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Abstract	
 

In life-threatening situations where every second counts, the timely arrival of 
firefighter services at the emergency scene can make the difference between survival 
and death. The location of firetrucks has a huge impact on the response time to an 
emergency scene, i.e., the total time between an incoming emergency call and the 
moment that a firetruck arrives at the emergency scene. The potential for improving 
performance of firefighter services is directly related to reducing response time. To 
realize short response times, it is crucial to plan firefighter services efficiently.  

Motivated by this, an algorithm has been developed which leads to additional 
movements of firetrucks compared to the reactive paradigm, where firetrucks depart 
from the base station when an emergency is reported. We study the effect of the 
relocations on the response time performance. We formulate the relocations from one 
configuration to a target configuration by the Linear Bottleneck Assignment Problem, 
so as to provide the quickest way to transition to the target configuration. Moreover, 
the performance is measured by a general penalty function, assigning to each possible 
response time a certain penalty.  

The purpose of this project is to develop the model Dynamic Firefighter 
Management (DFM). The results consistently show that DFM mainly gives a large 
potential for areas in which the coverage is rather low. When relocating is permitted, 
the coverage increases with approximately 59.9% in a normal situation and with 
91.0% in busy situations. This is important for the implementation of DFM in practice. 
This model should serve as a basis for further research of this topic. 
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Abbreviation Explanation 
  

AMEXCLP Adjusted Maximum Expected Covering Location Problem 

CBS Centraal Bureau Statistiek 

CWI  Centrum Wiskunde & Informatica 

DAM Dynamic Ambulance Management 

DFM Dynamic Firefighter Management 

FDAA Fire Department Amsterdam Amstelland 

MCLP Maximum Coverage Location Problem 

MECRP Maximum Expected Covering Relocation Problem 

MEXCLP Maximum Expected Coverage Location Problem 

MEXPREP Minimum Expected Penalty Relocation Problem 

RDW Rijksdienst Wegverkeer 
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1.	Introduction	
In this chapter, we will start with some words about the CWI and about the FDAA 
where this internship took place. Then we will provide the context and a motivation of 
the research done during this internship. The chapter will be concluded with the 
approach, and the structure of this master thesis. 
	

1.1	About	CWI	
Founded in 1946, CWI is the national research center for mathematics and computer 
science in the Netherlands. The vision of CWI is twofold: to perform cutting-edge 
fundamental research in Mathematics and Computer Science, and to transfer 
knowledge to academia and to Dutch and European industry. This results in 
importance for our economy, from payment systems and cryptography to 
telecommunication and the stock markets, from public transport and internet to water 
management and meteorology.  

Within CWI the research group Stochastic Group has a long-standing tradition 
in the field of performance modeling and solution techniques for stochastic evaluation 
and optimization problems. Examples can be found in areas like communication and 
information systems, biology, economics and logistics. This group develops and 
studies stochastic and statistical models that yield fundamental understanding and 
enable control and optimization of such systems. Analysis of these models relies on 
techniques from fundamental probability theory, queueing theory, stochastic 
scheduling, spatial stochastics and stochastic geometry. Besides its focus on 
methodological aspects of stochastic models, the group also has a strong focus on the 
applicability of the results. The group has a broad national and international network 
of collaborations with industrial partners, governmental and academic institutions.  
	

1.2	About	FDAA	
The Dutch capital Amsterdam was the first city in the Netherlands with a professional 
fire service, which was established in 1874. With 144 personnel and 9 fire stations 
covering 30 square kilometers, it ensured fire protection for approximately 285,000 
inhabitants. Today, it is the regionally organized FDAA that, with 1150 personnel and 
19 fire stations covering 354 square kilometers, is responsible over 1,000,000 
inhabitants. 

Within FDAA the research group Business Intelligence carries out 
investigations to pursue the vision, which is maximizing safety in the region. To 
achieve this, the following activities are carried out: collecting and analyzing historical 
quantitative and qualitative datasets, translate this into valuable insights and attempts 
are made to apply new data analyzes to improve the safety in the region. This research 
group plays a crucial role in guaranteeing quality of both the preparation of as the 
repressive actions of the firefighters. 
 



	

1.3	Context	
The response time to an emergency scene depends on three variables which are (1) the 
travel time from the base to a location, (2) the pre-trip delay, i.e., the time elapsed 
before the firetruck starts driving to the emergency scene, and (3) the dispatch time, 
i.e., the total time between an incoming emergency call and the moment that a 
firetruck gets the order to drive to the emergency scene.  

The evaluation of firefighter services providers, judged by the authorities, 
heavily relies on their performance regarding the response times. The most common 
measure on which firefighter service providers base their performance, is the fraction 
of calls reached within some response time or coverage radius. An emergency scene is 
covered if an idle firetruck is present within this coverage radius. This coverage radius 
is expressed in time, e.g., 5 minutes. 

In emergency situations, the location of firetruck has a huge impact on the 
response time to an emergency scene. To realize short response times, it is crucial to 
plan firefighter services well. This encompasses a variety of planning problems at the 
strategic, tactical, and operational level. At the strategic level, the locations of the fire 
stations are determined. Then, at the tactical level, the number of firetrucks and thus 
the number of firefighters per fire station is specified. At the operational level, real-
time dispatching of firetrucks to emergency scenes and real-time relocation of 
firetrucks is considered. At the strategic level, at the tactical level as well as at the 
operational level, the focus is on the search for the best possible coverage, based on 
the coverage radius. In this thesis, we focus on the last part of the operational level: the 
relocation of firetrucks. 

Firetrucks are relocated in real-time, using dynamic and proactive relocation 
strategies, in order to achieve shorter response times to emergency scenes. These 
relocation decisions are typically made when an emergency call happens, e.g., when a 
firetruck is dispatched or when a firetruck is newly free after the service at the scene. 
At certain moments in time, crews may be required to park up at a waiting site away 
from their base station, to increase coverage of the region. Such a relocation decision 
is usually made when an emergency scene happens, i.e., a change of the system 
occurs. Examples of emergency scenes are, for instance, a change in availability of 
firetrucks (when a firetruck is dispatched to an emergency scene or when a firetruck 
finishes service) or the arrival of a firetruck at the emergency scene. 

The relationship between performance and the number of relocations is 
complex. The consequences of moving a firetruck to a different fire station are not 
known a priori, due to uncertainty that plays an important role in the process. It is 
usually not the case that ‘more’ is ‘better’, i.e., the more relocations are made, the 
better the performance of the firefighter service provider. But even if this was the case, 
there is still a trade-off: would one carry out extra relocations for only a small gain in 
performance? Opinions of different firefighter providers differ on this question and it 
is hard to set a standard concerning the execution of relocations. Therefore, useful 
insights about the relationship between performance and the number of relocations are 
desirable. 
 



	

1.4	Objective		
In this thesis, we study the relationship between the execution of relocations and the 
performance of the firefighter service provider. Therefore, we present a firefighter 
redeployment model, in which we are able to incorporate different performance 
criteria. We use a heuristic method that computes an action concerning the relocation 
of firetrucks in such a way that the expected performance is maximized. This 
computation is done at decision moments: the time of occurrence of a new emergency 
scene or the time of the idle report of a firetruck. We use a heuristic policy instead of 
the optimal one because computation of the optimal policy is very complex, if not 
impossible. Besides, even if it was possible to compute, the optimal policy is probably 
a complex one: it is not easy to understand and to execute by the dispatcher. Instead, 
we use a heuristic method that is not too farfetched, while it is highly likely that this 
heuristic policy contains the same characteristics as the optimal one.  

 

1.5	Approach 
In Chapter 2 the literature related to this research is reviewed. This chapter provides a 
literature study about the studies that are already done in this field and the surveys on 
relocation models. In Chapter 3 the historical data which is provided by the FDAA 
will be analyzed.  The number of firetrucks requests will be observed for the highest 
priority. Based on the observations a non-homogeneous Poisson process describing the 
number of firetrucks rides per day and an intra-day pattern of the firetrucks requests 
are provided, which will be validated. In Chapter 4 the description of the model will be 
presented. Hereby we will have a view at the system dynamics and we will discuss 
how this system can be controlled in the best way. In Chapter 5 the heuristic method 
will be explained extensively. This method is used to calculate the relocations that 
must be performed in order to maximize the coverage. The results of the research will 
be discussed in Chapter 6. The main topic in this chapter will be the improvement of 
the response time as a consequence of the implantation of the model. In Chapter 7 the 
conclusion is given followed by a discussion about the strengths of the model and the 
extensions which can be made to improve this model. Other topics for further research 
will also be provided in the same chapter. 
	

	 	



	

2.	Literature	Study 
In this chapter, we provide a literature on emergency dispatching and the surveys on 
relocation models.  

  

2.1	Performance	 
The potential for improving performance of EMS systems is directly related to 
reducing response time, i.e., the total time between an incoming emergency call and 
the moment that a firetruck arrives at the emergency scene, see e.g., [41]. Studies in 
[24] and [17] have shown that shorter response times lead to an increased probability 
of patient survival. Furthermore, the study in [38] has shown that shorter response 
times are associated with reduced complications, especially for the most critical 
emergency scenes, such as people whom suffering from heart attack or a large fire in a 
building.  

2.1.1	Performance	Measure	
The proportion of calls reached within some response time or coverage radius, is the 
most widely used measure in practice and many EMS systems base their performance 
on this metric as stated in [14]. An area is covered if an idle firetruck is present within 
a certain coverage radius. Note that this coverage radius is expressed in time units, 
e.g., 8 minutes. 

Coverage models have been used frequently by researchers and practitioners for 
several reasons: 

 
• The concept is simple to communicate to decision makers and the public; a call 

is either covered or it is not. 
• Many EMS systems use the percentage of calls covered as a performance 

measure. A common standard is to respond to 90% of all urgent calls within 8 
minutes [12]. 

• Deterministic coverage models typically result in integer programs that are easy 
to solve using standard optimization software. 

  
Despite these advantages, it is stated in [13] that the binary nature of the 

coverage concept is an important limitation, and standard coverage models should not 
be used for EMS vehicle location. Coverage has the limited ability to discriminate 
between different target response times. Another limited ability is the fact that 
coverage cannot make a distinguishing in the extent to which a firetruck arrives late. 
When the coverage radius is passed, it does not seem to matter how long it takes 
before the firetruck finally arrives at the emergency scene. This could result in large 
optimality errors when one uses covering models to locate emergency facilities instead 
of a model that takes survival probabilities into account. In [3] a penalty function is 
used to model general performance measures based on response times. It is used to 
incorporate different performance measures, such as minimizing the number of 
incidents for which the maximum allowed response time is exceeded, minimizing the 
average response time or measures related to survival probabilities, as studied in [13]. 
Other performance measures could be: the probability of all vehicles being occupied, 



	

the capability of a certain vehicle configuration to cover future calls and cost 
effectiveness, see, e.g., [22], [37].  

2.1.2	Operational	Level	 
For the realization of the increase in performance, an efficient planning of the 
firetrucks is crucial. This encompasses a variety of planning problems at the strategic, 
tactical, and operational level. At the strategic level, the locations of the fire stations 
are determined, see e.g., [6]. At the tactical level, the number of firetrucks per fire 
station is specified and, as a direct consequence, the number of firefighters per fire 
station. At the operational level, the real-time dispatching of firetrucks to emergency 
scenes and the real-time relocation of firetrucks is controlled, see e.g. [17]. At the 
strategic level, at the tactical level as well as at the operational level, the focus is on 
the search for the best possible coverage, based on the coverage radius. In this thesis, 
we focus on the operational level. 

2.1.3	Environments	
When one large fire, or several small fires, being fought in a single area of a city, the 
fire stations of the dispatched firetrucks are left empty, resulting in a sharp degradation 
in the fire protection afforded to the surrounding area.  At the operational level it is 
common practice in many cities to spread out the available firetrucks by relocating 
some firetrucks into selected empty fire stations, see e.g., [17].	Much research has 
been focused on solving various kinds of vehicle relocation problems in static, 
probabilistic and dynamic environments to improve the performance of EMS systems.  

In a static environment relocations are not allowed. In [20] it is stated that static 
models are inadequate in the sense that their solution is unlikely to provide sufficient 
coverage once a vehicle is dispatched to a call. One way around this difficulty has 
been to develop probabilistic models which reflect the fact that emergency vehicles are 
busy only a fraction of the time and become unavailable once they respond to a call. 
They must in fact be considered as servers that operate within a queueing system. This 
line of research was pioneered in [25], [26] and [27]. For well-known probabilistic 
covering models, we refer to [2], [5], [29], [33] and [34]. These models make different 
assumptions on travel time distribution, on the spatial dependency of vehicle 
availability, and on desired probabilistic covering thresholds. 

In a dynamic environment, instead of seeking a single solution to a static or 
probabilistic model, the idea is to dynamically relocate vehicles in real-time as 
vehicles are dispatched to calls. Each relocation amounts to solving a static model 
subject to side constraints on vehicle moves. For example, one should avoid relocating 
too many vehicles at once or moving the same vehicle too often over a short period. 
An early dynamic model was proposed in [17] for the relocation of fire companies. 
More recently a dynamic firetrucks relocation model is developed in [16] which can be 
applied in real-time through the use of parallel computing. For surveys of emergency 
vehicle location and relocation problems, see [30], [7]. 

Decisions regarding firetruck location strategies can be used to improve 
coverage radius. The firetruck location problem refers to the assignment of a limited 
number of firetrucks to maximize coverage, given that the system has a fixed number 
of fire stations, and a demand location is considered to be covered when a firetruck is 
located within a predetermined time standard. However, in reality the arrival of calls is 



	

stochastic and dynamic. Dynamic vehicle relocation can improve the performance of 
systems in situations with fluctuating arrivals, and as a result, in [1] it shows a drastic 
increase in the number of dynamic strategies used. 

2.1.4	A	posteriori	&	A	priori	
There are two main ways of solving dynamic optimization problems. The a posteriori 
approach is most common. It consists of computing and implementing a new solution 
whenever an emergency scene occurs. This is the strategy used in several dynamic 
vehicle routing algorithms which is described in [15]. The main drawback of this 
approach is the need to compute a new solution whenever a vehicle is dispatched to a 
call. This can be time consuming or even infeasible when two or more successive 
emergency scenes occur in quick succession. This was the case in the Island of 
Montreal firetrucks relocation problem studied in [16]. There is also the a priori 
approach. In [16] an a priori methodology is proposed in which several solutions are 
precomputed in anticipation of future emergency scenes and the appropriate solution, 
if available, is implemented whenever an emergency scene occurs. This methodology 
was successfully applied to the firetrucks relocation problem in Montreal. It was 
shown that a precomputed solution was available in more than 95% of emergency 
scenes. Many researchers think that the a posteriori approach is not always a practical 
option in emergency vehicle dispatching centers, an alternative is to precompute a 
series of location scenarios for k = 1,…, n vehicles which can readily be applied 
whenever a call is made. Therefore, the relocation strategies that we will discuss are 
based on the a priori methodology.  

 

2.2	Relocation	Strategies 
Existing methods to perform relocations use preplanned assignments.	One type of 
dynamic strategy for relocating firetrucks is to use a compliance table. Another 
relocation strategy, the Dynamic Ambulance Management, is described in [3].  

2.2.1	Compliance	Tables	
The aim of the compliance tables is to provide a dynamic relocation strategy for 
emergency vehicles in such a way that the expected covered demand is maximized and 
the number of relocations is controlled. The compliance tables are modeled as an 
integer linear programming. 

A compliance table indicates the possible empty fire stations in relation to the 
number of available firetrucks. That is, a compliance table shows where firetrucks 
should be located when there are a certain number of firetrucks available.	Each row in 
a compliance table indicates, for a given number of available firetrucks, the desired 
fire stations for these firetrucks. If these firetrucks are at their desired fire stations, the 
system is in compliance. To understand what a compliance table policy entails, 
consider the example in Table 2.1. 

 
 
 
 

  



	

Table	2.1.	An	example	of	a	compliance	table. 

No. of available 
firetrucks 

Fire Stations 
1 2 3 4 5 6 7 8 9 10 11 12 

13 1 1 1 1 1 1 1 1 2 1 1 1 
12 1 1 1 1 1 1 1 1 1 1 1 1 

11 1   1 1 1 1 1 1 1 1 1 1 

10 1   1 1   1 1 1 1 1 1 1 

9 1   1 1     1 1 1 1 1 1 

8 1   1 1     1   1 1 1 1 

7 1   1 1     1   1 1 1 	 
6     1 1     1   1 1 1 	 
5     1 1         1 1 1 	 
4     1           1 1 1 	 
3     1           1 1 	 
2     1           1 	 
1                 1     

 
In Table 2.1, each row represents the number of available firetrucks and the 

column represents specific fire stations. To read the table, given a current number of 
available firetrucks, the goal is to have firetrucks located at stations with a ‘1’ or a ‘2’ 
in that row. For example, based on Table 2.1, with one available firetruck, it should be 
located at fire station 9. Now suppose one firetruck just changed status from busy to 
available, so that two firetrucks are available. Based on Table 2.1, the available 
firetruck should go to station 3.  

There are different kinds of models that compute compliance tables for EMS. In 
[39] a nested-compliance table policy is discussed which is based on the adjusted 
maximum expected covering location problem (AMEXCLP) with the addition of the 
admission of relocations. The model requires steady state probabilities of a Markov 
chain model to be input parameters for the integer programming model. The benefit of 
nested policies is that only one vehicle, which is already on the move, is relocated, 
thus avoiding unnecessarily moving other vehicles that can be disruptive to service 
providers. The results showed that the model provided improvement of solutions over 
the results of the non-relocation (AMEXCLP) model with average improvement of 
2.7% based on an original data set from a real-world problem and an improvement of 
6.1% based on a generated data set in which demand was randomly assigned to 
demand zones according to the Poisson distribution. 

In [20] the Maximum Expected Covering Relocation Problem (MECRP) is 
proposed. The objective is to maximize the expected coverage over time subject to an 
upper bound on the number of waiting sites that can be changed at each event. This 
model needs the assumption that there are at least as many waiting site locations as 
vehicles. This is a rather strong assumption and not generally true in practice for EMS. 
This however does hold for the FDAA. The Minimum Expected Penalty Relocation 
Problem (MEXPREP) in [4] is an extension of the MECRP. The MEXPREP has the 
ability to control the number of waiting site relocations.  



	

Different performance measures can be incorporated. Other performance 
measures than coverage and average response times are considered in [13]. In this 
thesis, performance is based on the survival probability of a patient suffering from a 
cardiac arrest. Survival functions proposed in [24], [12], [42], and [43] are 
incorporated in the Maximum Coverage Location Problem (MCLP) in [10] and the 
Maximum Expected Coverage Location Problem (MEXCLP) in [11]. In some of these 
models, probabilistic response times are incorporated, based on the work by [18]. 
Moreover, [28] proposes a methodology for evaluating the performance of response 
time thresholds in terms of resulting patient survival rates. 

A strength of the compliance table policies is that it allows for EMS systems to 
respond to the dynamic nature of the problem, but can be calculated in advance, thus 
not requiring optimization in real time. Furthermore, it is simple to explain to and to 
use by dispatchers: the state of the EMS system is only described by the number of 
available vehicles. A weakness of the compliance table is that it is adequate when the 
number of idle firetrucks is large but breaks down at high alarm rates when the 
firetrucks preassigned to relocate are not available.  

2.2.2	Dynamic	Ambulance	Management 
A similar problem which we want to research for the FDAA is investigated by the 
ambulance service provider. The relationship between the number of ambulances 
relocations and the performance of the ambulances service provider is discussed. In 
this paper, a heuristic method is described which computes an action concerning the 
relocation of vehicles in such a way that the expected performance is maximized. This 
computation is done at decision moments: The time of occurrence of a new emergency 
scene or the time of the idle report of an ambulance. The dispatcher decides at these 
moments whether to relocate or not. This heuristic policy is easy to understand and for 
the dispatcher it is easy to use in practice. The model and the heuristic policy governed 
by DAM algorithms will extensively be discussed in Chapter 5. 

The difference between this thesis and most of the papers in the literature, e.g. 
[20], is the assumption that the computed action is always carried out. However, it 
may be the case that the expected gain in performance by taking this action is very 
small and that this benefit does not outweigh the disadvantages regarding the number 
of additional ambulances relocations to achieve this gain. In [3] it is determined 
whether or not a relocation is really necessary. Another important difference between 
the mainstream literature and this thesis is the way in which a redeployment action is 
carried out.  As assumed in most of the papers, it is not necessarily one particular 
vehicle has to move from origin to destination. Instead, other idle vehicles may also be 
used in this relocation process in order to decrease the time required to attain a new 
ambulances configuration. 

In September 2015, the region Flevoland started with the DAM algorithms as a 
trial. The implementation of DAM algorithms leads to additional movements of 
ambulances compared to the reactive paradigm, where ambulances depart from the 
base station when an incident is reported. The results of DAM show that there is a 
significant improvement if ambulances are relocated, compared to the static policy in 
which always the static motion if performed.  

 



	

2.3	Dependent	Travel	Times 
In areas with high traffic volume during peak hours travel speed and the resulting 
travel time can vary significantly throughout the day. Due to variations in speed and 
the resulting travel times it is not sufficient to solve the static relocation problem once 
using fixed average travel times as the coverage areas themselves change throughout 
the day.  In [36] a multi period version is developed where it is shown that it is 
essential to consider time-dependent variations in travel times and coverage, taking 
into account time-varying coverage areas, where vehicles are allowed to be relocated 
in order to maintain a certain coverage standard throughout the planning horizon. A 
mixed integer program is formulated which optimizes the coverage at various points in 
time is simultaneously optimized. Just using (averaged) fixed travel times is no longer 
sufficient and will lead to sub-optimal or infeasible solutions. Taking time-dependent 
travel times into account significantly influences the quality of the solution obtained. 
The performances increase by more than 10%.  

The New York City RAND fire project, lasting from 1968 to 1975, was a 
successful research project, which made use of analytical and statistical modeling, 
which led to key changes at the New York City Fire Department, [22]. A part of this 
research project was about the travel times of the firetrucks. The travel time is divided 
into an acceleration phase, a cruising speed phase, and a deceleration phase. They use 
these different phases to model the travel time depending on the distance, and they 
take the mean of the travel times as the expectation of the travel time. This model is 
improved in [18] by taking the median as the expectation of the travel time. It is 
argued that since travel times are non-negative, the distribution of the travel times is 
probably skewed to the right, and that therefore it is better to take the median rather 
than the mean as the expectation of the travel time.  

In [44] a different model is introduced where they look at the different street 
segments separately, and take differences in travel speed into account instead of 
looking at the total route as one stochastic variable. They use a Bayesian method to 
estimate the travel time distribution, and they compare that model to the model of [8]. 
They conclude that the Bayesian method seems to give more realistic results than the 
method in [8], since that method does not take into account the different speeds of 
different roads. For the case study which is described in [44], GPS-data is used and 
Markov Chain Monte Carlo simulation is applied to find the true route, since their 
GPS-data is not accurate enough. One could, of course, refine this model by not only 
looking at different roads separately, but also taking the transitions of one road to 
another into account. In [21] a trip is seen as a combination of running travel times 
along links, and delays at intersections and traffic signals. They treat this delay as a 
deterministic penalty. They do not consider emergency services in particular, but give 
a model for general services.  

Often, researchers assume travel times to be deterministic, see e.g., [3], [9] and 
[32]. In this case, fire engines are either always on time or always too late, which is not 
realistic, since there is always some variability, because traffic itself is variable, but 
also because of weather, the time of day, heavy traffic etcetera. In [19] it is shown that, 
by considering firetrucks travel times between a particular station and demand point 
pair, for a total of 352 trips, stochastic travel times lead to a more realistic model.  

 



	

2.4	Thesis	Outline 
Our research is based on the knowledge gained from literature which is summarized in 
the previous section. The methods and techniques which are described in this literature 
study are mainly used to find answers to our research questions. The goal is to develop 
a dynamic algorithm which determines when relocations should be made, which fire 
stations should be filled and which available firetrucks should be moved. The 
processes are carried out in the statistical program R, see [40] and the model is built in 
Matlab, see [31]. 

First, we explain why we have taken this particular approach since an 
understanding of our objectives is crucial to an understanding of the finished product. 
If the objective were to provide equal first unit response time to all areas of the city, 
i.e., fairness, the available firetrucks should be spread out rather uniformly. If the goal 
were to minimize the region wide average response time to alarms, i.e., efficiency, the 
companies should be highly concentrated in the areas where the expected emergency 
scenes is greatest.  Different objectives about balancing fairness and efficiency are 
discussed in [22]. 

Fire stations are not uniformly distributed over the city but are concentrated in 
some areas and spread out in others. This distribution is the result of positioning the 
fire stations efficiently within the constraints of politics.  In working with this 
distribution, the FDAA has implicitly decided how it wishes to balance fairness 
against efficiency in a short run. In the long run, of course the FDAA may modify the 
distribution by building new fire stations or relocating the old fire stations. The latter 
case is very expensive as the distribution of the fires changes with time, the city is 
expanding, flammable old buildings are replaced with new buildings that are more 
resilient etc. which makes it for the long run difficult to keep up with the changes of 
the region. This however is a problem which can be solved at the strategic level. Since 
our focus is on the operational level, we will look at a cheaper alternative which is the 
use of a relocation method. The relocation method consists of four stages each of 
which is solved by the application of heuristics. The four interrelated stages are: 

 
Stage 1:   Determination of the need for a relocation. 

A call for relocations will be made whenever the fire protection being 
provided to any area of the city falls below a given minimum level. 

Stage 2: Determination of the demand location which needs to be covered. 
The fire stations to be filled are chosen to bring fire protection in all areas 
above minimum levels while moving as few firetrucks as possible. 

Stage 3: Determination of the available firetrucks which relocate.  
A penalty function will be used to compare alternative relocations which 
expresses the penalty of relocation in term of response time to future fires. 
The function takes into account such factors as relocation distance and 
expected response times. The firetruck which produces the lowest penalty 
is selected for the relocation.  

Stage 4:  
 

Specify relocation assignments 
The set of relocating firetrucks is assigned to the set of fire stations to be 
filled so that the total distance travelled by the firetrucks is minimized. 



	

2.4.1	Contribution	
By ignoring time-dependent variations in travel times one severely misestimates the 
resulting coverage, which will lead to inferior solutions. By taking into account those 
variations during the optimization phase and allowing vehicles to be relocated, the 
quality of the solutions obtained can be increased significantly. The goal is to provide 
the decision maker with time-dependent location plans, such that the resulting 
coverage can be kept at the required level throughout the planning horizon.  

In this thesis, we will develop a relocation model whereby the time-dependent 
travel time which was proposed in [36] will be taken into account. First, we take 
advantage of the availability of time-dependent data in order to get a clearer view of 
the traffic situation and the resulting changes in coverage throughout the day. Next, we 
introduce a model, which incorporates this information and allows vehicles to be 
repositioned to optimize the coverage at several points in time.  

There are different ways to consider time-dependent data. First, we solve our 
model in a myopic way at various points in time using the prevailing travel times 
respectively. All resulting relocations will be calculated ex post. Rather than solving 
the model independently several times, we try to solve the model simultaneously for 
various points in time. We will explicitly take into account time-dependent variations 
in speeds and the resulting changes with respect to the corresponding coverage. All 
resulting relocations will be considered implicitly during the optimization phase 

Another extension of the model is taking the variation of response times into 
account. The FDAA has categorized the emergency scenes into four groups. Each 
group has its own response time. These response times depend on the type of danger at 
the emergency, where the emergency takes place and whether people are involved. For 
the region Amsterdam Amstelland, the firetrucks need to be at the location of the 
emergency within 6 to 10 minutes after a call has been placed. 

 	



	

3.	Data	Description	
 

A historical dataset is provided by the FDAA of emergencies records from January 1, 
2008 until December 31, 2015. We use the raw data for a detailed study with R 
software and Matlab. The data included 137647 incoming emergency calls.  

The data contained times stamps of the incoming emergency calls, of alarming 
a fire station, of the departure of the firefighters from the fire station to the emergency 
scene, of the arrival at the emergency scene, the location of the emergency, the 
object(s) that is (are) involved, the kind of priority each emergency has and more 
information about the handling of the emergencies. The FDAA distinguishes three 
levels of priority of the emergencies: 

 
Priority 1: This is a fire to which there has to be sent a firetruck as soon as possible;  
Priority 2: This is a small fire which doesn’t spread out, like a trash can in the street, 

such that there has to be sent a firetruck, but not with a great hurry;  
Priority 3: This is a small incident for which there is not a great hurry, like a cat in a 

tree.  
 
Of the emergency calls 66% were labeled as priority 1, 21% as priority 2 and 

13% as priority 3. For the emergencies that are labeled as priority 2 or priority 3, the 
arrival of the firetruck within a given time standard does not hold. Since we want to 
improve the response time for emergency scenes in which the rapid arrival of the 
firetrucks does matter, we will only consider in this thesis emergencies that are labeled 
as priority 1. 

There are four different emergencies, which are labeled as priority 1. Each kind 
of emergency has its own maximum allowed response time (MART). These times 
depend on the kind of object(s) that is (are) involved in the emergency and are set by 
the government of the Netherlands, see Table 3.1. 
 
Table	 3.1.	 The	Maximum	 Allowed	 Response	 Time	 (MART)	 and	 the	Maximum	 Allowed	 Travel	 Time	 (MATT)	 for	 different	
objects.	MART	and	MATT	are	given	in	seconds. 

Type MART MATT Objects 
A 300  120 Building with a closed construction: retail, cells, residential function 

above retail 
B 360  180 Blocks, flats, residential function for reduced self-reliant. 

C 480  300 Building with the functions: health care, education, accommodation. 

D 600  420 Office, industry terrains, places where people sport and general 
gatherings. 

 
Of the emergencies that occurred, 10.1% of them had a MART of 300 seconds, 

8.6% of them had a MART of 360 seconds, 60.5% of them had a MART of 480 
seconds and 20.8% of them had a MART of 600 seconds.  

Although the data is gathered automatically, some cleaning was necessary. The 
preliminary analysis revealed some peaks in the emergency scene handling times. 



	

According to the policy officer of the FDAA the peaks originate from cases where the 
matter still continues to determine the cause of the emergency. However, the 
firefighters have already handled the emergency.  An appropriate replacement of these 
data was not possible, considering we have no knowledge of the actual duration. For 
that reason we removed these outliers. Furthermore, the preliminary analysis did not 
reveal any obvious trend but seasonality in the daily and weekly cycle of the call 
arrival rate. In addition, we discovered an obviously different pattern of the hourly call 
arrival rate for public holidays. For this reason public holidays, e.g., Christmas, New 
Year’s Eve, King’s Day (24 days in total) were omitted. Apart from this, we used all 
collected call and operation data for our analysis.  We partitioned the remaining data 
into 24 hourly intervals. For the assignment to a certain interval we used the time of 
call. Therefore, the interval 16 represents the time window between 3 p.m. and 4 p.m. 
of all days.  
 

3.1	Traffic	Intensity	
The data of the Centraal Bureau Statistiek (CBS) shows that the number of vehicles 
increased in the recent years. In Table 3.2 we see that the total number of vehicles has 
increased over the past few years.  

A logical consequence of the increased number of vehicles is the increasing of 
the traffic density and intensity on the road. In the execution of the relocation the 
firetrucks participate in normal traffic in terms of speed and the use of the same roads, 
i.e. not using the flashing lights or sirens and no driving on the tram tracks. It is 
therefore logical to think that the greater the traffic intensity is on the road, the longer 
the relocation will take to complete. Taking this into account is an important addition 
to the model which we discussed in section 2.2.2.  
	

Table	3.2.	The	size	and	composition	is	based	on	the	registration	of	the	license	plates	which	is	performed	by	the	RDW.	

	 2011	 2012	 2013	 2014	 2015	
All	Vehicle	Types	 321993	 328488	 333019	 336153	 336859	

Passenger	Cars	 221620	 225297	 228764	 230677	 228691	

Company	Cars	 34966	 34766	 33957	 33493	 33906	

Company	Vehicles	 24832	 24523	 23749	 23199	 23482	

Vans	&	Trucks	 22379	 22127	 21438	 20886	 21105	

Special	Vehicles	 1473	 1436	 1416	 1447	 1413	

Buses	 377	 328	 269	 273	 280	

Motors	 16420	 16964	 17344	 17635	 18009	

Mopeds	 48987	 51461	 52954	 54348	 56253	



	

The Nationale Databank Wegverkeersgegevens (NDW) provided us with 
information relating to the traffic situation in the region Amsterdam Amstelland within 
the ring and excluding the highways. The data can be obtained on request. We 
received data related to the traffic intensity of the month June 2016. We define the 
traffic intensity as the average number of vehicles on the road network during a certain 
hour in the region Amsterdam Amstelland. In Figure 3.1 two peaks can be seen, which 
corresponds with the rush hours. The rush hours are between 8:00 – 10:00 AM and 
between 5:00 – 7:00 PM. At these moments, the traffic intensity and traffic density are 
the highest. Note that we do not make a difference in working days and weekend days. 

The number of vehicles on the road is much lower during the night than during 
rush hours We will take the behavior of the traffic into account by introducing a traffic 
intensity factor. For simplicity, we use four different traffic intensity factors.  We have 
associated the intensity factor with the corresponding hours, see Table 3.3.  
 
 

	

Figure	3.1.	The	number	of	vehicles	on	the	road	network	in	the	region	Amsterdam	Amstelland	per	hour.	

 
 
Table	3.3.	The	intensity	factors.	

Intensity	factor	 0.8	 1.0	 1.2	 1.5	
Hours	 1,	2,	3,	4,	5,	6,	21,	22,	23,	24	 7,	11,	12,	13,	14,	20	 8,	9,	15,	19	 10,	16,	17,	18	

	

	



	

4.	Model	Description		
 

As discussed in Chapter 2, we will develop a model for the setting of the FDAA. Then 
we add the time dependent travel times.  This chapter includes the description of the 
demand-model, the performance matrix used by the FDAA in practice and the 
description of our model.  

 

4.1	Setting	FDAA		

4.1.1	Demand	Locations	
The geographical regions which are used by the FDAA are called the demand 
locations from which calls can rise. For operational purposes, FDAA divides its 
service region into 𝑁	 = 	2648	demand locations, each of which contains a number of 
buildings. The sizes of the demand locations are determined by the intensity of new 
fires.  In each demand location, the FDAA wants to have approximately the same 
intensity of new fires. In the center of the region Amsterdam Amstelland the intensity 
of new fires is higher and therefore, the demand locations near and in the center are 
small. As we approach the edge of the region Amsterdam Amstelland, the size of the 
demand location gets larger as the intensity of new fires gets smaller, see figure 4.1. 

 

 

							Figure	4.1:	The	division	of	Amsterdam	Amstelland	into	service	areas	(the	colored	areas)	and	demand	locations	(the	
smaller	boxes	with	black	borders).	

Each demand location is associated with a demand probability.  We define the 
demand probability as the probability that an emergency will occur in a specific 
demand location. Denote the demand probabilities by 𝑝	 = 	 (𝑝(1), 𝑝(2), … , 𝑝(𝑁)), 
where N is the number of demand locations. 



	

4.1.2	Service	Areas	
We define a service area as a subset of demand locations.  In the current 
configuration, the region Amsterdam Amstelland is partitioned into 19 service areas. 
In each service area is a fire station that is responsible for all the emergencies that 
occur in that specific service area. Each fire station is provided with at least one fire 
apparatus. This is the well-known firetruck with a water tank and fire hoses. The other 
vehicles like the aerial apparatus, the rescue apparatus and the marine rescue units are 
not located at each fire station. In this analysis, we only include the most common type 
of vehicles used at the FDAA which is the fire apparatus. We refer to it by firetruck.    

There are 7 fire stations which rely on volunteers and 12 fire stations which rely 
on professionals, see Figure 4.1. The response time of a fire station which relies on 
volunteers is much higher. From different places, the volunteers need to gather first at 
the fire station then they will get ready for the emergency. This process takes too much 
time. This causes that the volunteers are not able to get at the emergency scene within 
the MART. Therefore, the fire stations which rely on volunteers are disregarded in this 
thesis.  

 

4.1.3	Maximum	Allowed	Response	Time	
The maximum allowed response time depends on the kind of emergency scene. Each 
type can have different response times targets, see Table 3.1. These times are set by 
the government of the Netherlands. 

The response time consists of the time between the emergency request comes in 
and the arrival of the firetruck at the emergency scene. It can be divided in three 
different parts: the triage and dispatch time, the turnout time and the travel time. The 
triage and dispatch time is the time spent in the call center to assess the importance of 
the call and assign a firetruck. The turnout time is the amount of time that elapses 
between the assignment of a call and the firefighters departure from the fire station. 
The travel time is the amount of time between the departure from the fire station and 
the arrival at the emergency scene.  

 

4.2	Model	Dynamics	
The dynamics of our system closely mimics realistic situations. Incidents are assumed 
to occur according to a time-dependent Poisson point process as in [46] and [47]. We 
only consider incoming incidents of the highest urgency and ignore low-priority calls. 
This is justified by the fact that firefighter service providers are mostly judged on their 
performance regarding the emergency scenes with the highest priority and high 
priority incidents may preempt low-priority calls.  

 

4.2.1	Maximum	Allowed	Travel	Time	
The dispatch and the turnout time are stochastic. The dispatch time is set on two 
minutes and the turnout time on one minute. It is only possible for us to have an 
influence on the travel time of the firetruck to the emergency scene. For simplicity, we 
assume that both the dispatch and turnout time are deterministic. We refer to Figure 
4.2 for a graphical representation of this process.  



	

	

Figure	 4.2:	The	graphical	 representation	of	 the	 response	 time	with	 time	 in	minutes.	 The	dispatch	 time	 (A)	 is	 set	on	 two	
minutes	 and	 the	 turnout	 time	 (B)	 is	 set	 on	 one	minute.	 These	 times	 are	 assumed	 deterministic.	 The	 travel	 time	 (C)	 is	
dynamic	and	is	expressed	in	T	minutes.		

 
We subtract the dispatch time and the turnout time from the maximum allowed 

response time to obtain a maximum allowed travel time, see Table 3.1. However, 
dispatch times are typically smaller when the dispatcher is able to determine in a short 
period of time enough information to send a firetruck to the emergency scene. 
Therefore, the use of a maximum allowed travel time is a simplification of reality. 
When an emergency occurs, the closest firetruck is dispatched. This could be an idle 
firetruck at a fire station or a driving firetruck.  
 

4.2.2	Time	Dependent	Travel	Times	
The driving times between the demand locations are derived from driving table R and 
are estimated beforehand and thus assumed to be given, see Table 4.3. This is a N x N 
matrix with deterministic driving times. These driving times, which are estimated by 
the FDAA, are based on a regular truck that participates in daily traffic on the road 
network city at usual speed. In Chapter 3 we have seen that the traffic intensity on the 
road during the day is time varying. Since the firetrucks drive along with the other 
traffic at usual speed when performing the relocation, it is fair to say that the driving 
times are also stochastic but assumed deterministic. We multiply the driving times 
with the traffic intensity by an intensity factor 𝑤/ with h = {1,…, 24}. This intensity 
factor depends on the hour of the day. We have deduced this from the movement of 
the traffic intensity, which we have seen in Chapter 3. 

We model the road network in the area Amsterdam Amstelland as a directed 
complete graph. The demand locations are represented by nodes, see Figure 4.3. The 
arc connecting two demand locations is weighted according to the driving table. Thus, 
the length of an arc represents the driving time in seconds which is derived from the 
driving table.  

 
Table	4.3.	The	driving	times	in	seconds	are	given	for	the	demand	locations	(DL)	1	t/m	4.		 

From	
								¯	

To			
®	

DL	1	 DL	2	 DL	3	 DL	4	 …	

DL	1	 	 0	 762	 1320	 1069	 	
DL	2	 	 783	 0	 878	 1364	 	
DL	3	 	 1415	 876	 0	 1830	 	
DL	4	 	 1219	 1366	 1799	 0	 	

…	 	 	 	 	 	 ⋱ 



	

	

Figure	4.3.	Demand	Locations	of	the	Region	Amsterdam	Amstelland	represented	by	nodes.	

	

4.3	Control	of	the	System	
Firefighter service providers use as their performance criterion the percentage of 
priority 1 incidents reached within the maximum allowed response time. As we have 
already discussed in Chapter 1, this performance matrix may not be ideal because there 
is no difference between a response time that is slightly below the maximum allowed 
one, and one that is really short. Something similar holds for the opposite case: a 
response time that is slightly above the maximum allowed response time and one that 
is really long are equally poor according to this metric. However, it does matter for the 
concerned victims. To be able to differentiate between different response times a 
penalty function will be used. 
 

4.3.1	Penalty	Functions	
A penalty function is a mapping from the response time to positive real numbers. For 
example, a penalty function can be used to minimize the number of incidents for 
which the maximum allowed response time is exceeded, or to minimize the average 
response time or measures related to survival probabilities, as studied in [13]. The 
amount of penalty generated by an emergency solely depends on the response time to 
this emergency scene. Hence, penalty functions are non-decreasing functions of the 
response time.  

For our model, we use a penalty function whereby the focus lies on minimizing 
the number of emergencies for which the response time exceeds the maximum allowed 
one. In this model, we take four types of emergencies into account. We distinguish 
emergency type A, B, C and D, see table 3.1. Each type has its own maximal allowed 
travel time and therefore also its own penalty function. 

These functions where composed in consultation with a policy officer of the 
FDAA. An emergency reached within the maximum allowed travel time induces a 
penalty between 0 and 0.1, while an incident for which the maximum response time is 
exceeded, induces a penalty between 0.9 and 1. The penalty functions that we use for 
each type of incident is described as follows. 



	

	
Let  𝑓:	ℝ4	−> 	ℝ4. The penalty function which is used is:   

𝑓 𝑡 = 	 	
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whereby τ  stands for the maximum allowed travel time, τ =
120, 180, 300, 420 . 

The graph which belongs to the penalty function is displayed in Figure 4.4 for 
various values of τ. The standard penalty function as described in the previous chapter 
is also displayed. The difference between Figure 4.4(a) and 4.4(b), 4.4(c), 4.4(d) and 
4.4(e) is the increasing of the penalty as we approach the maximum allowed travel 
time. By implementing this we differentiate between firetrucks who arrive a long 
period before the expiration of the maximum allowed travel time and firetrucks who 
arrive just in time. Simultaneously, we distinguish between firetrucks who arrive late 
on a close call and firetrucks who arrive way too late. The curve in the graph becomes 
sharper as the response time increases. With a small response time, the time elapsed is 
wider. 
 

4.3.2	Firetruck	Phases		
Once a firetruck is dispatched to an emergency scene, we assume that it immediately 
starts driving, since the turnout time is part of the pre-travel time we subtracted. We 
distinguish the following firetrucks phases: 

 
Phase 0: A firetruck is currently not involved in handling of an emergency. It is 

either at a base station or executing a relocation. 
Phase 1: A firetruck travels to the emergency.  
Phase 2: A firetruck is busy at the emergency scene. The firefighters execute the 

handling of the emergency. Hereafter, the firetrucks becomes idle. Then, 
the dispatcher has to make a decision to which base location that firetruck 
should be send. 

 

4.3.3	Decision	Moments	
The dispatcher has some freedom in the way he/she can control the system by making 
relocation decisions. We allow the dispatcher to make these decisions at the following 
moments:  
 
Phase 1. When a firetruck is dispatched to an incoming emergency. 
Phase 2. When a firetruck enters phase 0 again and becomes idle. 
 

We refer to these moments as decision moments of the first and second type, 
respectively. At decision moments of the first type, we restrict the dispatcher to change 
the firetrucks configuration, i.e., number of idle firetrucks per fire location, at at most 
one pair of fire locations. That is, the dispatcher may select one fire station from which 



	

(origin) and one fire station to which (destination) he/she relocates a firetruck in phase 
0. At decision moments of the second type, the origin is given. This is the current 
location of the firetruck which just finished service. If the selected fire station does not 
equals the base station of the crew, then we call this a motion. 

 
 

 
									(a)	

 

 
																																																															(b)																																																																																														(c)	

 

 
																																																																(d)																																																																																													(e)	

	

Figure	 4.4.	The	graphical	 representation	of	 the	penalty	 function.	 In	 (a)	 the	 standard	penalty	 function	 is	
plotted	for	emergency	type	3.	The	penalty	function	displayed	in	(b),	(c),	(d)	and	(e)	belongs	to	a	maximum	
allowed	travel	time	of	120,	180,	300	and	420	seconds,	respectively.	



	

Note that it is not necessarily one and the same firetruck that leaves the origin 
and arrives at the destination. After all, the same configuration is attained if a firetruck 
drives from the origin to a fire station somewhere in the middle, and from there a 
firetruck departs to the destination.  Thus, a motion may consist of multiple 
relocations. The terminology motion will be further explained in the Chapter 5. 

Note the difference in terminology between a firetruck motion and a firetruck 
relocation. We call a move of a firetruck a relocation if the firetruck crew is idle at a 
fire station and it is given the task to relocate themselves. When a firetruck becomes 
available again, this firetruck needs to be relocated to a fire station. If it is relocated to 
its own fire station, this does not count as a relocation. After all, this does not 
inconvenience the crew since that fire station is their base.  

Redirection occurs when a firetruck in phase 0 is driving to its destination but 
while executing the relocation its destination will be changed. For simplicity, we make 
the assumption that during the execution of a relocation, the firetruck is for one-thirds 
of the driving time present at its origin and two-thirds of the time present at its 
destination. The dispatcher usually faces three issues at decision moments: 

 
1. Is a relocation or a motion necessary?  
At decision moments of the first type, it may be the case that the resulting 
configuration after the dispatch is still satisfactory, in terms of expected response times 
to future incidents. That is, it may not be beneficial to execute a relocation/motion by 
reasons mentioned in Chapter 1. This question does not arise at decision moments of 
the second type, since the dispatcher is always required to perform a firetrucks motion 
for the firetrucks that just became idle.  

 
2. Which relocation or motion should be executed?  
The dispatcher must select two fire stations: one serving as origin, one as destination. 
A heuristic method for calculating the best relocation/motion is described in Chapter 5. 

 
3. How to execute this relocation or motion exactly?  
When the dispatcher has selected an appropriate relocation/motion, the dispatcher 
faces a third problem regarding the exact execution of this firetruck relocation/motion. 
The obvious way is to select a firetruck from the origin and to relocate it to the 
destination of the relocation/motion. However, the origin and destination are not 
necessarily close to each other and thus the travel time between them may be long. 
Such long trips are not desirable, since the new firetruck configuration must be 
attained as soon as possible. 

A possibility to avoid long trips is the usage of multiple firetrucks in phase 0, 
either driving or at a base location, in a motion. Instead of moving just one firetruck, it 
could be beneficial to break up the firetrucks motion in two or more separate firetrucks 
relocations to ensure that the new firetrucks configuration is attained earlier. We refer 
to Example 1 for an illustration of a firetruck motion. 

 



	

 
 

(a)	

	

(b)	

	

(c)		

Figure	4.5.	 Illustration	of	the	usage	of	multiple	 firetrucks	per	motion.	The	motion	 is	 (1;	5)	and	full	arc	denote	the	way	 in	
which	firetrucks	are	relocated.	The	numbers	next	to	the	arcs	are	the	driving	times	in	seconds.	

Example 1. The firetruck motion we want to perform is (1; 5). There are idle 
firetrucks in 1 and 2. In addition, one firetruck is traveling from 4 to 3, and is currently 
in node 6. The obvious way would be to relocate the firetruck from 1 to 5. However, it 
takes 1548 seconds before the motion is completely performed (Figure 4.5a). If one 
uses the firetruck at 2, this time can be reduced to 1,402 seconds, at the expense of one 
extra relocation (Figure 4.5b). In addition, if redirection is allowed, one cause the 
driving firetruck to decrease the time in which the new firetruck configuration is 
attained to 975 seconds (Figure 4.5c). We again face a trade-off between the number 
of relocated firetrucks and the time it takes to attain the new firetruck configuration. In 
the next section, we will present a heuristic method concerning these three problems. 



	

5.	Heuristic	Method	 
 

For the evaluation of the usefulness of firetruck motions and relocations, we use a 
heuristic that can easily handle several types of restrictions on the decisions of the 
dispatcher. First, we describe the heuristic method. Then, we will provide a more 
detailed explanation regarding the incorporation of these constraints. 

 

5.1	Unpreparedness	
The unpreparedness at a decision moment plays an important role in the heuristic 
method. This is a measure for the configuration of firetrucks. The dispatcher observes 
the current state of the system at a decision moment and executes the motion that 
minimizes the unpreparedness. 

The interpretation of the term unpreparedness generalizes to being an 
approximation of the expected penalty the next emergency request generates, for a 
given configuration. We proceed with a formal definition of unpreparedness of a 
firetruck configuration. To do this we need some additional definitions. 

Let 𝑠 be the current state of the system: the current location or destination of 
firetrucks and the phases they are in and let 𝐹 be the set of firetrucks where 𝐹 ∶= |𝐹|. 
We define 𝐹L(𝑠) as the set of firetrucks in phase 𝑘 if the state of the system is 𝑠. 

To define unpreparedness formally, we need some additional definitions. 
Consider node 𝑖, 1	 ≤ 	𝑖	 ≤ 	𝑁. Let 𝑑𝑒𝑠(𝑗, 𝑠) denote the destination of firetruck j if the 
state of the system is s, and R is the driving time matrix. Let 𝑤 be the traffic intensity 
factor. The driving time between the destination of the closest firetruck in phase 0 and 
demand location 𝑖 in timeslot h is defined as  

 
rR,S; s = 	𝑤/ min

L	∈	XY(Z)
𝑅(𝑑𝑒𝑠 𝑗, 𝑠 , 𝑖) 

 
The destination equals the current location of the firetruck if the firetruck is not 

on the road. The reason we use the destination instead of current location, is twofold:  
 

1. If we had used the actual location of the driving phase 0-firetrucks, one might 
think that one can quickly respond to an incident in the area in which the 
firetruck is currently driving. However, we are uncertain about the time of the 
next incident. If the next incident happens in that particular area after some 
time, it may take long to respond to this incident, since the firetruck has left that 
area.  
 

2. The opposite case holds as well: for the destination of the firetruck the ability to 
respond to incidents happening there quickly may be poor, since the firetruck is 
still far away. Hence, the heuristic may decide to send a firetruck to that 
destination. However, this is probably useless, since there is already a firetruck 
traveling to that destination.   



	

Therefore, we use the destinations of driving firetrucks instead of the current 
location. Moreover, let 𝑝/(𝑖)  denote the demand probability in timeslot ℎ : the 
probability that an incoming incident will occur in node 𝑖. Now we have all the 
ingredients to define the unpreparedness in timeslot ℎ  of the configuration of 
firetrucks, denoted by 𝑈/(𝑠) if the current state of the system is 𝑠:  

 

𝑈/(𝑠) ∶= 	 𝑓
^

_`a

(rR,S
; s )𝑝/(𝑖),	

where 𝑓 is the penalty function.  
 

Example 2. Consider the system in Figure 4.5a. Suppose it is 9 o'clock in the morning. 
Assume each node has the same demand probability at this hour of the day: 𝑝b(𝑖) 	=
1
5 , 𝑖	 = 	1, . . . , 5. Moreover, suppose we use the penalty function corresponding to the 
minimization of the average response time: 𝑓(𝑡) 	= 	𝑡, 𝑡	 ≥ 	0. We compute ra,b; s =
		rd,b; s = 	0, since firetrucks are present at nodes 1 and 2. Moreover,  re,b; s = 	0 as 
well, because node 3 is the destination of a driving firetruck. The closest firetruck to 
node 4 is in node 2, since the firetruck traveling from 4 to 3 is assumed to be at its 
destination. Therefore, r=,b; s = 1.2 × 1073 and  r>,b; s = 1.2 × 1323. We have 
multiplied the driving times with intensity factor 𝑤b= 1.2. At last, the computed 
unpreparedness is e

>
 × 0 + a

>
 × 1287.6 + a

>
 × 1587.6 = 575.04. This is the expected time 

required to respond to the next incident for the configuration 1, 2, 3.  
 
We did not consider the firetrucks in phase 1 or 2, for specific reasons. The 

expected remaining busy time of phase 1-firetrucks is probably too large, and thus they 
are not considered. Expected remaining busy times for phase 2-firetruck are shorter, 
but highly uncertain since the size of the emergency cannot be determined in advance. 

Note that there are several differences between the unpreparedness defined here 
and the preparedness introduced in [2]. First, unpreparedness has the nice physical 
interpretation of the expected penalty, e.g., response time, of the next incident. 
Moreover, no artificial contribution factor is incorporated in the computation. Besides, 
the definition of preparedness is based on travel times solely, while in the 
unpreparedness definition a general penalty function is incorporated.  

 

5.2	Evaluation	of	the	Firetruck	Motions		
At a decision moment of the first type, determining the unpreparedness of the state of 
the system is the first step in the heuristic. That is, the motion in which none of the 
firetrucks move except for the ones on the road. We refer to this motion as the static 
motion, denoted by m0. For the remainder, we denote the unpreparedness when m0 is 
carried out by 𝑈(𝑠0). Subsequently, we evaluate firetruck motions. Denote the 
remaining possible firetrucks motions by 𝑚1,𝑚2, . . . , 𝑚𝐾, enumerated by 1, . . . , 𝐾. 
Moreover, let 𝑠𝑘  denote the state of the system as if 𝑚L  was carried out 
instantaneously and all driving phase 0-firetrucks would be at their destinations. Then, 



	

we compute 𝑈(𝑠L) for 1	 ≤ 	𝑘	 ≤ 	𝐾	to obtain a classification of the firetruck motions. 
The best motion is the firetruck motion that minimizes the unpreparedness. That is, we 
select the motion ml for which  

𝑠h

	

= 	 min
L	`	;,…,i

𝑈(𝑠L) .	

For decision moments of the second type, we do something similar. However, 
the firetruck that just finished service of a scene, has to be relocated anyway. This is a 
consequence of the restriction that each firetruck has to return to a base location. 
Therefore, we cannot define the static motion as before, in which this firetruck would 
keep its position. Alternatively, we define our static motion to be equal to the motion 
in which the just finished firetruck is relocated to the nearest fire station. Moreover, we 
denote this static motion by m0.  

Note that the number of possible motions is 𝒪(𝐹𝐵), where 𝐹 and 𝐵 are the 
number of firetrucks and base locations, respectively. For decision moments of the 
second type, the number of firetruck motions is 𝒪(𝐵), since the dispatcher has to 
decide on a new location only for the firetruck that just finished service. Note that the 
computation of the unpreparedness can be done in 𝒪(𝑁𝐹) time, since for N demand 
points we have to determine which of the F firetrucks is the closest phase 0-phase 
firetruck. Therefore, the total complexity of the algorithm is 𝒪(𝑁𝐹2𝐵), which is 
polynomial in the number of demand points, fleet size and number of base locations.  

 

5.3	From	Motions	to	Relocations		
Let 𝑚h	be the best firetruck motion, and assume 𝑚𝑙

	

= 	 (𝑏𝑙1, 𝑏
𝑙
2) is the pair of base 

stations, where 𝑏𝑙1 is the origin and 𝑏𝑙2 the destination. Once the firetruck motion is 
determined, the dispatcher needs to make a decision concerning the exact execution of 
this motion. To be more specific, the number of additional firetrucks and which ones 
involved in carrying out this motion need to be determined. We do this by solving a 
Linear Bottleneck Assignment Problem (LBAP). The formal definition of the LBAP 
is: Given two sets 𝑉 and 𝑊, together with a weight function 𝑐:	𝑉	×	𝑊	 → 	ℝ. Find a 
bijection 𝑔:	𝑉	 → 	𝑊 such that the cost function max

v∈w
𝑐(𝑣, 𝑔(𝑣)) is minimized. The 

LBAP can be solved to optimality in polynomial time, for instance by methods 
presented in [4].  

In our setting, this is equivalent to the computation of an assignment of phase 0-
firetrucks to the base locations that have to be occupied by a firetruck in the new 
configuration, in such a way that the maximum driving time of a firetruck is 
minimized. To be more specific, if we denote the set of destinations for phase 0-
firetrucks by 𝐷;, we define the set 𝑊	 = {𝐷;

	

∪ 𝑏𝑙2 }

	

\{𝑏𝑙1}. The set 𝑉 consists of the 
current locations of the phase 0- firetrucks. When there are multiple firetrucks per 
location, we specify the elements corresponding to this location with sub-indices in 
either 𝑉 or 𝑊. Therefore, |	𝑉 | = |	𝑊 |. Let 𝑐 be the function describing the driving time 
between elements of 𝑉 and elements of 𝑊, obtained from the driving time matrix R.  

We can interpret the solution to the LBAP in our setting as follows: it is the 
minimal time required to perform the firetruck motion. Since we base the firetruck 
motion on the state of the system as it is at the decision moment, apart from the fact 



	

that we assume driving phase 0-firetrucks to be at their destination, it is desirable that 
the new firetruck configuration is attained quickly. There is an obvious relationship 
between the number of additional firetrucks participating in a firetruck motion, and the 
completion time of the firetruck motion: the more firetrucks are allowed to be 
relocated, the faster the new firetruck configuration may be attained. However, it may 
occur that the number of extra firetruck relocations only has a small impact on the 
performance, since the gain of participation of additional firetrucks in a motion may be 
limited. Therefore, in the next chapter we will restrict the dispatcher to relocate a 
limited number of additional firetrucks. Moreover, we compare the performance and 
the number of firetruck relocations to the case in which all firetrucks are allowed to 
take part in the motion.  

 

5.4	Constraints	on	Decisions		
We restrict the dispatcher in two ways: (1) The dispatcher is only allowed to 

perform the best motion if the gain in unpreparedness with respect to the static motion 
is substantial, and (2) the dispatcher is not allowed to relocate more than M phase 0-
firetrucks in a motion.  

In order to get a feeling about the necessity of the best motion, 𝑚𝑙, we compare 
it to the static motion m0, defined as above. To be more specific, we compute  

 

𝑞 ∶=
𝑈 𝑠; − 𝑈(𝑠h)

𝑈 𝑠;
 

where 𝑈 𝑠;  and 𝑈(𝑠h) denote the unpreparedness of the state of the system when, 
respectively, the static and best motion are performed. Note that 𝑈(𝑠𝑙) 	≤ 	𝑈(𝑠0), since 
the best motion may equal the static motion. We define 𝑄 to be the motion threshold: 
the dispatcher may carry out the best motion only if 𝑞	 > 	𝑄. Note that 0	 ≤ 	𝑞	 ≤ 	1. If 
we set 𝑄	 = 	1, the dispatcher is restricted to the execution of the static motion solely. 
In contrast, if 𝑄	 = 	0, the dispatcher is always allowed to perform the best motion, 
even if it results in just a small gain in unpreparedness. Note that we prefer to assess 
the performance using a relative metric as opposed to an absolute metric. The latter 
makes sense when a strict 0 − 1 penalty function is used, however, since we allow for 
general penalty functions the former is preferable.  

The second type of restriction is closely connected to the third question at the 
end of Section 2.3: the way in which a firetruck motion is carried out, i.e., the number 
of firetrucks used to perform a firetruck motion. The above-mentioned 𝑀 is a hard 
constraint that holds for both types of decision moments and 1	 ≤ 	𝑀	 ≤ 	𝐹 . 
Remember that a dispatcher may at any time redirect a firetruck if it is already on the 
road, since this does not count as an extra relocation. Thus, the number of redirected 
firetrucks is not restricted by 𝑀.  

In short, the restrictions are parameterized by (𝑄,𝑀). A summary with the 
different steps of the method is given at the end of this chapter. In the next chapter, we 
show some results regarding the performance of the system and the number of 
relocations as function of 𝑄 and 𝑀.  



	

Remember that we only consider the closest firetruck. If each base location is 
the destination of at least one phase-0 firetruck at a decision moment of the second 
type, all motions are evaluated as equally good. Similarly, for decision moments of the 
first type, it could occur that the best motion is not unique as well in such a situation. If 
this is the case, we create scarceness in the number of phase-0 firetrucks by ignoring 
exactly one firetruck of each base station, and we compute the best motion based on 
this configuration. If each base location is occupied twice, that is, each base location is 
the destination of at least two firetrucks, then we always carry out the static motion. 
However, for the regions and situations we studied, this was hardly the case. 

 
Summary	of	the	approach	
1. Consider the system as if each firetruck is at its destination.  
2. For each combination of origin and destination:  

(a) Remove one firetruck from the origin.  
(b) Add one firetruck to the destination.  
(c) Compute the unpreparedness of the resulting configuration.  

3. Select the best motion and compare it to the static motion.  
4. If 𝑞	 > 	𝑄: Solve LBAP with at most 𝑀 firetrucks.  

 
 

	
	

	

	

	

	

	

	

	

	
	

	 	



	

6.	Results	
In this chapter, we show results for the area Amsterdam Amstelland, displayed in 
Figure 6.1. Amsterdam Amstelland is a region in the Netherlands and covers 
approximately 282 kmd and is home to 1.2 million inhabitants, of which 68% lives in 
Amsterdam itself.  

 

 
Figure	6.1.	Amsterdam	Amstelland.	

 
We model Amsterdam Amstelland as a directed complete graph with 2648 

nodes, where each arc is weighted according to R. To compute routes between any pair 
of demand locations, we define a demand location-incidence graph where nodes are 
only connected by an edge to each other if the corresponding demand locations are 
adjacent. Using this demand location-incidence graph, we compute the fastest driving 
routes. We need these routes to keep track of the actual locations of firetrucks when 
they are not at their base location.  

We obtained historical data on the time and place of the incidents and the 
service time on scene. We used this data for the computation of the demand 
probabilities per node 𝑝	 = 	 (𝑝a, . . . , 𝑝d�=�), by dividing the number of requests at 𝑖 by 
the total number of requests. 

The total number of incidents in the data is 90,847. There are 2,896 natural days 
in our dataset, so on average there are approximately 31 priority 1-incidents during a 
day. When a day is over, we reset our system to the initial state and proceed with the 
next day.  



	

We made a distinction between the hours of the day. In Table 6.1 the mean on-
scene time with the standard deviations, both in seconds can be found. It can be seen 
that during the morning rush hour both the mean and the standard deviation are at their 
highest. Therefore, the greatest gain in relocating can be achieved in the time interval 
[8,12] given that the mean and standard deviation are the highest in these intervals.  

 
Table	6.1.	The	mean	and	the	standard	deviations	of	the	response	time	in	seconds	during	a	day.		

Hours 1 2 3 4 5 6 7 8 9 10 11 12 
Mean 238 244 256 243 247 242 235 238 289 315 267 241 
SD 282 396 345 252 250 246 246 365 1178 1234 843 514 

 Hours 13 14 15 16 17 18 19 20 21 22 23 24 
Mean 257 247 245 246 233 239 222 226 229 245 233 235 
SD 680 469 313 224 273 453 290 254 241 277 253 261 

 
We simulated our system according to historical data, which runs between 

January 2008 and December 2015. The results are generated by a discrete-event 
simulation. No randomness is involved, since we use the actual historical data (trace-
driven). The simulation evolves according to the system dynamics described in Section 
4.2. When a firetruck just got freed from service and there are still requests waiting 
because no firetrucks were available, the firetruck will immediately respond to the one 
that is longest in the system.  

We consider two different situations: a realistic situation and a busy situation 
whereby multiple firetrucks are more often occupied e.g. on storm days and holidays 
like New Year’s Eve.  

As mentioned before, the redeployment of firetrucks might be beneficial if there 
is scarceness in the number of available firetrucks. If we apply the heuristic method 
described in Chapter 5, we implicitly assume available firetrucks are scarce. After all, 
the contribution of each node to the unpreparedness depends on one firetruck solely, 
namely the closest one. Therefore, we assume that there is scarceness. To achieve this, 
we start with one available firetruck. We will increase this number to the maximum of 
available firetrucks. We assume the same scarceness for both the realistic as for the 
busy situation. 
 

6.1	The	Realistic	Situation		
For the realistic situation, we have displayed the coverage ratio and the mean penalty 
as function of the number of firetrucks, see Figure 6.2.  

Two graphs can be seen in the plots. The red line is the Static Policy. No 
relocations are carried out when this policy is used. For the blue line, the DFM is being 
used. In this case relocating is allowed according to the heuristic method described  in 
Chapter 5. 

The first thing to note in Figure 6.2a is that the coverage ratio for both policies 
increases as the number of available firetrucks grows.  The biggest difference between 
the two policies can be seen with three, four firetrucks. The difference, expressed in  



	

 
 

(a) 					 	 	 	 	 	 (b)	

Figure	6.2.	The	coverage	ratio	as	function	of	the	firetrucks	is	displayed	in	Figure	6.2a	and	the	mean	penalty	as	a	
function	of	the	firetrucks	is	displayed	in	Figure	6.2b.	

 
percentages, are approximately 58.8% and 59.9%, respectively. Note that the largest 
gap between the DFM algorithm and the Static Policy is at	𝐹 = 4. As the availability of 
more firetrucks increases, the difference between the two graphs is reduced. For 
example, the difference between the coverage ratio determined by the DFM Algorithm 
and the Static Policy equals 1.9% when 10 firetrucks are available. Thus, there is a 
significant gain in performance if more than one firetruck is used in performing a 
motion. Another striking difference to note is the flow of the graphs. The coverage 
ratio which is determined by the DFM Algorithm is declining increasing smoothly. 
While the coverage ratio which is determined by the Static Policy is graph whose line 
breaks. 

In Figure 6.2b the mean penalty is plotted. As the number of firetrucks 
increases, the penalty decreases. This makes sense since the area is better covered with 
more firetrucks at our disposal.  When the system contains 10 firetrucks the mean 
penalty with the static policy hardly differs from the penalty. Note that the largest gap 
between the static policy and the DFM algorithm is at 𝐹  = 4. This gap is 
approximately 18.8% as observed in Table 6.2. Thus, there is a significant gain in 
performance if more than one ambulance is used in performing a motion. The biggest 
gain is achieved when we have 4 firetrucks in the system. In the next section, we will 
have a closer look at the results for 4 firetrucks in a busier situation. We will also 
compare these result with the double number of firetrucks, 𝐹 = 8.  

 
Table	 6.2:	Columns	 I,	 II	 and	 III	 represent	 the	 gain	 in	 performance,	 the	mean	 response	 time	 and	 the	mean	
penalty	for	the	DFM	algorithm	compared	with	the	Static	Policy,	respectively.	

 I II III   I II III 
F = 1 0,7% 0% 0.1%  F = 6 16.7% 10.1% 20.6% 
F = 2 56.1% 9.1% 15.2%  F = 7 7.9% 5.7% 14.4% 
F = 3 58.8% 15.2% 23.6%  F = 8 8.3% 5.5% 16.7% 
F = 4 59.9% 18.8% 31.1%  F = 9 4.7% 2.0% 11.3% 
F = 5 50.3% 17.7% 33.9%  F = 10 1.7% 0.4% 4.0% 



	

6.2	The	Busy	Situation		
For the realistic situation we have seen that gain in performance can be achieved by 
relocating in comparison with the static policy. However, this profit is small. We are 
now going to look at what happens when we increase the number of emergencies in 
the same area. We do this by multiplying the arrival rate by 2, 3, 4 and 5. The 
utilization will also be multiplied in the same way since it is linear to the arrival rate. 
We call these numbers the utilization factors. The realistic situation is equal to the 
utilization factor 1.  

We have sketched two situations. In the first situation we assume that there are 
F = 4 firetrucks. In the second situation F = 8 firetrucks are available. We have chosen 
for these number of firetrucks We will compare these two situations with each other. 
The results are shown in Figure 6.4.  

 We have chosen these numbers of firetrucks because we have seen 
earlier in the realistic situation that there is much to be gained when there are 4 
firetrucks in the system. When we double the number of firetrucks, the gain decreases, 
see Table 6.2. With 4 and 8 firetrucks the difference is indicated between scarcity of 
firetrucks and sufficient firetrucks.  

 

	

(a) 																							 	 	 	 	 (b)	

	

(c)																							 	 	 	 (d)	

Figure	 6.4.	The	average	penalty	 (Figure	6.4a)	 and	 the	average	 response	 time	 (Figure	6.4b)	 as	 function	of	 the	
utilization	factor.	Figure	6.4c	displays	the	number	of	relocations	and	Figure	6.4d	displays	the	relation	between	
the	average	penalty	and	the	coverage	ratio.		



	

In Figure 6.4a, we display the penalty as function of the utilization factor, for 
𝐹	 = 	4, 8. The graphs differ a lot from each other. The penalty for 𝐹	 = 	4 increases 
with big steps as the number of emergencies increase. While the penalty with 𝐹	 = 	8 
remains relatively small. This outcome makes sense since the area is better covered 
with 8 firetrucks than with 4 firetrucks. The penalty is closely related to the response 
time. The penalty increases when the response time increases. In Figure 6.4b the 
response time as a function of  the utilization factor, for 𝐹	 = 	4, 8 is displayed. For  
utilization factor 1, the response time increases with 25,9% when 𝐹	 = 	8 instead of 
𝐹	 = 	4. This increases to 91,8% if there are five time as many emergencies, i.e. 
utilization factor = 5. With 4 firetrucks at our disposal and five times as many 
incidents, the response time gets very large because the firetrucks are still busy 
fighting one emergency when new emergencies occur.  We also note that the growth 
of the response time for 𝐹	 = 	8 is very marginal. This comes at the price of extra 
firetruck relocations. This number, as a function of the utilization factor for 𝐹	 = 	4 
and 𝐹	 = 	8 is displayed in Figure 6.4c. We observe approximately nine additional 
firetruck relocations per hour. Note that the number of relocations is decreasing for 
𝐹	 = 	4. The cause of this is the occupancy of the firetrucks. When we increase the 
utilization, the firetrucks are more frequently occupied and cannot be used for 
performing relocations. 

 

6.2	The	Four	Emergency	Types		
As we mentioned in Chapter 4, there are four emergency types. For each of these 
emergency types we looked at the mean penalty. 
 

 
(a) 																																																																																																					(b)	

 
						(c)	 																																																																																																		(d)	

Figure	6.5.	The	average	penalty	for	the	emergency	types	A	(Figure	6.5a),	B	(Figure	6.5b),	C(Figure	6.5c),	and	D	(Figure	6.5d).	



	

In Figure 6.5 we see, as expected, that the penalty for emergency type A in 
comparison with the other types is the highest since the maximum allowed response 
time for these type of emergency is the smallest. As the response time increases, the 
penalty becomes smaller. This applies to both 4 firetrucks and 8 firetrucks and also 
both policies. We also see in all figures that the graphs which belong to the DFM 
algorithm a lower penalty compared to the static policy. 

In Figure 6.5a we note that the two graphs that belong to 8 vehicles do not 
differ so much from each other. The gap between the two graphs that belong to 4 
vehicles is a lot bigger. For the utilization factor 2 this difference is approximately 
4.6% as observed in Table 7. It is remarkable that with utilization factor 5 the penalty 
suddenly shoots up for 8 firetrucks and that the graph comes closer to that of the Static 
Policy. As the utilization factor gets larger, the static policy and the FDM are getting 
closer together. This is in case there are too many emergencies and there is no 
possibility to relocate the firetrucks because of the unavailability. Regardless of the 
policy that is used, in both situations all the firetrucks will be occupied all the time. To 
lower the penalty, more firetrucks are needed. The same applies for Figure 6.5b. In this 
case, the penalty is lower because the maximum response time for these types of 
incidents is higher. In Figure 6.5c we see that the graphs for 4 firetrucks already start 
to look more alike and in Figure 6.5d they are approximately parallel to each other. 
This means that the achieved gain in performance with the FDM algorithm remains 
approximately the same be regardless of the number of emergencies that need to be 
dealt with. For 4 firetrucks, the difference becomes smaller. 

In Table 6.3 the gain in performance expressed in percentages can be seen. 
With 4 firetrucks, the gain in performance for each utilization factor gets larger as the 
maximum allowed response time increases. This also holds for 8 firetrucks. Note that 
the difference between emergency type A and B is small. This difference gets larger as 
the maximum allowed response increases.  
	

Table	 6.3.	 The	 gain	 in	 performance	 for	 the	 mean	 penalty.	 The	 columns	 represent	 the	
utilization	 factors.	 The	numbers	 in	 the	 cells	 show	 the	gain	 in	performance	when	 the	DFM	 is	
used	to	manage	the	firetrucks	for	F	=	4	and	F	=	8.	

  I II III IV	 V 

F = 4 

A 4.9% 4.6% 3.6% 3.5% 1.4% 
B 14.4% 13.3% 9.5% 7.2% 4.4% 
C 37.2% 31.2% 25.5% 18.9% 8.0% 
D 47.8% 41.2% 34.7% 23.5% 11.4% 

F = 8 

A 0.8% 1.4% 0.7% 1.6% 2.6% 
B 2.3% 3.8% 5.8% 4.6% 5.8% 
C 26.3% 25.7% 25.1% 23.8% 21.9% 
D 51.7% 44.8% 38.9% 35.1% 29.7% 

	

	  



	

7.	Conclusion	&	Discussion	
 
The main objective of this study was to develop a time dependent relocation model for 
the FDAA such that the response time of the firefighters would be decreased 
significantly. This objective was reached. In this chapter, we will provide a summary 
and the conclusion about this objective. However, we think that there is still a lot of 
potential improvement for this model. The model has to be extended significantly 
before a meaningful comparison to real operations can be made. The possible 
extensions will be described in the discussion and we end this thesis with a short note 
on further research, which can be carried out.  
	

7.1	Conclusion		
In this thesis, we analyzed the effect of firetruck relocations on the performance of the 
firefighter services. Theretofore, we described a firetruck redeployment model, in 
which a performance measure related to the response time can be chosen by the fire 
department by defining a corresponding penalty function. We used historical data of 
the region Amsterdam Amstelland to simulate the system.  

The analysis of the dataset of historical emergencies demonstrates that and how 
the response time can be improved by simply relocating. The results in Chapter 6 
showed that DFM mainly gives a great potential for areas in which the coverage is 
rather low (the busy situation with utilization factor 4 and 5). For these areas, the 
presented results all imply that there is a significant improvement if firetrucks are 
relocated compared to the static policy. For the areas that already have a high 
coverage, the gain in performance by relocating is very small. Likewise, for the 
realistic situation, the decrease in penalty is largest if only a few firetrucks are allowed 
in the system. It gets harder and harder to increase the performance by allowing more 
firetrucks in the system.  

We conclude this section by noting that the penalty is mainly caused by the 
emergency types A and B. This makes sense since the maximum allowed response 
time for these two types (120 and 130 seconds, respectively) is very small. Even with 
more firetrucks in the system and the use of DFM, the penalty remains high. For these 
emergencies, a lot of improvements can be made. If the penalty of these specific 
emergencies decreases, the total mean penalty will also decrease. The fire department 
could consider to execute more firetruck relocations for emergency A and B and less 
for emergency C and D resulting in a better coverage in the area for emergency A and 
B. This however requires more research. 

The graphs presented in this thesis can be very useful for the fire department to 
gain insights in the relationship between performance and number of relocations. DFM 
is generally believed to provide means to enhance the response-time performance. 
	

7.2	Discussion		
There are various factors that may have an influence on the performance of the 
firefighters and on the number of relocations as well which we did not have taken into 
account. Several extensions can be made to refine of the relocation model. One 



	

obvious shortcoming of our approach is that we restricted the dispatcher at a decision 
moment of the first type to change the firetrucks configuration at at most two points: 
the origin and the destination. However, it could be beneficial for the performance if 
this restriction would be relaxed, but this probably comes at the expense of more 
relocations. Moreover, the relation between performance or number of relocations and 
number of decision moments is an interesting topic as well: what would happen if one 
decreases (e.g., only when a firetruck is newly free) or increases (e.g., every minute) 
the number of decision moments? 

This model is based on 1 type of vehicle while the FDAA has multiple types of 
vehicles. In case of fire, two vehicles are needed: water tender and a turntable ladder. 
These vehicles are in a sense dependent of each other. This dependency should be 
further examined.  

Another extension would be to take the dependence of the weather into account. 
We believe it is a valuable addition given that the weather affects the number of 
incidents. For example, the rate of incoming incidents on storm days is much higher 
than a typical day. The same holds for hot summer days and holidays e.g. New Year’s 
Eve. A logical consequence is that multiple firetrucks are more often occupied and this 
limits the number of possible relocations that can be performed. These days are 
outliers compared with the others days of the year. However, they do occur and the 
timely arrival of firefighter services also holds for these days. Since our model is based 
on the average rate during a year, it won’t work for days wherein the rate is much 
higher than the average rate.  

At last, we also want to emphasize the difference between the weekdays and 
weekends. The number of the incoming incidents on weekdays differs a lot from the 
weekend. The flow of the traffic intensity and traffic density during the weekdays 
differs also from the weekend. This has an influence on the performance and on the 
number of relocations as well. During the weekdays, we saw two peaks which imply 
the rush hours during a day. While in the weekend, the flow of the traffic intensity is 
much smoother. The traffic intensity slowly increases and in the afternoon, it starts 
decreasing. The graphical representation of the flow of the traffic intensity and density 
can be seen in Chapter 3. In our model, we took the average over the whole week and 
did not distinguish the weekdays from the weekend days. This distinction can be a 
valuable addition to our model. 

The relocation model presented in this thesis forms a good basis for these 
extensions and modifications which includes the most important parts and principles 
of the operations which are made by the fire department.  
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