatching, we do not have to
optimize the long run fraction of calls answered in time, but only the probability that the next
call is answered in time. So if we denote by zmk the indicator of the fact that at the level with m
idle repairmen the demand node k is covered (meaning that at least one repairmen can reach it in
time), then on the level m we want to maximize

K∑
k=1

zmk.

If xmr is the number of repairmen at the base station r at level m then

zmk ≤
∑
r∈Nk

xmr, k = 1, . . . ,K,

where Nr is the set of all base stations from which the demand node k can be reached in time.
So, to construct the level m of the compliance table one should solve the following integer linear
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programming problem:

max

K∑
k=1

zmk

s.t. zmk ≤
∑
r∈Nk

xr, k = 1, . . . ,K

R∑
r=1

xmr ≤M

xmr = 0, 1, 2, . . . r = 1, . . . , R

zmk ∈ {0, 1} k = 1, . . .K.

(6.1.1)

Recall that in our system the relocation is restricted by one relocated repairman at a time. To
include this restriction in the ILP formulation we are also going to introduce non-negative variables
αmr that represent the number of repairmen that arrived at base station r after going from level
m+ 1 to level m. Then

αmr ≤ xmr − xm+1,r r = 1, . . . , R, m = 1, . . . ,M − 1

and
R∑
r=1

αmr ≤ 1, r = 1, . . . , R, m = 1, . . . ,M − 1.

As these constraints connect different levels of the compliance table, the ILP problems can not
be solved separately for each level and we have to construct a new ILP formulation for the whole
table. The fraction of time that the system stays on level m equals to the probability that there
are m idle repairmen in the system and the approximation of this probability was computed in
Section 4.1. So the final objective function is

M∑
m=1

P (Sm)

K∑
k=1

zmk,

where Sm is the event of having m idle repairmen in the system.
The final ILP formulation is

max

M∑
m=1

P (Sm)

K∑
k=1

zmk

s.t. zmk ≤
∑
r∈Nk

xmr, k = 1, . . . , K,m = 1, . . . ,M

R∑
r=1

xmr ≤M, m = 1, . . . ,M

αmr ≤ xmr − xm+1,r r = 1, . . . , R, m = 1, . . . ,M − 1

R∑
r=1

αmr ≤ 1, m = 1, . . . ,M − 1

αmr ≥ 0, r = 1, . . . , R, m = 1, . . . ,M − 1

xmr = 0, 1, 2, . . . r = 1, . . . , R, m = 1, . . . ,M

zmk ∈ {0, 1} k = 1, . . .K, m = 1, . . . ,M.

(6.1.2)

In total, there are MK + RM + (M − 1)R = M(K + 2R) − R decision variables and KM +
M +(M −1)R+(M −1)+(M −1)R = M(K+2R+2)−2R−1 constraints. So the computational
complexity of solving this problem is O

(
M2 (K + 2R)

2
)
.
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Figure 6.1: Example of a map with K = 10 and R = 5. Edges show
distances that can be reached in time limit.

Example 6.1.1. Consider a system depicted in Figure 6.1 with K = 10, R = 5, M = 6, λ = 0.01,
average repair time equals to 5 and TL = 10. Then the solution for the ILP problem 6.1.2 is the
following compliance table:

Num. of free repairmen RB1 RB2 RB3 RB4 RB5
1 0 0 0 1 0
2 0 0 1 1 0
3 0 0 1 1 1
4 1 0 1 1 1
5 2 0 1 1 1
6 3 0 1 1 1

6.2 AMEXPREP compliance tables
Consider a system where the number of repairmen is larger than the number required to cover
all demand nodes. According to MCRP approach, when some repairmen are placed so that they
cover all demand nodes, the location of the remaining repairmen does not affect the coverage. This
leads to the situation when they are allocated in inefficient way and causes unnecessary number of
relocations.

The hypothesis is that AMEXPREP compliance tables introduced in [4] can solve this problem.
In this algorithm, the main goal is to optimize expected covered demand, not the number of covered
demand nodes. The problem can again be formulated as an ILP problem.

Denote the number of repairmen located at the repair base r in the configuration for m idle
repairmen by xmr, m = 1, . . . ,M , r = 1, . . . , R. The indicator ymki, m = 1, . . . ,M , k = 1, . . . ,K,
i = 1, . . . ,m, equals to 1 only if in the configuration for m idle repairmen the demand node k is
covered by at least i repairmen.

Denote by Pmki, m = 1, . . . ,M , k = 1, . . . ,K, i = 1, . . . ,m, the probability that in the
configuration for m idle repairmen a call from the demand node k is answered by the ith closest
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repairman. Same as in section 4.2, this probability is approximated by Pi computed for the system
with M ′ = m. We denote this approximation by Pmi.

The ILP problem is formulated as follows:

max

M∑
m=1

K∑
k=1

m∑
i=1

Pmiymki

s.t.
m∑
i=1

ymki ≤
∑
r∈Nk

xmr, k = 1, . . . ,K, m = 1, . . . ,M

R∑
r=1

xmr ≤ m, m = 1, . . . ,M

αmr ≤ xmr − xm+1,r r = 1, . . . , R, m = 1, . . . ,M − 1

R∑
r=1

αmr ≤ A, m = 1, . . . ,M − 1

αmr ≥ 0, r = 1, . . . , R, m = 1, . . . ,M − 1

xmr = 0, 1, 2, . . . r = 1, . . . , R, m = 1, . . . ,M

ymki ∈ {0, 1} k = 1, . . . ,K, m = 1, . . . ,M.

(6.2.1)

The third and the fourth constraints limit the number of relocations by A and αmr is the
indicator that a repairman is relocated from the base station r when the number of idle repairmen
increases from m to m+ 1.

Example 6.2.1. Consider the same system as in Example 6.1.1. Then the solution for the ILP
problem 6.2.1 is the following compliance table:

Num. of free repairmen RB1 RB2 RB3 RB4 RB5
1 0 0 0 1 0
2 0 0 1 1 0
3 0 0 1 1 1
4 0 0 1 2 1
5 0 1 1 2 1
6 0 1 1 2 2

6.3 Relocation heuristic
When the compliance table relocation policy is used, the state that should be achieved after
relocation does not depend on the current state of the system, only on the number of idle repairmen.
On the contrary, heuristic approach to relocation uses all the information about the current state
to optimize the decision. According to this approach, when the decision should be made, it is made
to optimize some objective function under some restrictions. This approach is more flexible than
the compliance tables. We consider the DMEXCLP heuristic relocation policy introduced in [18]
and adjusted for our system.

There are two types of decision moments:

1. When a service is completed and there are no jobs assigned to the repairman that became
idle. In this case he must be dispatched to one of the base stations.

2. When an idle repairmen is dispatched to an incident, it should be decided whether other idle
repairmen should be relocated or not.
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We limit the number of relocations by one per decision moment. For the first situation, only
the repairmen that just became idle can be relocated. For the second situation, only one repairman
can change his base station.

According to the DMEXCLP relocation heuristic policy the action that maximizes the expected
covered demand is always chosen. In the first case one repairman is added subsequently to all base
stations, the expected covered demand is calculated and the base station that leads to the biggest
result is chosen.

For the second situation all pairs of the base stations (r1, r2), where there is at least one
repairman at the base station r1, are considered. We calculate the improvement in the expected
covered demand after the relocation of a repairman from the station r1 to the station r2. Suppose
that (r′1, r

′
2) is the pair with the maximum improvement. If this improvement is positive, then we

decide to relocate a repairman from the station r′1 to the station r′2. If the maximum improvement
in not positive then no relocation happens.

Note that for both situations the expected covered demand is computed only for the working
capital goods.

The problem of large relocation times leading to the possibly poor performance of the com-
pliance tables, can appear for this relocation policy as well. In [5] imposing restrictions on the
relocation is proposed as a solution to this problem. There are three possible parameters that can
be used to describe these restrictions.

In the first situation the maximum relocation distance can be set. In this case, the best station
is chosen among base stations in this distance from the demand node where the repairman is now.
If there are no such base stations then the choice is made from all base stations.

In the second situation the restriction can be imposed not only on the maximum relocation
distance, but also on the minimum improvement in the expected covered demand. If the maximum
relocation distance is set, than only the pairs (r1, r2) with this or less distance between r1 and
r2 are considered. If there are no such pairs the relocation is forbidden. Note that this distance
can differ from the distance for the first situation. If the minimum improvement threshold is set
then the relocation happens only if the improvement in the expected covered demand exceeds this
threshold. Setting this threshold equal to 0 means no restriction. The threshold larger than the
number of demand nodes leads to no relocation.

The optimal restriction parameters depend on the type of the system. However, there are no
known results on how to find the optimal parameters for a given system. In the computational
study in Section 6.4 we consider this policy with different parameters and study the improvement
that can be gained by parameter tuning.

6.4 Computational results and conclusions
In this section we present the results of the simulation of the system with different relocation
policies. The dispatching policy is fixed to the policy that always dispatches a repairman with the
smallest response time (see Section 5.2) without remaining repair time estimation. Five relocation
policies are considered:

1. Static relocation policy;

2. MCRP compliance tables;

3. AMEXPREP compliance tables;

4. DMEXCLP heuristic relocation without constraints;

5. DMEXCLP heuristic relocation with constraints.

The number of relocations is limited to one relocation for each decision moment.
The fifth policy requires more explanation. As mentioned before there are three parameters

that define restrictions for the heuristic relocation policy: the maximum distance of the relocation
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after the end of the service, the maximum distance of the relocation upon dispatching and the
minimum performance improvement for which the relocation upon dispatching is allowed. As it is
not known how to optimize these parameters, we simulated the system for the first and the second
parameters equal to 0.5TL, TL, 2TL and 100TL and the third parameter equal to 0, 1, 5, 100.
The best result for each type of the system was chosen and used as a result for the fourth policy.

We considered 27 types of the system with three possible values for each of such parameters as
the average service time, the time limit and the map density. The number of repairmen is set to 13
and the break down rate is set to λ = 0.01. For each type of the system 10 maps were generated
and 10 iterations of the simulation were performed for each map. The results of the simulation
can be found in Table 6.1.

One can see that compliance tables perform badly for most of the systems compared to other
policies. The only type of systems for which they perform better than the static policy is the
systems with dense map and service times much bigger than TL. The reason for that is the fact
that both MCRP and AMEXPREP algorithms ignore the distances, so when distances are not
neglectable it leads to inefficient relocation and poor performance.

Policy 4 (DMEXCLP heuristic policy without restrictions) outperforms the compliance tables
for all systems, because it uses more information about the state of the system to make the
relocation decision. However, it also ignores the distances, so for maps with large distances and
small density we observe that it performs worse than the no-relocation policy.

Finally, implementing Policy 5 leads to good results for all of the systems. The fraction of calls
answered in time stays above 80%, even for the systems with high load, where all other policies
results in less than 60% of calls answered in time. The difference in performance between Policy 5
and Policy 4 shows the importance of relocation restrictions and accurate tuning of the parameters
of these restrictions.

33



Service
Time

Time
limit

Map
density

P1 P2 P3 P4 P5

ST = 5

TL =5
0.3 0.93 0.69 0.71 0.89 0.98
1 0.94 0.79 0.81 0.95 0.99
2 0.97 0.87 0.89 0.99 0.99

TL =10
0.3 0.86 0.58 0.57 0.72 0.95
1 0.91 0.74 0.75 0.85 0.97
2 0.94 0.82 0.87 0.94 0.99

TL = 20
0.3 0.77 0.43 0.43 0.48 0.92
1 0.83 0.61 0.62 0.64 0.96
2 0.92 0.74 0.79 0.79 0.97

ST = 10

TL =5
0.3 0.86 0.70 0.73 0.91 0.96
1 0.87 0.84 0.85 0.96 0.98
2 0.94 0.92 0.95 0.98 0.99

TL =10
0.3 0.83 0.57 0.56 0.69 0.94
1 0.84 0.74 0.74 0.81 0.96
2 0.88 0.81 0.85 0.94 0.99

TL = 20
0.3 0.70 0.32 0.31 0.47 0.91
1 0.75 0.58 0.58 0.60 0.95
2 0.83 0.69 0.73 0.75 0.97

ST = 20

TL =5
0.3 0.76 0.70 0.70 0.85 0.95
1 0.80 0.83 0.86 0.95 0.97
2 0.87 0.92 0.96 0.98 0.99

TL =10
0.3 0.66 0.46 0.47 0.68 0.91
1 0.71 0.64 0.64 0.81 0.95
2 0.77 0.82 0.86 0.93 0.98

TL = 20
0.3 0.52 0.25 0.25 0.43 0.82
1 0.56 0.37 0.38 0.58 0.91
2 0.64 0.49 0.55 0.75 0.96

Table 6.1: Simulation results. Fraction of calls answered in time for policies P1-P5.
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7 Approximate dynamic programming
To construct an optimal policy for the Markov decision process described in Section 3 one can
use such algorithms as policy iteration or value iteration. However, as the state space of the
process is continuous, these algorithm are impossible to implement computationally. Even if we
discretize the state space, the number of possible states for realistic-sized systems is large and the
problem remains intractable. We consider this approach in Section 8 below and show that it is
computationally difficult, even for relatively small systems.

On the other hand, in Sections 5 and 6 we saw that making decisions based on such metrics as
the expected covered demand and the response time leads to well performing policies. The problem
is that we do not know what is the optimal way of using this metrics in making decisions.

The Approximate Dynamic Programming (ADP) approach combines the ideas of Markov Deci-
sion theory and the heuristic approach. The goal is to find an approximation of the value function
of the process as a combination of several basis functions, such as the expected covered demand
and response time, and choose actions based on this approximation. Section 7.1 contains more
detailed description of the approach. Used basis functions are discussed in Section 7.2. Two ap-
proaches to finding a good approximations are discussed in Sections 7.3 and 7.4, respectively. The
computational results including comparison to the DMEXCLP heuristic policy (see Section 6.3)
are presented in Section 7.5.

Our adaptation of the ADP approach to the problem is inspired by the studies applying ADP
to the real-time ambulance management, especially the papers of Maxwell et. al. [25] and Nasrol-
lahzadeh et al. [28].

7.1 Approximate solution
Let us consider a discounted version of the process {sn, n = 0, 1, . . . }, described in Section 3 with
discount factor γ. Fix a policy π and denote by Vπ(s) the expected total discounted costs when
s0 = s under this policy:

Vπ(s) = E

[ ∞∑
n=0

γt(sn)c(sn, π(sn), sn+1) | s0 = s

]
.

If policy π is the optimal policy, then V (s) satisfies the Bellman optimality equation

Vπ(s) = min
a∈A(s)

{
Ea
[
c(s, a, s′) + γt(s

′)−t(s)Vπ(s′)
]}

, ∀s ∈ S,

where s′ = Φ (s, π(s), ω(s, a)) is the next state of the process when action a is taken, and

π(s) = argmin
a∈A(s)

{
Ea
[
c(s, a, s′) + γt(s

′)−t(s)Vπ(s′)
]}

, ∀s ∈ S.

Hereinafter, we denote Vπ(s) for the optimal policy π by V (s).
As the state space of process {sn, n = 0, 1, . . . } is infinite, the optimal action can not

be computed in advance for each state. But if for each action a ∈ A(s) we can calculate
Ea
[
c(s, a, s′) + γt(s

′)−t(s)V (s′)
]
, then being in state s we can find the optimal action a. Note

that given state s and action a the distribution of the state s′ is known (see Section 3.5 for details),
so the only problem is to calculate V (s′).

To overcome the problem of infinite state space, the ADP approach suggests to use an ap-
proximation V̂ (s) of V (s), that can be computed explicitly for any state s. We consider an affine
combination of several basis functions ϕi(·), i = 1, . . . , I, as such an approximation. So the ap-
proximate value function is

V̂ (α, s) = α0 +

I∑
i=1

αiϕi(s),
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where αi, i = 0, . . . , I, are coefficients, and the approximate optimal policy is defined by

π̂(α, s) = argmin
a∈A(s)

{
Ea
[
c(s, a, s′) + γt(s

′)−t(s)V̂ (α, s′)
]}

, ∀s ∈ S.

The choice of basis functions is very important for the performance of the approach. First, they
should be possible to compute explicitly for any state s. Second, they should be able to characterize
the optimal value function, as otherwise it is impossible to achieve an accurate approximation to
it. We discuss our choice of basis functions in Section 7.2.

When the set of basis functions is chosen, the approximation is improved by tuning the vector
of coefficients αi, i = 0, . . . , I. We consider two algorithms to do this: approximate policy iteration
and a genetic algorithm. We discuss these approaches in Sections 7.3 and 7.4, respectively.

In practice, the expected costs after taking action a in state s, Ea
[
c(s, a, s′) + γt(s

′)−t(s)V̂ (s′)
]
,

can be still hard to compute, even when the distribution of s′ depending on s and a is known. To
reduce the computational time, we estimate this value by simulation. We simulate the next state
s′ several times, then for each realization compute expected costs and use the average of these
costs as an approximation.

7.2 Basis functions
In our approach we use six basis functions. Some of them describe the ability of the system to
respond for future demand, for example coverage and expected covered demand. These functions
were already used in Sections 5 and 6 to construct heuristic policies. Other functions (for example,
the number of unassigned calls and the number of unreachable calls) approximate future penalties
for decisions made in the past.

Number of unreachable calls

Consider a call for which a repairman was already dispatched but he is still on his way and he is
not going to reach the place in time. Imagine that this call did not pass the time limit yet. Then
this call will cause a penalty in the future. The first basis function ϕ1(·) computes the number of
such calls in state s:

ϕ1(s) = |{k ∈ K | 0 < κk(s) < TL} ∩ {lm(s), m = 1, . . . ,M}| .

Number of unassigned calls

Each call unassigned in the current state may cause costs later. First, this call may be answered
late and lead to paying a penalty. Second, sooner or later a repairman is going to be dispatched to
this call, which will lead to decrease in coverage. So the second basis function counts the number
of unassigned calls in state s:

ϕ2(s) = | {k ∈ K \ {lm(s), m = 1, . . . ,M} | κk(s) > 0 or e(s) = "a call arrived from dem. node k"} |.

Number of missed unassigned calls

Opposite to unreachable calls for which we already paid, the penalty missed unassigned calls still
require dispatching of a repairman. This will lead to a decrease in coverage that we can not see
from current coverage metrics. At the same time as part of the penalty caused by this calls was
already paid they can not be considered equal to other unassigned calls. So the third basis function
is the number of unassigned calls that already passed the time limit:

ϕ3(s) = | {k ∈ K \ {lm(s), m = 1, . . . ,M} | κk(s) ≥ TL} |.
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Uncovered demand nodes

If a demand location is not covered in state s and a failure occurs there in the near future, it causes
costs, so the number of uncovered demand nodes is an important metric of the state. We consider
only the demand nodes with working machines as only they can generate demand:

ϕ4(s) = | {k ∈ K | κk = 0 and rt(k,m) > TL ∀m = 1, . . . ,M} |,

where rt(k,m) is the estimation of time when repairman m can reach demand node k. For idle
repairmen, this is equal to the distance to the demand node and for repairman assigned to a call it
is estimated as distance to demand node k plus remaining service time estimated by 80th percentile
of the service time distribution.

Expected covered demand

In Section 6, we saw that a heuristic relocation policy based on maximizing the expected covered
demand shows high performance. This is why we included expected covered demand in the set
of basis functions. It is calculated according to approximation from Section 4, where the distance
from repairman m to demand node k is replaced by response time rt(k,m). It ignores broken
machines and is calculated based on working machines only.

Average response time

The last function is the average response time for all working machines. For a pair of a repairman
and a machine the response time rt(k,m) is estimated in the same way as for function ϕ4(·). Then
for each demand node we choose the smallest response time and calculate the average. So if W(s)
is the set of working machines and W (s) is the number of working machines, then

ϕ6(s) =
1

W (s)

∑
k∈W(s)

min
m

rt(k,m).

Future basis functions

All basis functions described above characterize the current state of the system. However, when
we make relocation decision we are not only interested in the state right after the decision is made,
but also in the state upon arrival of the relocated repairman. So, following [28], we introduce
basis functions ϕ7 to ϕ12 which characterize the state of the system after the arrival of one of the
traveling repairmen.

To compute them, we find the repairman that will arrive at his destination first of all traveling
repairmen. Then we construct the state of the system at the moment of his arrival assuming that
no other events happened and compute functions ϕ1 to ϕ6 for this state. If there are no traveling
repairmen, then the values of the functions ϕ7 to ϕ12 are equal to the values of the functions ϕ1

to ϕ6.
We performed the computational study both with and without the future functions to see their

impact on the result.

7.3 Approximate policy iteration
When the set of basis functions is determined, the next challenge is to find a vector of coefficients
αi, such that the approximation

V̂ (s) = α0 +

I∑
i=1

αiϕi(s)

is close to V (s), the real value function of the process.
Approximate policy iteration extends the policy iteration algorithm used to compute the op-

timal policy. In the policy iteration algorithm each step improves the current policy. Each step
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of approximate policy iteration algorithm improves not only the policy, but the approximation as
well.

The algorithm is formulated as follows:

1. Initialize a vector of coefficients α(1) and a set of states S(1). Set n = 1.

2. Consider the policy π̂(n) = π̂(α(n), ·) based on approximation V̂ (α(n), ·).

3. For every state s from set S(n), perform Nsim simulation runs of the process with policy π̂(n)

starting from state s over time period [0, T ]. Let C(s, j) be the total discounted costs and
let s′(s, j) be the last state of the jth run of the simulation.

4. Set

α(n+1) = argmin
α

∑
s∈S(n)

Nsim∑
j=1

(
C(s, j)− V̂ (α, s)

)2
.

Set S(n+1) =
{
s′(s, 1), ∀s ∈ S(n)

}
.

5. Increase n by 1. If n is less than the chosen maximum number of iterations Nmax, then go
to step 2. If n = Nmax, then stop and output the current vector α.

Let us discuss each step of the algorithm in detail.
First, we initialize some arbitrary vector of coefficients α(1) and set of states S(1). The vector

of initial coefficients can be constructed so that the resulting policy behaves according to common
sense (for example, set the coefficient for unassigned calls equal to 1 to impose dispatching and all
other coefficients to 0). The initial set of states S(1) can be obtained, for example, as a set of final
states of a series of simulation runs starting from the same state.

During each iteration of the algorithm, a new policy is determined by new vector α. During
the third step we observe the real costs under this new policy and then in Step 4 choose new
coefficients of the approximation to improve the fit. The latter is achieved by minimizing the sum
of squared differences between the simulated and the approximated costs.

Along with the vector of coefficients, the set of states is also updated through the iteration
procedure. This is necessary as under the new policy the process may not visit old states any
more.

7.4 Genetic algorithm
Genetic algorithms are widely used for optimization problems to find good approximations to the
optimal solutions [31]. We use a genetic algorithm to tune vector of coefficients α. Using this
approach, we do not look for a close approximation of the value function, but are interested in a
vector of coefficients α that leads to high-performing policy π̂(α, ·).

To define a genetic algorithm, we need to define population, mutation operator, crossover
operator and selection of the next generation. In our case, population is a set of vectors α(n), n =
1, . . . , N , where N is the size of population. At the beginning, we initialize population by adding
random vectors to the same vector α(0).

During each iteration of the algorithm, a new population is constructed from the current pop-
ulation by joining N candidate solutions from the current population, N mutated solutions and N
child solutions, which are results of the crossover operator.

Mutation is applied to each candidate solution from the current population. Given a solution,
the mutation operator adds a vector, each component of which is normally distributed with mean
0. The variance is chosen according to the size of the system.

For the crossover operator, we select randomly N pairs of candidate solutions and compute the
average in each pair. This is a good crossover operator, since α is a vector of coefficients of a linear
combination.

All 3N solutions of the new population are evaluated by means of simulation: the system is
simulated under corresponding policies from the same initial state and the fraction of calls answered
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Figure 7.1: Genetic algorithm.

in time is observed. Then only the 0.8N best performing and 0.2N randomly chosen candidate
solutions from the new population survive. The scheme of the algorithm is depicted in Figure 7.1.
The algorithm stops after a certain number of iterations.

7.5 Computational results and conclusions
Due to the computational complexity, we did not investigate the performance of the ADP approach
for several different maps, as we did for dispatching and relocation heuristics in Sections 5.3 and
6.4. We fixed a service region depicted in Figure 7.2 with three repairmen. The failure and the
service rate were set to λ = 0.01 and µ = 0.2, respectively.

Figure 7.2: Map for the computational experiments.

We discussed two approaches for finding the vector α resulting in high performance of the
respective policy: the approximate policy iteration and the genetic algorithm. We ran 15 iterations
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Figure 7.3: Approximate policy iteration. Aver-
age error plotted against iterations.

Figure 7.4: Approximate policy iterations. Frac-
tion of calls answered in time.

of both of them. The initial α was set to (0, 1, 0.8, 0, −0.1, 0.01) for both approaches.
The approximate policy iteration was performed for six basis functions and it showed poor

performance. The average square error after each iteration is shown in Figure 7.3. As one can
see, there is no convergence. After each iteration, we also simulated the system 10 times, starting
from the state with a repairman at each base station and all machines working, and computed the
average fraction of calls answered in time. The results are depicted in Figure 7.4. The performance
is unstable and it does not improve from iteration to iteration.

Next, we performed 15 iterations of the genetic algorithm. The variance of the normal dis-
tribution of mutation operator was set to 2. The size of population is N = 50 candidate so-
lutions. The initial population was constructed by adding random vectors to the initial vector
(0, 1, 0.8, 0, −0.1, 0.01) . Candidate solutions were evaluated by simulation of the system start-
ing from the state with one repairman at each base station.

The genetic algorithm was performed in case of 6 and in case of 12 basis functions, meaning with
and without future basis functions. At each iteration we tracked the fraction of calls answered in
time by policy corresponding to the best candidate solutions. The results can be found in Figure
7.5. After 15 iterations, the best result in case of 6 basis functions is on average 80% of calls
answered in time. In case of 12 basis functions the best result is 93% of calls answered in time, so
the future functions play an important role in the performance of the approach.

For this map we also performed the simulation of the system with heuristic policy, where
the repairman with the minimum response time is always dispatched and the relocation is done
according to DMEXCLP heuristic. The best result achieved by this policy is 89% of calls answered
in time. So we conclude that the ADP approach leads to higher-performing policy than the
heuristics approach.

The disadvantage of the ADP is that it is more time consuming than the heuristic policy. For
this example, it took 1 day to perform 15 iterations of the genetic algorithm, whereas it takes only
one hour to tune the restriction parameters in the heuristic policy.

40



Figure 7.5: Genetic algorithm. Fraction of calls answered in time
plotted against iterations.
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8 Discrete-time model
The continuous-time process described in Section 3 gives the most accurate model of the system
under our assumptions. However, this process has an infinite state space, which makes it impossible
to perform the policy iteration computationally.

In this section, we discuss a discrete-time approximation of the original process. To that end,
we discretize the map of the regions. Time is also discretized. This leads to the fact that several
events can happen between subsequent states of the process, so we no longer restrict ourselves to
the states with at least one event, but consider the state of the process at each time unit.

The resulting process has a finite state space that allows us to perform the policy iteration.
However, the state space of the realistic systems is still too big, so the policy iteration was performed
only for a small instance. For this instance, the performance of the optimal policy is compared to
the performance of the best heuristic policy obtained in Sections 5 and 6 and the performance of
the output policy of the ADP approach.

In Section 9 below, we use the discrete-time model introduced in this section to obtain theo-
retical results for the systems under heavy and light traffic regimes.

8.1 Process description
In this section we construct a discrete-time model of the system. Recall that for the continuous time
model, we consider the system at each moment when some event happens. The main difference
of the discrete-time model from the continuous-time one is that the time is discretized and we
consider the system every time unit, no matter how many events happened since the last state.

In practice, the length of the time unit is an important decision to make. Small duration of
the time unit provides good approximation of the real process, however it may also lead to a large
state space that is intractable from computational perspective (for example, requires big amount of
memory). Our computational study is based on simulated maps, not the real data, so we avoided
the problem of choosing the correct time unit duration.

First, we approximate the original map by a new map where all distances between locations are
the original distances rounded to the integer numbers of time units. It is better to use the ceiling
because for each state of the new process we look at the events in the past.

Then we need to define the state space. Recall that for continuous-time process we consider
only the moments when some event happens and the state of the process is described by a tuple

s = (t, e,m, κ) ,

where t is the time, e is the event, m describes the location of the repairmen and κ describes the
state of the capital goods.

For the discrete-time process we consider the state of the process at each time unit. So the
time of state sn is always tn = n and so, as the optimal action in state s should not depend on
time t(s), we can ignore the time component in the discrete-time version of the process.

The vector m remains unchanged. It again contains the pairs of destination and the distance
to this destination for each repairman. For the discrete-time setting distances take only integer
values, so there in only a finite number of possible locations of a repairman.

Vector κ again contains the state of each of the machines: the time in queue if the machine is
broken, 0 if it is working and −1 if it is in repair. To have finite number of possible states of each
machine the time in queue is bounded by the time limit. If the time limit for a broken machine k
already passed we set κk = TL.

For the continuous-time model we assumed that there is only one event happening at a time.
However, for discrete-time process during transition from state sn to state sn+1 more than one
event may happen (for example, two machines may break down). So now the event e is a triple of
sets:

e = (K1,K2,Ma) ,
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where K1 is the set of machines that broke down during the last time unit, K2 is the set of the
demand nodes where a repair ended during the last time unit, andMa is the set of all repairmen
that arrived to their destination during the last time unit. As we consider the state of the process
at each time unit it is possible that no events happened and all three sets are empty.

The probability that a working machine will break down during a time unit is p = 1− e−λ and
the probability that a repair in progress will end during a time unit is q = 1 − e−µ. Denote by
W (s) number of all working machines in state s and by H(s) the number of demand nodes where
there is a repairman doing a repair. Then the probability of having event e with particular K1 and
K2 is

P (s,K1,K2) = p|K1|(1− p)W (s)−|K1|q|K2|(1− q)H(s)−|K2|.

The last component of the event, set Ma of the arrived repairmen is deterministic and depends
only on the previous state of the system.

To keep the decision-making process close to that of the continuous-time model, it is beneficial
to choose a time unit so that there is usually not more than one event happening per time period.

As the set of possible states of a repairman, the set of possible states of the machines and the
set of possible events are all finite, the state space of the process is finite as well. However, the
number of states grows exponentially in the number of machines and in the number of repairmen,
so for realistic systems the state space can be very large.

A decision a in state s consists of three binary matrices X, Y and Z. Matrix X describes
the dispatching decision for all call from set K1: Xmk = 1 only if repairman m is dispatched to
demand node k. Matrix Y describes the redeployment decision for the repairmen that became idle
at demand nodes from the set K2: Yml = 1 only if repairman m is redeployed to location l. Matrix
Z describes the relocation decision: Zmr = 1 only if repairman m is relocated to base station r.

The next state of the process depends only on the current state of the process, action taken
and the random components of the event (K1 and K2):

sn+1 = Φ (sn, an,K1,K2) ,

The transition costs from state sn to state sn+1 are again defined as

c(sn, an, sn+1) = | {k ∈ K | κk(sn) < TL and κk(sn+1) = TL} |+ ε| {k ∈ K | κk(sn) = TL} |.

As the transitions and the costs depend only on the current state and the random component,
the resulting process is a finite-state Markov decision process.

8.2 Computational results
In this section we provide the results of a computational study. Again, as for the ADP approach
in Section 7.5, we fixed one small system and performed the computations for this system.

Consider the service region depicted in Figure 8.1 with two service engineers. The working time
rate is λ = 0.01 and the service rate is 1, so the probability that a working machine breaks down
during one time is p = 0.095 and the probability that an on-going repair finishes in one time unit
is q = 0.6. Time limit is TL = 3, which means that once a machine is broken a repairman should
be dispatched immediately to avoid paying a penalty.

This a small unrealistic example, but even for this system the number of possible states is
78 432 an it takes more than two days to define the process. The main problem is computing and
storing the transition probabilities. It is hard to estimate how much time and memory it will take
to compute and store this matrix for realistic systems.

After defining the process, we performed policy iteration for this system. Then we performed
10 iterations of simulation of the system under the policy obtained from the policy iteration. The
average resulting penalty is 0.006 per time unit. The average fraction of calls answered in time
is 0.87. To compare, the fraction of calls answered under DMEXCLP + minimum response time
heuristics policy is 0.82, which shows that this policy performs close to optimal at least for this
instance.
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Figure 8.1: Map for computational experiments.
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9 Structural results
In this section, we investigate the performance of discrete-time process described in Section 8
under extreme regimes. We consider two regimes: either when service times are large compared to
traveling times and working times, or when working times are large compared to other parameters.

Using techniques proposed by Katehakis and Levine [21], we obtain some theoretical results
about the properties of the optimal policies under these regimes.

9.1 Asymptotically optimal policies
Consider a discounted version of the discrete-time process sn described in Section 8.1 with discount
rate β. If the policy π is fixed, then, given that the state at time 0 is s the expected discounted
cost and the average expected cost for the system are defined by

Vπ(s) = E

[ ∞∑
n=0

e−βtc(sn) | s0 = s

]
,

Uπ(s) = lim
N→∞

1

N
E

[ ∞∑
n=0

c(sn) | s0 = s

]
.

Under a fixed policy π, the value function Vπ(s), s ∈ S, is the unique solution of the following
system of equations

Vπ(s) = c(s) + e−β
∑

(K1,K2),
K1⊂W(s),
K2⊂H(s)

P (s,K1,K2)Vπ (Φ (s, π(s),K1,K2)) (9.1.1)

The following proposition follows from the fact that the state space and the action space are
finite.

Proposition 9.1.1. There exists a β0 and a policy π0 ∈ Π such that Vπ0
(s) ≤ Vπ(s) for all s, for

all π 6= π0 and for all β ∈ (0, β0) and limβ→0 βVπ0(s) = Uπ0(s).

Proof. See [11].

Thus, a policy which minimizes Vπ(s) for small values of β also minimizes Uπ(s).

To obtain the results the extreme regimes, we multiply the probability of failure or the prob-
ability of the end of repair by parameter ρ and find policies that are optimal for small values of
ρ. As after multiplying either p or q by ρ, the probability P (X,K1,K2) is polinomial in ρ, we can
regroup all terms to get the following expression:

Vπ(s) =

∞∑
i=0

νi(s)ρ
i, (9.1.2)

where the number of non-zero coefficients νi is finite. Note that as ρ goes to 0 the leading terms
dominate. Let us call the policy, that maximizes the leading coefficients, asymptotically optimal
policy.

Proposition 9.1.2. There exists ρ∗ > 0 such that the asymptotically optimal policy π∗ is optimal
for ρ ∈ (0, ρ∗).

Proof. See Theorem 1 in [21].

Thus, once we found the optimal policy for ρ = 0, it is also optimal for small values of ρ. In
next sections we consider three different extreme regimes and will see that if ρ = 0 the system is
equal to a simpler system for which the optimal policy can be found explicitly.
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9.2 Large repair time
For this section we set the additional costs ε = 0. Note that this results can be extended to the
case of non-zero ε. However, we are not going to discuss it.

In our model large repair times are represented by q close to 0. So to study this regime we
multiply q by ρ and consider small values of ρ. Then substituting (9.1.2) into (9.1.1) and sending
ρ→ 0, we obtain the following equations for ν0:

ν0(s) = c(s) + e−β
∑

K1⊂W(s)

P (s,K1, ∅) ν0 (Φ (s, π(s),K1, ∅)) . (9.2.1)

Note that these equations describe the aggregated costs for the system where repairs never end,
and once a repairman is dispatched to a call he is lost forever. So computing ν0 for a state s we
can ignore all machines that are already in repair or have a repairman assigned to them, as well
as the repairmen that are already assigned somewhere.

Denote by Ω(s) the set of all machines that are either working in state s or have been waiting
in the queue for no longer than TL time units. Not reached in time these machines cause costs in
future. If a working machine breaks down in τ time units and it is not reached within the time
limit, it adds e−β(τ+TL) to ν0(s). If a machine that broke down τ time units ago is not reached
in time it adds e−β(TL−τ) to ν0(s). So due to discounting, the later the machine breaks down the
smaller costs it causes.

As dispatched repairmen are lost, starting from state s we can reach only a limited number
of machines in time. To minimize the costs, it is beneficial to reach in time those machines that
break down first.

In order to describe the optimal policy precisely we need to introduce the following notation.

Kcovered(s) = the maximum number of machines from Ω(s)

that are covered in state s, if one repairman
can cover only one machine.

Finding Kcovered is the same as finding the size of the maximum matching in a bipartite graph
of repairmen and machines from Ω(s), where an edge represents a distance, less than TL, between
a repairman and a demand node. If in state s there are traveling repairmen whose destinations are
some base stations, the distance from such repairmen to demand nodes changes in time, so Kcovered

should be compared as the expected maximum number of covered demand nodes conditioning on
the failure time of working machines.

Next we define

Θ(s) = the number of subsets of Ω(s) of size Kcovered(s),
such that each of these subsets is covered in state s,
if one repairman can cover only one demand node.

This number corresponds to the number of maximum matchings in the bipartite graph men-
tioned above. For states with traveling repairmen it is again computed as an expectation.

The next theorem implies that the ν0(s) is defined by a triple (|Ω(s)|, Kcovered(s), Θ(s)).

Theorem 9.2.1. For small values of discount rate β, the optimal policy for the large repair times
regime can be described as follows:

• If a repairman can reach a broken machine in time, he should be dispatched.

• Among all possible actions always choose the one that leads to maximum Kcovered and then,
if there are several action resulting in the same Kcovered, to maximum Θ.

Proof. Recall that we prefer to reach in time those machines that break down first. Each repairman
can cover only one machine and the earlier he does it, the better. This implies the first statement
of the theorem.
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For small β, a machine from Ω(s) not reached in time adds almost 1 to ν0(s). As only Kcovered

machines can be reached in time from state s, other |Ω(s)| − Kcovered(s) machines will cause
penalties. So

∀ε > 0 ∃βε : ∀β < βε ν0(s) > |Ω(s)| −Kcovered − ε.

On the other hand, if each repairman is assigned to a machine according to the maximum
matching and waits for this particular machine to break down, then the covered machines will
never cause a penalty, so

ν0(s) ≤ |Ω(s)| −Kcovered.

Note that if all distances are bigger than one time unit and the process is currently in state s,
then all possible next states s′ have the same Ω(s′). Also Kcovered(s

′) is determined by the current
state and the action taken.

Consider two possible next states s1 and s2 with Kcovered(s1) > Kcovered(s2). For small enough
β it holds that

ν0(s2) > |Ω(s2)| −Kcovered(s2)− (Kcovered(s1)−Kcovered(s2)) = |Ω(s1)| −Kcovered(s1) ≥ ν0(s1).

So it is beneficial to choose the action that leads to maximum Kcovered of the next state.
Consider now two possible next states s1 and s2 with the sameKcovered. Then if Θ(s1) > Θ(s2),

the probability, that we can cover the machines that break down first, is higher for state s1. As
the earlier the machine breaks down, the bigger costs it causes, it implies that ν0(s1) < ν0(s2).

If both Kcovered and Θ are the same for states s1 and s2, then the configurations of these states
are the same and so ν0(s1) = ν0(s2).

Note that under the optimal policy the process never visits states s with both an uncovered
machine from Ω(s) and idle repairmen at base stations from which they can not reach any machine
from Ω(s) in time. It is also not optimal to visit a state where there is a machine in the queue for
more than 1 time unit and an idle repairman that can reach it in time.

9.3 Large working time
To obtain the result for the regime with low rate of new failures occurrence, we multiply the
probability of a break down p by ρ. Then from equations (9.1.1) for V , we get the following
equations for ν0:

ν0(s) = c(s) + e−β
∑

K2⊂H(s)

P (s, ∅,K2) ν0 (Φ (s, π(s), ∅,K2)) (9.3.1)

Note that in state Φ (s, π(s), ∅,K2) the number of broken machines is always less or equal to
the number of broken machines in state s and it is the same only if K2 = ∅. The same can be said
for the number of unassigned calls.

If there are no traveling repairmen after taking action π(s) in state s, then Φ (s, π(s), ∅, ∅) = s
and equation (9.3.1) can be rewritten as

ν0(s) =
1

1− P (s, ∅, ∅)

c(s) + e−β
∑

K2⊂H(s)
K2 6=∅

P (s, ∅,K2) ν0 (Φ (s, π(s), ∅,K2))

 , (9.3.2)

where the right part contains only the states with smaller number of broken machines. So if ν0
is known for all states with smaller number of broken machines, ν0(s) can be computed from this
equation.

If there are traveling repairmen after taking action π(s) in state s, but Ma(s) = ∅, then the
total distance left for all repairmen to travel to their current destination in state Φ (s, π(s), ∅, ∅) is
less then in state s. So if for state s we know ν0 for all states with either smaller number of broken
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machines or the same number of broken machines and smaller total distance left to travel, then we
can compute ν0(s) from equation (9.3.1).

The only case in which the total remaining distance in state Φ (s, π(s), ∅, ∅) can be bigger than
in state s is when there were some repairmen that arrived to their destinations (so Ma 6= ∅)
and then were dispatched to some calls. But in this case, the number of unassigned calls in state
Φ (s, π(s), ∅, ∅) is less than in state s and, knowing ν0 for all state with smaller number of unassigned
calls, we can compute ν0(s).

As a conclusion all states can be ordered, based on the number of broken machine, the number
of unassigned calls and the total remaining distance to travel, in such a way that knowing ν0 for
all states before state s we can compute ν0(s) from equation (9.3.1).

For states s with all machines working ν0(s) = 0 as there are no reasons for costs. So starting
from them one can compute ν0(s) and construct the optimal policy based on this values.

9.4 Small working and repair times
To consider this regime we multiply (1− p) and (1− q) by ρ. Then the equations for ν0 take the
following form:

ν0(s) = c(s) + e−βν0 (Φ (s, π(s),W(s),H(s))) . (9.4.1)

So ν0 is equal to the value function of the system where a machine always breaks down within
the next time unit after repair and all repairs end within time unit after the beginning.

As the system is deterministic and contains no uncertainty, under the optimal policy each
repairman has a route around the region. A route may consist of several demand nodes and base
stations. For the systems with an excessive number of repairmen, a route may consist of only one
base station where the repairman stays all the time. Traveling along his route a repairman stays
for one time unit in each demand node of the route and from 0 to several time units in each base
station of the route.

When a repairman leaves a demand node, a machine installed there breaks down in one time
unit, so either he or another repairman should visit it during TL time units to avoid paying a
penalty. So all penalties are associated with demand nodes that are visited more rarely than every
TL time units.

Finding the optimal policy is equal to finding good routes for all repairmen. It is an interesting
problem in itself for which we did not find any references in the research literature.
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10 Conclusions
In this section we summarize the results of this thesis and discuss the final conclusions. We describe
how different approaches to the problem the we studied relate to each other and formulate practical
advice based on our results. In the second part of this section, we discuss the limitations of our
study and propose directions for further research.

10.1 Results
Recall that our goal was to find a policy for real-time management of service engineers that leads
to low costs associated with late arrivals to the calls. Moreover, we were not interested in finding
such a policy for a particular service network, but rather to obtain an algorithm to construct this
policy suitable for networks with different properties.

To tackle this problem, we proposed two models of the system: a continuous-time and a discrete-
time ones. The continuous-time model provides the most accurate approximation to the real service
network, whereas the discrete-time model is used for finding the exact optimal policy when possible.

First, we studied dispatching policy while the relocation policy was fixed to a static one (where
relocation is not allowed). Four dispatching policies were compared by simulation for systems with
different parameters: such as the number of repairmen, the average duration of the repair, the
time limit and the map density. The policy that assigns the repairman with the smallest response
time outperformed other policies for all systems. So, it may be beneficial not to dispatch an idle
repairman immediately when a call arrives, but wait for another repairmen to finish the service
and then dispatch him to the call.

We also compared the performance of this policy for two situations: when a repairman can
estimate the duration of repair upon arrival to the failed machine and when the duration of the
repair remain unknown until the repair is finished. We concluded that the accurate estimation of
the remaining repair time is only important for the systems with large service times and high load.

Second, we compared the performance of four relocation policies. The first policy was the
static policy, where relocation is not allowed. The second and third policies were compliance tables
constructed according to different approaches. The fourth policy was a heuristic maximizing the
expected covered demand for the system. These policies were combined with the dispatching policy
that always chooses the repairman with the minimum response time. For most of the systems,
both compliance tables showed worse performance than the static policy did. They outperformed
it only for the systems where the distances are small compared to the average service time.

The performance of the fourth policy depends on the choice of the restriction parameters, such
as the maximum distance of relocation and the minimum improvement of the expected covered
demand. Without these restrictions for systems with large distances it performs worse than the
static policy. However, when the restriction parameters are carefully chosen, it outperforms other
three policies with up to 60% relative increase of the fraction of calls answered in time.

Next, we proposed the ADP approach to this problem. According to this approach the real
costs were approximated by the combination of twelve basis functions. Two ways to tune this
approximation were studied: an approximate policy iteration and a genetic algorithm. The ap-
proximate policy iteration showed poor performance, whereas the genetic algorithm resulted in a
high-performing policy. For the considered example, this policy leads to on average 93% of calls
answered in time compared to 89% answered in time by the heuristic policy.

Finally, we described a discrete-time model of the system for which the results of Markov
Decision theory (such as policy iteration) were applied. We saw that even for a very small system
of 4 demand nodes, this method is too computationally demanding to be used in practice.

Using this discrete-time model, we proved the results about the optimal policy for three ex-
treme regimes. For the regime with large repair times, the optimal policy chooses the action that
maximizes the number of covered working machines and the number of sets of working machines
of the maximum size. For the regime with large working times, we did not find find the explicit
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optimal policy. However, we proved that all the states can be ordered in such a way that the value
function of a state is a linear combination of the value function of the previous states. Using this
result, one can compute the value function for all states of the system and construct an optimal
policy based on that. For the regime with small working times and small repair times, we discussed
the structure of the optimal policy.

As a practical conclusion of our study, we advice to use either the heuristic policy (DMEXCLP
+ minimum response time dispatching) or the ADP approach. The ADP gives the best results
of all the considered methods. However, it is computationally difficult, so if the computational
resources are limited, one can use the heuristic policy, where the restriction parameters can be
tunes relatively fast by means of simulation.

10.2 Future research
We suggest several directions in which our research can be extended.

First, one can relax our assumptions. The most restricting assumption is that preemption is
not allowed. Once a repairman is relocated from one base station to another, he can not return
to the first base station until after he reaches the latter. He also can not be dispatched directly to
new calls even if he is traveling close to them. This restriction is not always close to practice and
it leads to a cautious relocation strategy. As during relocation the repairman is not available, the
relocation is not performed as often as it may be optimal.

Second, some of our approaches can be studied in more detail. For example, we observed that
the performance of DMEXCLP heuristic policy heavily depends on the choice of the restriction
parameters. But up to our knowledge, there are no studies on how to find the optimal values of
these parameters for a given system. The ADP approach also allows further investigation. One
can study how the choice of the basis functions, approach to finding the approximation and the
parameters of the system affect the performance of this approach.

The third direction is to study more complex systems than we did. For example, in practice,
when repairmen are not busy with corrective maintenance, they do preventive maintenance. The
goal of the preventive maintenance is to avoid the failure of the machines by regular examination.
It is usually performed according to some schedule. Building the preventive maintenance schedule
that also takes into account the possibility of the demand for the corrective maintenance is one of
the possible extensions of our study.

Another extension is to include spare parts management in the scope of the problem. Spare
parts are often needed to perform the corrective maintenance. They are usually kept either in
the storage or in the trucks of the repairmen. Making the decision about dispatching of a service
engineer, the manager should also take into account the inventory level of spare parts needed for
this repair. So to minimize the costs, it is beneficial to study the spare parts and the service
engineers together. This is an interesting problem and, to our knowledge, there is no available
research on this topic.
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