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Abstract

This master thesis, conducted at Royal Philips N.V. , reviews the use of advance demand information
(ADI) in the service part supply chain (SPSC) of Philips. Next to that, solutions are proposed that
make use of ADI in the SPSC. These solutions are applicable to the forecasting of service part demand,
the warehouse replenishment of service parts and the shipping of service parts. The overall aim of these
solutions is to reduce the amount of backorders within the SPSC of Philips.

The ADI consists of information from orders placed long before the requested delivery date. Data
analysis shows that the information of these orders is generally reliable. To use the ADI in the demand
forecasting of service parts, a method is developed that makes use of ADI for forecasting intermittent
demand. Comparing this method to the current service part demand forecasting method used by philips,
shows that there is no significant difference between the current and proposed method regarding backo-
rders, inventory costs and fill rate.

When using ADI, the replenishment of service parts is improved as well. When knowing that inventory
will drop below the order level, proactive replenishment makes sure that backorders are avoided. This
method shows to decrease backorders with over 10%, however it also increases inventory costs with about
10%. The method also shows that if inventory costs are kept the same, backorders are still reduced by
5%.

ADI is also used to optimize the shipping strategy, service parts that need to be delivered in the
future can be shippped at an earlier stage. This leads to potential costs savings by batching orders or
using slower shipments. Furthermore, this method shows to have no negative effect on the backorders,
inventory costs and fill rate.

Keywords: Service parts, Inventory Control, Forecasting, Replenishment, Flexible delivery, Advance
demand information
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Executive Summary

This Master thesis is conducted at the Service Parts Supply Chain (SPS) department of Royal Philips
N.V.. The SPS department is responsible for the total service parts supply chain from Philips factories
and external suppliers to the customers, as well as the return flow of repairable service parts from
the customer to the repair and back to the warehouse. The main aim of the SPS department is to
maximize the service part availibity for its customers, while on the other hand minimzing the costs that
are accompanying the service parts operations and costs that relate to the inventory of service parts. In
order to provide service part availability, Philips maintains a worldwide service part distribution network.
This network consists of Regional Distrubution Centers (RDC) that are supplied by external vendors
and Philips business units. These RDCs supply both customers and several Local distribution centers
(LDC) in the network, the LDCs also supply customers.

Orders for service parts come in at all times, most of the time these orders concern same business
day or next business day delivery. However, for the Benelux market, 4.5% of the orders are placed at
least 7 days before the requested delivery date, which is the date on which the part has to arrive at
the customer. These orders contain valuable information for demand of service parts for the upcoming
periods.

Currently the SPS department makes little use of advance demand information, the forecasts is
independent of the future orders, unless the amount of future orders exceeds the forecasted value. Fur-
thermore, future orders are handled at the moment the order has to be shipped, which often is one day
before the requested delivery date. The stock level for the order and the way of shipping are reviewed
just before shipping, which means that in a case of disruption there is no time to look for alternatives
to fulfill the order.

The aim of this research is to make use of this advance demand information in the supply chain
processes of Philips. First of all, it must be ensured that the orders placed in advance are reliable. To
ensure the reliability of these orders a data analysis was performed. The amount of orders that are
revoked by the customer before the requested delivery date are compared with the overall amount of
orders. It turns out that over 98% of the placed orders were reliable.

Secondly, the forecasting of service part demand is reviewed. Literature on using ADI in forecasting
exists, but mostly includes a continuous stream of demand. For the situation at Philips the demand
shows to be intermittent, meaning the solutions from the literature can not be applied. For this reason
a new forecasting method is developed that incorporates advance demand information to determine
whether there will be demand in a certain period, and if so how much demand there will be. By using
this method, the forecasting error is smaller compared to the current forecasting method. Furthermore,
the simulation incorporated future orders has been implemented in the warehousing process. It turns
out that the differences in terms of backorders, fill rate and relative holding costs are negligible, as can
be seen in Table 1.

Method Fillrate Number of backorders Holdingcosts
Current method 92.34% 1777 100%

Proposed method 92.28% 1792 99,44%
Smoothed method 92.36% 1774 100.35%

Table 1: Performance of the initial forecasting and two proposed forecasting methods

Next to the forecasting the way of replenishing is also reviewed. Currently advance demand infor-
mation has no influence on the replenishment strategy. Replenishment is triggered when the inventory
position, consisting of on hand stock and inventory in transit, drops below a certain reorder value. Ad-
vance demand information allows for proactive replenishment. For example, when it is known that the
inventory level will drop below the reorder level next week because of an order known today, it is wise to
trigger replenishment today already. For the presented solution the inventory position is calculated by
subtracting future known demand from the former inventory position. When simulating this scenario,
backorders show to decrease by at least 10%. The inventory relative holding costs show to increase, but
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a note must be that less backorders will likely involve less overall costs as well, making up for the extra
inventory costs. The overall result for proactive replenishment can be seen in Table 2. Next to this the
method also shows that inventory costs can be kept the same, while backorders are reduced with 5%.

Method Fillrate Number of backorders Holdingcosts
Without proactive replenishment 92.34% 1777 100%

With proactive replenishment 93.12% 1596 110.12%
Difference +0.78% -10.19% +10.12%

Table 2: Performance of the proactive replenishment strategy using the original forecast

Lastly, the shipping method is reviewed. Currently future orders are shipped using the same shipment
strategy that is also used for next business day shipping, meaning that shipping is done at the latest
possible moment. When shipping at an earlier stage, the shipping costs can potentially be reduced.
Furthermore, any disruptions involving the carrier have less effect on late arrival of the service part at
the customer. To allow early shipment an algorithm is developed that aims to have no effect on the
backorders, early shipping can lead to less inventory and therefore more backorders. When simulating
the scenario for early shipment, it turns out that the amount of backorders are the same as in the
situation without early shipping. The algorithm performs as desired in only sending parts that do not
lead to backorders. Furhtermore, 67% to 85% of the parts known could be shipped early. As a result of
this the method also showed to realise a minor cost reduction regarding inventory relative holding costs.
All results obtained can be seen in Table 3, where ∆E represents the amount of days the parts are sent
in advance.

∆E Backorders relative holding costs Fill rate #Parts early sent #Parts early known % Early sent
0 1592 100% 93.13% - - -
3 1580 97.40% 93.19% 3388 5009 67.64%
7 1562 99.80% 93.25% 698 878 79.50%
10 1596 98.38% 93.12% 535 652 82.06%
14 1552 99.92% 93.31% 385 453 84.99%

Table 3: Simulation results early shipment method for various values of ∆E

To conclude, this research provides three solutions to implement advance demand information in
the supply chain processes. Two of them show to have the desired effect of reducing the amount of
backorders and reduce late arrival of service parts. This shows the benefit of implementing ADI in
the SPSC. As a result of this we recommend to implement the described replenishment strategy as the
method only requires a change in calculation of inventory position, while at the same time a major
backorder reduction is realized. Furthermore we recommend to investigate the advantages for Philips of
early shipping. In case these advantages are significant, the early shipping algorithm can be implemented
in the SPS processes. Latly, we recommend to make more use of ADI, as this research shows promising
results, the increase of ADI can lead to an even better performance increase.
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Chapter 1

Introduction

Currently, many industry business processes depend on the functioning of systems essential for the
performance of the company. Downtime of these systems therefore lead to less functionality of the
company resulting in direct costs like revenue loss and indirect costs like customer dissatisfaction. To
make sure that the systems encounter as little downtime as possible, maintenance is of vital importance.
During maintenance systems are restored to a functioning state, making sure that the systems can be
used to its purpose by the companies. To perform maintenance activities, service parts are needed.
These service parts need to be available quickly, to reduce system downtime. For this purpose service
part networks are set up worldwide in which warehouses are used to stock the service parts. To operate
such a network without having inventory costs going sky high, it is important to decide on the right stock
levels for each warehouse in the network. The aim of the service part network is to fulfill all incoming
orders as quickly as possible, leading to a minum of downtime for the essential systems.

This master thesis research is conducted at Philips. Philips wants to get insight in the way service
part orders with a big difference between ordering date and requested delivery date are handled, meaning
the orders are placed a long time ahead of the requested delivery date. Furthermore, Philips wants to
improve its performance on these future orders, meaning a reduction of backorders and order handling
costs for these order types.

In this chapter an introduction of the company and the research project will be given. First of all in
§1.1 a short introduction of the company Philips is given. Secondly in §1.2 an overview of the service
part supply chain department within Philips is given. Thirdly, in §1.3 a more detailed introduction of the
Philips service part network is given as well as the decisions made to enable the service parts processes.
Lastly an overview of the report is given in §1.4

1.1 Royal Philips

Royal Philips was founded in Eindhoven in 1891 by Frederik Philips and his son Gerard. Philips started
as a light bulb factory producing carbon filament lamps. Gerard mainly focused on innovation and
research, for this reason he established Natlab, a laboratory for research that is now known as the High
Tech Campus. Together with the introduction of Frederik’s other son, Anton, this led to a significant
growth of the company Philips. Since then, Philips has broadened its focus on various fields in the
electronic industry, making them responsible for some of the world’s ground breaking innovations, e.g.
the Compact Disc. Nowadays one of Philips main focal points lies within the development and realisation
of medical devices like CT scanners, Cardiovascular systems and X-ray equipments.

Philips is not only responsible for providing these medical systems. Performing the maintenance on
the machines they deliver is its responsibility as well. The medical systems provided by Philips are often
essential for its customers, meaning that maintenance activities are crucial in case of a disruption or
breakdown of the system. This maintenance strongly relies on the presence of service parts that are
required during the repair.
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Figure 1: Place of the SPS department within Philips

1.2 Service parts supply chain department

Within Philips the Service Parts Supply chain (SPS) department is responsible for the whole process of
providing service parts, starting at the vendor and ending at the customer. The main aim of the SPS
team is to maximize the part availability while at the same time minimizing the costs accompanied with
the transportation and inventory . In order to achieve the goals SPS has set, a solid working service
part network is in place that transports all the service parts between the various warehouses worldwide.
SPS is responsible for determining the optimal inventory levels for each of these warehouses as well as
designing a replenishment strategy for the warehouses.

In its goal to maximize the service level while minimizing the costs, SPS works together with three
main partners: Accenture, UPS and Sanmina. Accenture is responsible for the transactional activities
of the service part system system. Accenture its activities consist of, but are not limited to, handling
order requests and contacting customers in case of delay. Secondly, UPS is responsible for all warehousing
activities of the service parts. UPS owns the warehouses with service parts and is responsible for stocking
the parts and handing them to the shipment company. Lastly Sanmina is responsible for reintroducing
used service parts in the system. Sanmina repairs service parts and test and pack them so they can be
re-used as a service part. For all these three companies the SPS department is a direct partner. Meaning
that SPS controls the relation between its partners and SPS, as well as being the party that gives the
business orders for the other three parties. The three partners of SPS usually communicate with each
other via the SPS team, only in sporadic cases the partners have a direct relationship with each other.
For example in urgent situations where a quick response is demanded. An exact visualization of the
division of the roles among the four parties can be found in Figure 2
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Figure 2: Visualization of the different roles and relationships between SPS and its partners (Borst,
2016)

1.3 Supply chain for service parts

In order to understand how service parts are delivered to Philips’ customers, the supply chain of service
parts is introduced in this section. A representation of the supply chain for service parts, as well as the
material flow within this supply chain, is portrayed in Figure 3.

The first step in the service parts process is determining which service parts need to be used in the
installed base. There are two ways to obtain the service parts. First of all there is the option to buy new
service parts from the supplier. By doing so, a lead time has to be taken in account before the service
parts can be stocked in the warehouse and are ready to be used. A second option to obtain service parts
are the repair shops. Some of the parts that are replaced are considered repairable, meaning that they
go to a repair shop and are brought back to an as good as new condition. Once the repair shop receives
a part they will put it into repair and return it to the warehouse when the part has been repaired and
tested. Sometimes the parts do not come from the supplier or repair vendor directly but go via a Philips
business unit (BIU). A Philips business unit is responsible for the system as a whole and has therefore
the knowledge on specific parts. They are also the department that determines what type of maintenance
(corrective versus preventive) is needed on each specific part within the systems owned by Philips.

All new parts will be sent to one of the three main distribution centers (RDC) of Philips located in
Roermond (NL), Louisville (USA) and Singapore. The parts are then redistributed to local distribution
centers in the region. Stock is kept at both the RDC’s and at the Local Distribution Centers (LDC). For
some parts the decision can be made to only have stock at the main distribution centers. Whenever an
order comes in, the logical aim is to fullfill the order from the LDC in the region of the installed base.
In case the part is not in stock at this LDC there are two other options to quickly supply a service part
to the desired location. First of all there is the possibility of a lateral transshipment, meaning that the
order will be fulfilled from an LDC outside the region (Alfredsson and Verrijdt, 1999). A second option
is an emergency transshipment, meaning that the order will be shipped from one of the main distribution
centers to the customer directly (Van Houtum and Kranenburg, 2015). In case both these shipments
are not possible and there is no part in stock, the part has to be bought new or has to come from the
repair shop. Both these methods will take a lot of time and therefore lead to problems at the customer
side. The aim of the SPS team is to fulfill as much demand as possible from the various distribution
centers and thus limit the amount of backorders. Backorders lead to problems at the customer as their
machines are not functioning over a longer period of time, meaning they can not help their clients. Next
to RDC’s and LDC’s Philips also uses so called Forward Stocking Locations (FSL). An FSL essentially
acts the same as a LDC, however there is less place for parts in comparison to an LDC.

Next to the forward flow of parts, there is a reverse flow of parts. repairable parts go to a so called
Blue room. At the blue room a part’s functionality is checked and the decision is made whether to
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discard, repair or reuse the part. In case the it is impossible or too expensive to repair the part, it is
discarded. When the part still functions properly it is used as stock in the distribution centers. In all
other cases the part goes to the repair shops in order to be repaired. A visualization of the service parts
supply chain of Philips shows in Figure 3, together with the material flow. In this graph lateral and
emergency shipments are not shown, as they follow the same path as the normal transshipments (from
RDC or LDC to installed base).

Figure 3: Service parts supply chain network of Philips (Borghouts, 2017)

1.3.1 Order process

A service part that is needed for maintenance can be ordered in various ways. The first and most likely
option is that a Field Service Engineer (FSE) is performing maintenance and notices that a service part is
needed to get the system in a proper state. A second possibility is that the customer notices a disruption
or breakdown at the system and can diagnose the part that is needed itself. Consequently, the customer
contacts Philips for requesting maintenance service as well as service parts. Lastly Philips also has a
remote diagnostics department, in which irregularities at customer systems can be noticed and a service
part along with an engineer can be directed towards the customer to perform maintenance. The remote
diagnostics department can notice the disruption before the customer, so maintenance can be performed
at an earlier stage. Leading to less downtime on the system, which is beneficial for the customer. The
exact order process can be seen in Figure 4
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Figure 4: Graphical representation of the order process for service parts

Whenever an order for a service part comes in the order handling system (SAP Tool) checks whether
the part is in stock at the accompanied LDC and determines the way of delivery. The way of delivery
is based on various factors. First of all, the urgency for a service part, for each order the customer or
FSE has to indicate the degree of urgency for the part. The urgency varies from very urgent (patient at
risk) to not urgent (intermittent problem, meaning the system can still function). Another factor that
plays a role in this is the promised service level that has been stated in the customers contract. Philips
works with different types of service contracts that state that in case of a breakdown Philips needs to
provide an engineer and part on site within 4-24 hours. The systems provided by Philips are essential
for the processes performed at the customer, meaning that in case of a breakdown the systems need to
be repaired as soon as possible. In order to perform repairs in time, the availability of service parts is of
huge importance.

Whenever a part is available at the LDC the order handling system allocates the part to the order.
In case the part is unavailable at the LDC the system looks for the best alternative (lateral or emergency
transshipment), in order to fullfill the orders. Based on factors like urgency and service part availability
the system also makes a decision on the delivery path. There are various options for the speed of
delivery, in case of a highly critical part and a tight service contract the system will likely choose for
a quick delivery e.g. by taxi to ensure same day delivery. When a part is not that critical the order
handling system is more likely to opt for the cheaper parcel delivery that will ensure next day delivery.
The reason for a difference in pricing lies within the fact that a same day delivery involves a taxi service
in which the service part is the only item that is shipped. In parcel delivery there are loads of items
delivered using a carrier, resulting in a lower costs per item compared to same day delivery.

1.3.2 Provisioning and replenishment strategy

In order to ensure that there is enough stock in place at the warehouses Philips makes use of forecasting
to predict service part demand. The forecasting is done in a tool developed by the external company
called MCA solutions, and is based on demand data over the last two years. In the tool the exponential
smoothing method is used to smoothen the forecasted demand. The outcomes of this forecast determine
the stock levels that are needed at the warehouses as well as giving the SPS department an indication
of the amount of safety stock that is required.

Besides determining the stock levels the SPS team also determines a replenishment strategy, using
an (S,s)-inventory policy. When a stock level drops below the reorder level s, an order is placed that
will bring back the stock level to the target S. For LDCs this means that an order is placed at the RDC,
when the stock level at the RDC drops below s, new parts will be ordered at the supplier. A RDC only
delivers a part to a LDC if the part is not allocated to an order. Both LDCs and RDCs use the same
replenishment strategy, the specific values for this strategy (S,s) can differ per warehouse of course.
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1.3.3 Transportation

Next to the warehousing process, all goods need to be transported as well. This incorporates two flows,
the transportation from either the vendor or the repair room to the warehouse, and the transportation
from the warehouse towards the customer. Philips uses several carriers to perform this transportation.
The decision on which carrier to use depends on the destination, size, weight and criticality of the part.

Every carrier has a different cutoff time, the time on which it collects its packages from the warehouse.
This means that during the warehousing process the carrier which transports the part is taken into
account when picking the orders. Furthermore, every carrier has a different speed of delivery and
routing. For the Benelux market, Philips makes use of up to 12 different carriers every day to deliver
service parts. Each of these carriers pick up the parts at the warehouse to deliver the parts on the same
day. Furhtermore there is the possiblity of an emergency shipment, meaning that a carrier can pick up
and deliver a package at any given moment. Note that in this case the carrier only ships a single part,
making it a costly operation.

When looking at the transportation of the Philips service part network worldwide, there is not only
transport from warehouses to customers, but also between warehouses. The goods are shipped between
the three RDC’s and also from RDC to LDC.

1.3.4 Future orders

The order handling system does not only handle orders that need a same day or next day delivery. For
some orders a requested delivery date is attached that lies further away in the future, and even orders
could be placed up to 200 days in advance. The reason that orders are placed this long in advance varies.
One of the reasons is preventive maintenance on parts is performed. Preventive maintenance is planned
in advance and therefore the order and requested delivery date will be known.

A second phenomena that occurs frequently is that the urgency of the order is relatively low. Oc-
curring when a part is broken but the system still somehow functions as it should. In case this happens
customers often prefer the part to be replaced at a time which is convenient for them. As customers
schedule their patients on systems, there is no time in the near future to perform maintenance. Leading
to corrective maintenance being planned, because the broken part needs to be replaced. Maintenance
is performed 6 or 8 weeks after the disruption is noted, because the machine still functions without the
broken part. Leading to the requested part and delivery date being known ahead.

When such a future order comes in the order handling system does not react immediately by allocating
parts in stock to the order. This would result in parts being in the warehouse that cannot be used for
more critical situations as they are already allocated to this less critical order. Currently the order is
taken into consideration at the moment just before it needs to be shipped. At that point, parts in stock
are allocated to the order and the shipment methods are defined. In case a part is unavailable the system
starts looking for the possibilities to a lateral or emergency shipment of the part from other warehouses.
In case this is not possible the order will result in a backorder, meaning that the part will not be delivered
on time.

1.4 Outline of the report

The outline of the remainder of the report will be as follows. In Chapter 2 the research problem is
introduced as well as the research questions and the scope. In Chapter 3 the definition of a future order
is given and the reliability of future orders is determined. In Chapter 4 the Simulation model to obtain
results is introduced. In Chapter 5 the use of advance demand information in forecasting is discussed.
In Chapter 6 the replenishment decisions are combined with the use of advance demand information. In
Chapter 7 the use of advance demand information in shipping is discussed. Laslty, the conlusions and
recommendations are given in Chapter 8.
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Chapter 2

Research question

2.1 Problem description

Future orders contain valuable information regarding demand forecasting, future stock levels and ship-
ment methods (Chen, 2001). Currently none of this information is used by the SPS department. Future
ordered are treated the same as any other order, associating them with relatively high shipping costs
and a higher chance of backorders.

The fact that an order that is placed this far in advance results in a backorder is difficult to explain
to the field service engineer and the customer. The field service engineer places the part order and plans
the maintenance assuming the requested service part is there. Whenever the part does not arrive in time
the engineer cannot perform the maintenance costing valuable time. Furthermore, unavailable parts
frustrate the Field Service Engineer in its work. There are several occasions of engineers contacting their
managers about, regularly used, parts being repeatedly unavailable.

For the customer the inconvenience is even bigger. The reason that the maintenance is planned is
because of the fact that this fits its busy schedule. Whenever a part is unavailable at that time this
means that the machine is reserved for maintenance (and not for patients) while actually no maintenance
is performed. Furthermore, a new maintenance has to be planned, which will again be in several weeks
because of the customer’s busy schedule.

The aim of this project is to increase the spare part availability of future orders. The main target is
to reduce the amount of backorders that result from future orders. The second aim is to find out if the
information from future orders could be used to save costs. One can think of reductions in shipping and
inventory costs. All these aims lead to the main research question formulated in §2.2, and split up into
research questions in §2.3. Furthermore, the scope of the research is discussed in §2.4

2.2 Main research question

How can advance demand information be used to improve service part availability?
The overall goal of this research is to reduce backorders from future orders. To do so, future orders

need to be handled in a different way, such that Philips can anticipate at an earlier stage. To make this
change, the information from future orders is essential. Therefore this research focuses on how to make
use of this type of advance demand information.

The thesis focuses on service parts availability, meaning that the analysis will be performed on the
service parts handling and replenishment system. The thesis will therefore involve service part suppliers,
warehouses, shipping companies and customers.

2.3 Research questions

In order to answer the main research question, several research questions are set up. The goal of these
research questions is to answer an aspect of the main research question. The research questions are
set up in a logical order. First of all insight in the process and characteristics of future orders are
gathered. Afterwards possible improvements on the performance of these future orders are presented.
Lastly, recommendations for the SPS department on how to handle these future orders are given.
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Question 1 How reliable are future orders compared to the actual orders?

In order to make use of future orders, it has to be assessed first whether the future orders are reliable.
A reliable order is an order that is not revoked by the customer before the requested delivery date. In
case future orders turn out to be unreliable it makes no sense to propose solutions that incorporate these
orders. In order to compute the reliability of future orders a quantitative data analysis is performed. In
this data analysis the amount of reliable future orders are compared to the amount of unreliable future
orders to obtain the future order reliability.

Question 2 How can the situation at Philips be modelled in a simulation?

To compute the results of scenario’s that include the use of ADI, a discrete event simulation is built in
the programming tool Matlab. The goal of this simulation is to recreate the situation at Philips relevant
for this project. The effects of the proposed changes can then be measured by using this simulation
model.

In order to build such a simulation, the inventory and warehousing model at Philips need to be
recreated in the simulation. This concerns the ordering process of service parts ordered by Philips to
create stock in its warehouses in particular. Furthermore the way the several calculations are performed
at Philips needs to be replicated. This concerns the calculation of the reorder quantity, the stock level
and the forecasting process.

To create input for the simulation, a data analysis will be performed on the historic order data. It
is likely that this data needs cleaning before it can be used in the simulation. It has to be known how
much parts are ordered each day and which parts are ordered at which frequency. Lastly part specific
data is needed as well, which consists of the leadtime of the part, the chance of repair and the price of
the part.

Question 3 How can the advance demand information be implemented in the service part
demand forecast?

Question 3a What is the current forecasting method? In order to implement the advance
demand information in the demand forecast an insight in the forecasting method needs to be gained first.
Currently the forecast is done in an external tool called MCA (www.mcasolutions.com), the algorithm
behind this forecast is not known in detail. However, the forecasting method is known, which is the
exponential smoothing method. Furthermore, Philips developed a formula that replicates this forecast
as closely as possible. This formula is used to test the implementation of advance demand information
in forecasting. In order to adapt the demand forecast to the advance demand information, it has to
be understood which part of the forecast is based on future orders. Currently the forecast is based
on historical data over the last two years which is then smoothened using the exponential smoothing
method. Simply adding the future orders to the existing forecast is unreliable, as part of the forecast is
based on these orders. So this part has to be taken out of the forecast, and at the same time the future
orders should be put in. In this process the current forecasting techniques of SPS will not be changed,
the methods that are currently used for forecasting will remain. An extra element will be added to the
input for forecasting.

Question 3b When can advance demand information be used in the forecasting method?
In order to see which scope of orders can be regarded as future orders insight in the forecasting process
is necessary. It needs to be known at which moment the forecasting is done as well as which orders are
used in the forecasting process. Furthermore, the way of working in the forecast has to be known, the
use of input parameters and how this affects the forecast.

Question 3c What are the currently known methods for implementing advance demand
information in the forecasting method? To answer this question, we need current literature on
using advance demand information in forecasting. A literature review is performed on how to incorporate
(imperfect) advance demand information in a forecast. The aim of this literature review is to gain insight
in how advance demand information is used in the forecast, and in what scenario’s.

Question 3d How can the known methods be applied to the situation at Philips? The
solutions that are presented in the literature, may not be suited for the situation present at Philips. To
develop an enhanced forecasting method that will work for the situation at Philips the literature review is
used as a start. The algorithms presented in literature can then be adjusted in order to have an optimal
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enhanced forecast that works for Philips. In order to monitor the performance of an enhanced forecast
that includes advance demand information the simulation model will be used. By using simulation a
comparison can be made between the forecast with and without advance demand information, giving an
indication whether implementing advance demand information is actually beneficial.

Question 4 What will be the effect on inventory performance when incorporating advance
demand information in the replenishment strategy?

A new replenishment strategy that accounts for future orders at an earlier stage in the replenishment
process is introduced. The desired effect of this change is that stock will already be replenished at the
moment it is sent towards the customer. The simulation will be used to compute the effects of the
replenishment change on several relevant performance indicators

Question 5 How can shipping be optimized by using advance demand information?

Shipping parts at an earlier stage can increase the on time delivery. By doing so there is a smaller
chance that the part arrives late at the customer. Furthermore, shipping at an earlier stage is a potential
cost reduction, as faster shipping is often more expensive. The decision to ship early should be taken
with care, it must not lead to fill rate problems or highly critical backorders. The simulation is used to
determine the effects on the inventory performance of shipping several parts at an earlier stage.

2.4 Scope

To ensure that the project will not become too complex and results can be simulated in a reasonable
amount of time the following scope is determined.

Geographical scope For this research project the Benelux market is taken into consideration.
The Benelux market has one RDC, located in Roermond, and no LDC or FSL. This means that the
market Benelux can be described as a single location system, reducing the complexity of modelling and
computation. Furthermore the solution presented from this research will be based on the nature of the
Benelux market. However, the aim is that the solution is applicable to other markets as well.

Supply chain scope This research project will focus on the Benelux, meaning an emergency ship-
ment is not possible, however a lateral transhipment from one of the other two RDC’s, outside the
Benelux, can be possible in case of a stock out. The other two RDC’s will not be taken into considera-
tion, however a chance of p that an order can be fulfilled by lateral transhipment will be included in the
model. In this way the model will not become too complex, but still be as close to reality as possible.
Regarding the supply of parts, both the supplier and the repair vendor and their respective lead times
will be taken into consideration in the model. To illustrate the supply chain scope, Figure 3 has been
adapted to the scope (in thick red) and can be seen in Figure 5.

Figure 5: Project scope of the service parts supply chain network of Philips (in thick red)
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Data scope Historical order data from the Benelux market of up to three years back will be used to
analyse, meaning the years 2015, 2016 and 2017. Data of at least three years is needed as the forecast
needs 24 months of input data. This data contains all orderlines for service parts for these three years.
The parts within scope are all the service parts used for machines maintained by Philips healthcare, for
both corrective and preventive maintenance. Field Change Order (FCO) will be left out of scope, as this
demand has different characteristics compared to all other demand.

Department scope This research will be conducted within the SPS department at Royal Philips.
More specifically the Customer Demand & Fulfillment team within the SPS department. This team
is responsible for the demand planning and the replenishment strategy of the warehouses, as well as
determining the stock levels.
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Chapter 3

Definition of future orders

The first research question refers to the reliability of future orders. Before implementing future orders
in the strategic decisions, it has to be exactly defined what future orders are and how they can be
used. Whenever proposing a solution that uses future orders as an input, it must be ensured that this
input is suited for the solution and that the input is reliable. For this reason this chapter takes a closer
look at future orders. First of all future orders are defined, afterwards the reliability of future orders is
calculated.

3.1 Service part orders

In order to get to future orders within the service part orders it is wise to look at the data on all service
orders first. To do so, all data of orders that were placed during 2017 (1/1/2017-12/31/2017) has been
retrieved from SAP. This data contains all orders that have been placed and sent as well. Orders that are
revoked before the order is sent are not in this dataset. The dataset contains all relevant information on
the order, the requested delivery date, the material (parts) requested, the order number, the customer
number and the shipping method. When looking at the data for the market Benelux over 2017 it contains
18302 orderlines, these also include the FCO orders that are left out of scope for this project. When
excluding the FCO orders 17098 orders remain, being about 60 orders per working day.

In order to compute the days in advance that an order is ordered, the difference between the Requested
Delivery Date (RDD) and the date the order is put in the system is compared. In this process the data
needs to be cleaned as well. 877 orderlines do not have a RDD and will not be taken into consideration.
This means that 16421 orderlines remain. When looking at all orders it can be seen that most of the
orders, about 75%, need to be delivered within 2 days. The reason for this is that most of Philips’
maintenance activities are corrective, for which parts are needed right away. When looking orders that
are placed further ahead we see that 559 orders are placed at least 10 days in advance, being about 3.4%.
Although this might not look like being a lot, it still concerns more than 2 shipments per working day.
Some more statistics about future ordering can be found in Table 4

Days in advance Number of orders Percentage
≤ 2 12472 76.0%
[3, 6] 3170 19.3%
[7, 13] 390 2.4%
[14, 29] 242 1.4%
≥ 30 147 0.9%

Table 4: Amount of calender days in advance the 16421 orders of 2017 were placed

3.2 Reliability of future orders

In order to make use of future orders and to make strategic decisions based on future orders, the reliability
of future orders has to be ensured. When future orders can not be considered as being reliable it would
not make sense to provide solutions based on future orders and to take future orders into account in
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replenishment decisions. In this section the reliability of future orders will be computed by comparing
the amount of future orders realised to the amount of future orders revoked. This will be based on the
historic demand data for the Benelux market over 2017.

By using the historic demand data of the realised orders, a problem emerges. Any orderlines that
were revoked can not be found in this dataset, this data is needed to calculate the reliability of future
orders. In order to get to know if there is a revoked order, we make use of missing orderline numbers.
Whenever an order is placed, this order gets an order number and a line number. If an order contains
multiple parts, each part gets the same order number and a different line number. In the dataset there
are orders that do not have sequential orderline numbers, meaning that they do have the same order
number, but some of the corresponding line numbers are missing.

Whenever a line number is missing in the sales data, this orderline number was either revoked, or used
for other transshipments. In some cases the missing numbers correspond to an internal order handled at
Philips, meaning that a part was shipped on the first line number between two warehouses and shipped
to the customer on the second line number. All the missing orderline numbers were filtered out of the
dataset and manually entered in SAP to get the information for these numbers. This information clearly
indicates whether the orderline was an internal shipment or whether the order was revoked.

When detecting revoked orders in this way the assumption is made that whenever an order is revoked,
a new order is placed on the same order number but a different line number. The reason for this is that
usually one of the aspect of the orders changes which leads to revoking an order. The order will still
take place, but with different aspects. In case the order is revoked but no new order is placed, the order
can still be found when a different order on the same system is placed afterwards.

When looking at the historic order data, a total number of 104 missing order lines were found in the
file for 2017. The information on these missing orderlines was then retrieved from the SAP system. Out
of the 104 missing orderlines in the salesdata, 46 turned out to be actually revoked orders. The other
missing orderlines correspond to internal transshipments or other non revoked orders. These 46 revoked
orders do not only correspond to revoked future orders. Some of these orders are placed a day in advance
and are immediately revoked, being out of our scope. For these calculations an order is categorized as
a future order when the requested delivery date is at least ten days later than the date the order is put
in the system. Out of the 46 orders, 9 turned out to be revoked future orders. In total the sales dataset
contained 559 future orders, meaning that in the year 2017 nine out of 568 orders were revoked. This
corresponds to 1.6% of all the orders being revoked for the year 2017.

Reliable Revoked Reliability
Orders 559 9 98.4%

Table 5: Reliability of orders

To conclude, the data analysis shows that the majority of the service parts orders that are placed,
can not be considered as future orders as they concern same day or next day shipment. However, about
559 service parts orders are placed at least 10 days in advance, meaning that there are enough future
orders to be used in several solutions. When looking at the reliability of future orders, the conclusion
can be drawn that the future orders show to be reliable as only a relatively small amount shows to be
revoked. As the future orders can be considered reliable and as there are enough future orders to be
taken in consideration, solutions can be created that make use of future orders.
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Chapter 4

Simulating the service part supply network of Philips

The second research quesion that needs to be answered is how the SPSC of Philips can be simulated.
A discrete event simulation will be performed to see whether the proposed solutions have the desired
effect on the number of backorders and costs. In this chapter building of the simulation model will be
explained, as well as the the assumptions that are used to create a feasible simulation. In §4.1 we will
show the structure of the simulation model. In §4.2 the input of the simulation model is discussed. In
§4.3 we will define the output of the simulation model.

4.1 Structure of the simulation model

First of all the warehouse needs to be modelled. In literature many variations of the inventory models
for service parts exist (Basten and van Houtum, 2014); (Kennedy et al., 2002); (Paterson et al., 2011);
(Strijbosch et al., 2000). Looking at the supply chain of Philips it can be seen that this is similar to
the model of Van Houtum and Kranenburg (2015) given the two echelon network with lateral transship-
ments. However, as the scope is limited to the Benelux market, only one warehouse will be taken into
consideration. And therefore the simulation model will be a single location model. This means that the
basic multi item, single location inventory model can be used (Van Houtum and Kranenburg, 2015). As
a result of this, the daily processes are modelled in the following order.

Figure 6: Order of daily processes in the simulation
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Next to the warehousing process, the forecasting process is simulated in the simulation as well. Both
the MCA forecast and Philips current forecast are simulated. For the forecasting process the demand
must be known per month, meaning that the current daily demand data has to be converted to monthly
data. Next to that demand that is known before the forecasting moment has to be labelled as such. To
initiate the forecast, 2 years of demand data is needed, meaning that the forecasting process starts with
the demand of 2015 and 2016, the MCA forecast uses this data to forecast for the upcoming periods.

For all demand the assumption is made that the part that is replaced, is ready to be repaired. All
unique parts in the simulation have a repair rate, this indicates the chance that a part can be repaired
after it is taken out of the system. Some parts are considered unrepairable and therefore have a repair
rate equal to zero, this means that they will always be discarded after they have been used. For the
parts with a repair rate higher than zero, a binomial random chance decides whether a part will go into
repair or whether the part will be discarded. Next to a repair rate the parts also have a deterministic
repair time, this indicates how long it will take for a part to get repaired. When a part is repaired it will
go back in the warehouse as stock.

4.1.1 Execution of the simulation

The simulation will run the daily process for the period 1-1-2015 till 31-12-2017, the first two years are
used as a setup phase. The performance of the simulation will therefore only be measured over 2017.
Furthermore, each simulation is run 10 times to ensure reliability of the results. The average of the 10
runs is taken, meaning that extreme values from the binomial chances have less effect on the result.

4.1.2 Assumptions in the simulation model

For the simulation assumptions need to be made, in some cases because the part of the process can
not be simulated without assumptions. In other cases the assumptions are implemented because it will
reduce the complexity of the simulation and increase the simulation speed, while having a minor effect
on the simulation results. As the assumptions make the simulation different to the model used at Philips
it is important to list them. The following assumptions are made in the simulation process.

Assumption 1: Fill rate per part instead of fill rate for part set. Philips has a designated fill rate
for each warehouse, this fill rate is not specified for each part but for the whole part set, meaning that
individual parts can have a fill rate below the fill rate of the part set. The fill rate determines the target
stock level, and accordingly the reorder point, for all parts. Because each individual part can have a
different fill rate, there is a lot of complexity in the target stock level calculations, which are performed
in the MCA tool. To reduce this complexity the target stock level in the simulation is based on the fill
rate per part, meaning that every specific part in the part set has to reach the designated fill rate. As
a result the majority of the TSL and ROP values will change. Furthermore, the inventory costs will be
higher when achieving the same overall fill rate as a result of this assumption.

Assumption 2: Negative inventory and inventory costs. As is explained before, negative inventory
will occur in case there are backorders. The inventory relative holding costs are based on the average
inventory, which is influenced by the negative values. This means that in cases the inventory is negative,
the relative holding costs are negative as well. Negative inventory will occur rarely though, and the
average inventory will never be negative, meaning that the inventory relative holding costs will still be
representative. Therefore, for computational reasons the decision is made to keep the simulation as such.
As a result the inventory costs will be lower than in reality.

Assumption 3: Repair of parts. When parts are taken out of the system there is a chance that they
can be repaired. Per part the decision is taken whether the part is repaired immediately to create stock
in warehouses (push), or that the part is stored before there is a request for parts, and the part is then
repaired (pull). In the simulation however, the decision is made to let all parts be pushed into repair so
that they can be stocked in the warehouse afterwards. Furthermore, in reality some parts show to have
no defects when they are taken out of the system, meaning that they are checked during the repair and
no repair is needed. In the simulation this is not incorporated, the checking of the part takes time as
well, it is assumed that the part will go through the repair cycle.

Assumption 4: Constant leadtimes. Philips orders its parts from its suppliers, each part has it’s own
leadtime. In the simulation these leadtimes are also specified per part. In some cases the part can not
be delivered right away by the supplier, creating delay. This means that variance in the leadtime for
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a single part exists. In the simulation the leadtime is believed to be deterministic and thus constant,
meaning that the supplier will always be able to deliver the part in the set leadtime.

Assumption 5: Chances have a binomial distribution and are uncorrelated. For several situations in
the simulation there is a certain chance that something will happen. Examples of this are the chance
that an unfulfilled order can be fulfilled via lateral transshipment and the chance that a part can go
into repair. These chances are assumed to be binomial, meaning that the simulation will compute the
amount of parts binomial random based on the chance and amount of relevant parts. Furthermore the
assumption is made that these chances are uncorrelated. The reason is that it is virtually impossible to
simulate correlated chances, furthermore the most chances are truly uncorrelated.

Assumption 6: Sent and demand date of parts. In the current dataset two dates are available, the
requested delivery date and the order creation date. This means that the send date, the date on which
the part will go out of the warehouse towards the customer, is not available. The assumption is made
that this date the same date as the requested delivery date. Usually the part will be taken out of the
warehouse in the morning and delivered to the customer the same day. The reason is that all customers
in the Benelux market can be visited within one day.

Assumption 7: Initial stock level in the simulation. The simulation runs for three years, the first two
years are the initialization phase of the simulation, and the third year will be used to retrieve results.
At the start of the three years the stock level will be equal to the target stock level. For most parts
this normalizes after the two year initialization period because parts are frequently coming in and going
out. There are other parts for which demand occurs only once in the three year period, in that case the
part is in stock as the stock level is still equal to the targeted stock level. As a result, there will be no
backorders on this part. This assumption does lead to a number of backorders could be slightly more
positive than in reality. However, only a limited amount of parts are ordered so rare, meaning it only
has a minor effect on the overall results.

4.2 Input

4.2.1 Data input for the simulation

The main data input for the simulation is the demand data for the Benelux over the years of 2015 to
2017. The data contains all orders for service parts for the Benelux market in this period. The data that
is relevant for the simulation contains the following parameters: The order creation date, the requested
delivery date, the order quantity and the part number, as can be seen in Table 6. The data is used for
the forecasting process, and it determines the demand. Next to that the data specific for parts is used
as input for the simulation as well. Per part the following aspects are specified: The part number, the
part cost, the part leadtime, the chance that a part can be repaired and the repair leadtime, as can be
seen in Table 7.

Minimum Maximum Average
Requested Deliver Date (RDD) 1/9/2015 12/31/2017 -
Material number 1 3638 -
Creation date 1/8/2015 30/12/2017 -
Order quantity 1 100 1.40

Table 6: Data characteristics of orderdata

Minimum Maximum Average
Material 1 3638 -
Leadtime 4 444 55.22
Repairtime 0 143 7.59
Repair chance 0 0.998 0.06
Costprice 0.02 72800 1101.82

Table 7: Data characteristics of partdata
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4.2.2 Input parameters

Next to the data input there are some input parameters that are relevant to the simulation as well. Most
of the input parameters come from the data as it is often part specific, such as leadtime and part costs.
Some input parameters are generalized for the whole dataset and are therefore not extracted from the
dataset, but are initiated at the start of the simulation. The input parameters can be found in Table 8.

Parameter Description
Lateral chance The chance that an order that can not be fulfilled by stock, can be fulfilled by

a lateral transshipment, which is set to 0.75 in the simulation.
Forecast delay The amount of days before the start of the month that the forecast is performed.

When the forecast delay equals 7 this means that the forecast is performed 7
days before the start of the month. This is relevant for the orders that are
already known at this date.

Designated fillrate The desired fill rate for all individual parts, relevant for the calculation of the
target stock level.

Holdingcostpercentage Determines how high the annual inventory costs are relative to the part costs.
When the relative holding cost percentage is 0.2 and the part price equals e100,
the annual relative holding costs per unit are 100× 0.2 = 20.

MCA alpha The smoothing factor for the MCA forecast. For the simulation this factor is
the same for all parts, in reality this can differ however. The factor lies between
0.1 for intermittent demand and 0.3 for smooth demand.

Table 8: Input parameters of the simulation

4.3 Output

To measure the effect of the proposed solutions, the simulation indicates the performance of the service
parts supply chain. In order to have a clear image on how a solution performs, several Key Performance
Indicators (KPI) are computed during the simulation. The performance of the various scenario’s can be
compared using these KPI’s. The following KPI’s are noted.

Fill rate. According to Sobel (2004), the fill rate is the percentage of demand which can be fulfilled
directly from stock. As lost sales do not occur in our system, it means that this is all demand except
for backorders. The fill rate is calculated per part, meaning that for each part it is noted whether or not
the demand is fulfilled from stock for that part. The fill rate is determined by dividing the demand that
was fulfilled directly from stock by all demand (Equation 4.1). To compute the overall fill rate, the fill
rate of all parts are combined (Equation 4.2).

βp = 1−
∑t=365

t=1 BOop,t∑
tDp,t

(4.1)

βtotal =
∑
p

(

∑
t(Dp,t)∑
p,t(Dp,t)

× βp) (4.2)

Where:

Dp,t = The demand for part p on day t
BOop,t = The amount of occurred backorders for part p on day t
βp = The fill rate for part p
p = The part number ranging from 1 to 3638
t = The day number ranging from 1 to 365

Backorders. For each part the number of backorders are measured over the year, at the end of the
year the total backorders for that part can be seen. By summing the backorders for all parts, the overall
backorders can be calculated (Equation 4.3). The main goal of this research is to reduce the number of
backorders.
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BO =
∑
p,t

BOp,t (4.3)

Inventory relative holding costs. An easy way to increase the performance of the KPI’s mentioned
above is to increase the amount of parts in stock, the downside of this is the costs of inventory will
increase. For that reason the inventory relative holding costs are also computed. To compute the
relative holding costs the average inventory is multiplied by the part price and the relative holding costs
percentage (Equation 4.4). The relative holding cost percentage is a constant value that determines
which percent of the part price determines the annual relative holding costs. At the end of the year
the average inventory level, which is measured at the end of each day, is determined and used for these
calculations.

HCp =

∑t=365
t=1 (OHp,t)

365
× Cp × cr (4.4)

TotalHC =
∑
p

HCp (4.5)

Where:

OHp,t = The on hand inventory for part p at the end of day t
HCp = The relative holding costs for part p
Cp = The price for part p
cr = The percentage of the part costs that determines annual relative holding costs

Conclusion

To conclude, the scope implies that the situation can be modeled as a Multi item, single location inventoy
model. This model can be simulated, but needs some assumptions to account for specific situations.
When these assumptions are included, as well as input parameters and data input are determinded, the
simulation can be run. The simulation will return several KPI’s, which can be used to measure the
performance of a proposed solution.
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Chapter 5

The use of advance demand information in forecasting

Philips uses historic demand data to compute an average amount of demand per period and to forecast
the demand for the upcoming periods. In forecasts demand is often modelled as being stochastic. In
case of advance demand information the forecast can be improved by implementing this deterministic
information, like the exact moment of ordering and the order quantity. The reliability of the forecast
will be improved when implementing advance demand information.

In this chapter an insight will be given in the way advance demand information can be used to improve
the forecast. First of all a literature review on using ADI in forecasting is performed §5.1. Secondly a
method for implementing ADI in forecasting is presented for the situation of Philips in §5.2. Lastly, the
presented solution will be tested in a discrete event simulation to indicate its performance on backorders
and costs in §5.3.

5.1 Advance demand information & forecasting

5.1.1 ADI and forecasting in literature

The advantages of using advance demand information in forecasting is also mentioned in the literature
that is available on this topic (Dekker et al., 2013). A paper by Tan (2008) that is written specifically
on this topic describes all the steps needed to implement advance demand information in the forecasting
method. The paper handles imperfect advance demand information, meaning that the Advance Demand
Information (ADI) can either be partly incorrect or partly unknown. despite the fact that the ADI
is imperfect, it can still be used. Hence, we will first determine the characteristics of the ADI, before
incorporating it in the forecast.

According to Thonemann (2002) there are several types of ADI to distinguish. First of all there is
aggregated ADI, which is information given by customer that they will place an order at a certain time,
but not what product it will be. Secondly there is detailed ADI, which does specify the product that
will be ordered and the moment of ordering, but does not specify at which manufacturer the order will
be placed. The chance that the order will be placed at manufacturer x will then be modelled as qx. As
Philips is the only supplier for service parts for the Philips systems, the situation can be described as
detailed ADI with the certainty that the order is placed at Philips.

Whenever the type of ADI is determined, the decision has to be made on how to incorporate ADI in the
forecasting procedure. To do so there are two main options, change the forecasting model to implement
ADI, or add ADI to an existing forecasting model. In the paper of Abuizam, R. and Thomopoulos (2006)
a solution is proposed in which the ADI is added to the forecasting model. A Bayesian technique is used
to determine the forecasted value for a certain period, based on both the initial forecasted value and
the known demand for the period. This technique is also one of the solutions presented by Tan (2008),
which also adds ADI after the forecasting process, as can be seen in figure 7.
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Figure 7: Methodology for implementing ADI in forecasting proposed by Tan (2008)

Tan (2008) presents four methods that add ADI to create an improved final forecast.

Ft = max(FAt, Ot) (Method 1)

Ft = max(FAt, Ot +Q

M∑
i=NOt

(i−NOt)pi) (Method 2)

Ft =


Ot +

t−1∑
i=1

wi(Di −Ot)
+ if Ot > cFAt

FAt otherwise

(Method 3)

Ft = Ot +

t−1∑
i=1

wi[(Di − Fi)− (Ot − FAt)]
+ (Method 4)

Where:

Ft = The final forecast for period t
FAt = The initial forecast for period t
Ot = The demand already placed in advance for period t
M = The maximum number of orders in the order history that have been placed for the

same period in advance
Dt = The realized demand for period t
Q = The average historical order size t
NOt = The number of orders that is placed in advance for period t
c = A positive constant value (1 ≥ c ≥ 0)
pi = The probability of having i orders
wi = The weighting factor used to differentiate between older and newer observations

The first, simple, method that is presented is the same method that is currently in use at Philips. In
this method the forecasted value is the maximum of the initial forecasted value and the orders placed
in advance. The second method is based on forecasting the number of orders and then multiplying it
with the average order size. Again the final forecast is the maximum of this computation and the initial
forecast. The third method that is presented is based on Karmarkar (1994), and is a right tail estimation
method. In this method the adapted forecast is calculated by adding past demand realizations to the
orders placed in advance. This value is only used if the demand placed in advance is close enough to
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the forecasted demand, determined by a constant value. In other cases the initial forecast is used as the
final forecast. The disadvantage of the right tail estimation method is that it only works for stationary
demand. This problem is tackled by the fourth method, known as the non-stationary right tail estimation
method. In this method the observed demand is compared to past performances of forecasts instead of
past demands.

In the paper of Tan (2008) all four methods are tested to a case for a dairy products company. The
advance demand information is imperfect in their study, meaning that part of the order information
is incorrect or unavailable. The fourth method (non-stationary right tail estimation method), which
was applied with equal weights for all periods, proved to perform the best. As a result, required safety
stock was reduced by 25%, showing the potential of using (imperfect) advance demand information in
forecasting processes.

5.1.2 Current situation

In the current situation, forecasting is performed based on historic data using the sales data of the
last 24 months as input. The forecast produces an average demand per month that is the same for all
upcoming months, this is a result from smoothing the data. For forecasting an external tool called MCA
is used, Philips provides the relevant data for this tool. The forecasts is used in many processes taking
place within the service parts supply chain. It is the basis on which orders for new parts are placed.
Furthermore it determines the stock levels for all parts at the warehouses. Lastly, the forecast is also
used to re-allocate parts between warehouses. The forecasting process is frequently being evaluated, this
can lead to parameter changes of the forecast for specific parts.

Currently Philips makes little use of advance demand information in their forecasting process. The
forecasting results are only adapted in case the demand from future orders exceeds the forecasted demand.
In that case the forecasted demand is replaced by the demand from future orders. This means that
whenever the known future demand is not higher than the forecasted demand, the forecast will be the
same. It is expected however, that in case the known future demand already equals the forecasted
demand, the actual demand will be higher.

5.1.3 Scoping future orders for the forecast

First of all an insight will be gained in the future orders applicable for forecasting. The forecast process
for service parts within Philips makes use of historic order data, this data is gathered monthly. Meaning
that the input for the forecast is the total number of orders per month for the last 2 years. An order can
be incorporated in the forecast when it is known before the moment of forecasting. As the the forecast
is performed at a fixed moment in the month, and orders arrive throughout the month, the amount of
time an order is placed ahead does not necessarily imply whether the order is taken into consideration
in forecasting.

Instead, there has to be a point in time when an order needs to be known, to be implemented in the
forecast. The forecast for the following months is made at a certain date, which means that the future
order information has to be available on that date. As a result, it can happen that orders that are known
10 days in advance are implemented in the forecast, while orders that are known 30 days in advance
are not. The reason for this is that the order has to be known before the forecasting date. A graphical
representation can be seen in Figure 8
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Figure 8: Orders implemented (filled) and not implemented (unfilled) in the forecast

As can be deducted from the figure a future order is only implemented in the forecast when it is
known before the forecasting moment. This means that a future order for March has to be known before
the forecasting moment at the end of February. The graph clearly visualizes that the length between
ordering date and RDD is less relevant than the moment of ordering.

5.2 Implementing ADI in the forecasting process of Philips

As shown in §3.2 the advance demand information available at Philips shows to be generally reliable.
Furthermore parts ordered are often ordered one or two a piece, so no bulk ordering. These phenomena
make the situation different than the situation described in literature. The first remarkable difference is
that for the majority of the parts in the Philips portfolio demand follows an intermittent pattern. This
means that periods with demand are frequently followed by periods with no demand (Willemain et al.,
2004).

The performance of the various ADI forecasts Tan (2008) presents are tested on 11 parts that are
most frequently early ordered in 2017. To test the methods presented, the forecast is replicated and the
final forecast is built for all months in 2017. To compute the performance of the methods, for each part
the sum of squared errors (Equation 5.1), and the sum of absolute errors (Equation 5.2) is calculated.
The results of the four methods are summarized in Appendix A.

SSEp (sum of squared errors) =

12∑
t=1

(Ftp −Dtp)2 (Equation 5.1)

SAEp (sum of absolute errors) =

12∑
t=1

|Ftp −Dtp| (Equation 5.2)

Where:

Ft,p = forecasted value for part p for period t
Dt,p = the actual demand for part p for period t
t = The month number t ∈ [1, 2, ...12]
p = The part number p ∈ [1, 2, ...11]

In order to compute the exact difference in performance of the various methods over the 11 parts,
the relative error is calculated. Simply adding the values up is biased, as parts with high errors will have
more influence. This is illustrated in the Appendix A, part 9 would have much more influence than part
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3 on the final result. In order to calculate the relative error, method 1 is used as a reference. Method 1
is also the method that is used at Philips right now. The higher the percentage, the higher the relative
forecasting error and thus the lower the performance. As can be seen in the table, the proposed methods
has a lower error, meaning the forecast is most accurate. The calculations for the relative errors are
presented in Equation 5.3 and Equation 5.4.

Relative error on SSE =

11∑
p=1

SSEi
p

SSEM1
p

× 1

11
× 100% (Equation 5.3)

Relative error on SAE =

11∑
p=1

SAEi
p

SAEM1
p

× 1

11
× 100% (Equation 5.4)

Where i is Method 1 to 4 and Proposed method 1.1 respectively.

Method Relative error on SSE Relative error on SAE
Method 1 100.0% 100.0%
Method 2 99.7% 101.5%
Method 3 100.8% 103.4%
Method 4 96.4% 97.1%

Table 9: Relative error of forecasting methods for all periods

5.2.1 Developing a forecast for intermittent demand using ADI

The methods described by Tan (2008) do not give the improvement in forecast error that is desired, as
can be seen in the relative errors in Table 9, and the tables in Appendix A. The method that performs
the best is method number four. This is mainly due to the good performance on part 6, 7 and 8. These
three parts are strongly correlated, explaining the similar performance of the various methods on these
three parts. Because of this, A new method is developed for the forecasting using ADI, applied to the
situation at Philips. This method is designed to perform well in a intermittent demand situation. Next
to that, the method should also perform in case there is no ADI, as well as perform in a non intermittent
situation. To adapt the forecast for intermittency, the periods of zero demand need to be taken into
account. Difficulty is that it is hard to predict if there will be demand in a certain period (Hua et al.,
2007);(Wang, 2011). By using ADI, the chance of having demand in a certain period can be predicted.
In case ADI already shows demand for a period you can be sure that there will be demand in the period.
Following this belief, an interesting conclusion can be drawn. When there is no order placed in advance,
the chance of demand will be lower than when computing the chance without making use of ADI. Which
can be written as:

P (Dt = 0 | Ot = 0) > P (Dt = 0) (Equation 5.5)

In reality, the chance of having demand when no future orders are placed is unknown. For that reason
it is computed by calculating the frequency this happened over the last 24 months. The probabilities
that need to be computed are the probability that there will be demand, and the probability that there
will be demand given no future orders. The probability of having demand given no future orders is

P (Dt ≥ 1 | Ot = 0) =
P (Dt ≥ 1, Ot = 0)

P (Ot = 0)
(Equation 5.6)

Next to the probability that demand occurs, the expected demand in case demand occurs needs to
be known as well. To do so, the forecasted value is used. The formula for the MCA forecast can be seen
in Equation 5.7, in this formula α is the smoothing factor. Note that the exact MCA forecasting formula
is unknown, the formula presented is annotated by Philips to replicate the MCA forecasting formula.
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FAt+1 =


α×Dt

Nt−1 + 1
+ (1− α)× FAt if Dt > 0 ∧

5∑
j=1

Dt−j > 0

FAt otherwise

(Equation 5.7)

With Nt − 1 being

Nt−1 =

{
0 if Dt−1 > 0

Nt−2 + 1 if Dt−1 = 0
(Equation 5.8)

Philips set the smooth factor α = 0.1. the initial value of FAt is the average demand over the last
24 months. Meaning that the overall results of the formula will be similar to the average demand as is
portrayed in Equation 5.9.

FAt+1 ≈
∑24

j=1Dt−j

24
(Equation 5.9)

As:

P (Dt ≥ 1) =

∑24
j=1 1(Dt−j ≥ 1)

24
(Equation 5.10)

The average demand can be rewritten as:∑24
j=1Dt−j

24
=

∑24
j=1Dt−j∑24

j=1 1(Dt−j ≥ 1)
× P (Dt ≥ 1) (Equation 5.11)

In this formula
∑24

j=1 Dt−j∑24
j=1 1(Dt−j≥1)

represent the expected demand in case P (Dt ≥ 1) = 1, and P (Dt ≥ 1)

represents the chance of having demand. This result is Equation 5.12∑24
j=1Dt−j∑24

j=1 1(Dt−j ≥ 1)
≈ FAt

P (Dt ≥ 1)
(Equation 5.12)

Equation 5.12 represents the expected demand in periods with demand. Meaning a final forecast is
developed that uses ADI to predict whether or not there will be demand.

Ft =


P (Dt ≥ 1 | Ot = 0)× FAt

P (Dt ≥ 1)
if Ot = 0

FAt

P (Dt ≥ 1)
otherwise

(Proposed method 1.1)

Where:

P (Dt ≥ 1 | Ot = 0) =

∑24
j=1[1(Dt−j ≥ 1)× 1(Ot−j = 0)]∑24

j=1 1(Ot−j = 0)
(Equation 5.11)

When looking at the performance of this formula it can be seen that overall the method is far worse
that the four methods Tan (2008) presents, as shows in Appendix A. The SSE is 86.3% higher than the
current method, and the SAE is 33.2% higher than the current method. The main reason for this is that
the formula presented mainly focuses on periods with no initial demand. When looking at the periods
where Ot = 0, the method shows to perform better than the methods Tan (2008) presents (Table 10).
In Tables 26 and 27 in Appendix A, the performance of all methods mentioned can be seen. It can be
seen that the proposed method performs best in 8 out of 11 parts considered for Ot = 0.
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Method Relative error on SSE Relative error on SAE
Method 1 100.0% 100.0%
Method 2 99.8% 100.1%
Method 3 100.0% 100.0%
Method 4 101.2% 97.3%

Proposed method 1.1 86.3% 90.2%

Table 10: Relative error of forecasting methods for periods with Ot = 0

Until now, the quantity of the future orders is not embedded into forecasting. However, the expected
demand is equal or higher than the amount of future orders. In order to improve the formula, the amount
of future orders will be taken into account. The actual demand will always be the same or more than the
future ordered demand. In the new formula the forecasted value will be the amount future ordered parts
plus the extra expected demand. The extra expected demand can be computed in several ways. First of
all the coefficient between future orders and actual demand can be computed. The forecasted value can
then be computed by multiplying this coefficient with the future ordered value. The second option is
to calculate the average difference between future orders and actual demand. The forecasted value can
then be calculated by adding the average difference to the future ordered value. Both the methods are
evaluated in Appendix B, and the summation method shows to have the lowest forecasting error. The
computation of the forecasted value can be seen in Equation Equation 5.12.

Option2 : Ot +

∑24
j=1(Dt−j −Ot−j)× 1(Ot−j ≥ 1)∑24

j=1 1(Ot−j ≥ 1)
(Equation 5.12)

For clearness of the formulas, the equation will be renamed as can be seen in Equation 5.13.

∆DOt =

∑24
j=1(Dt−j −Ot−j)× 1(Ot−j ≥ 1)∑24

j=1 1(Ot−j ≥ 1)
(Equation 5.13)

This will then result in the final proposed method to be:

Ft =

P (Dt ≥ 1 | Ot = 0)× FAt

P (Dt ≥ 1)
if Ot = 0

Ot + ∆DOt otherwise

(Proposed method 1.2)

This formula already shows great improvements in the SSE, however there were a few notable cases
in which the forecasted value is extremely high compared to the actual demand. This occurrs in cases
where there are a few previous cases of future order and/or the difference between future orders and
actual orders is relatively high. In order to limit the forecasted value, it can be no higher than the
future orders plus the initial forecasted value. The result of this is Equation Proposed method 1.3. This
excludes the extreme values, giving an extra improvement of the performance of the method.

Ft =

P (Dt ≥ 1 | Ot = 0)× FAt

P (Dt ≥ 1)
if Ot = 0

Ot + min(∆DOt, FAt) otherwise

(Proposed method 1.3)

This proposed forecasting method returns the same values as the initial forecasts in case there are
and have been no future orders. This means that for most parts that are forecasted, the values do not
change. However, the forecast for the parts that do have future orders benefits from this method as
shows in Tables 30 and 31 in Appendix A.

In case the proposed method is tested on all periods, there is a possibility that it will show a better
performance because of the periods with Ot = 0. Table 10 shows that the proposed method performs
better in periods with Ot = 0 . To ensure that the method also performs in periods with initial demand,
it is first tested in these specific periods. Next to Proposed method 1.3 and the method currently in
place at Philips, the other proposed methods and the methods mentioned by Tan (2008) are portrayed
as well, as can be seen in Tables 28 and 29 in Appendix A. The tables show there are parts for which
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the forecasting error is equal to zero, the reason for this is that there are very few periods with demand,
and the forecasts is exactly right for these periods.

5.2.2 Evaluation of the proposed forecast

Usually the overall performance would be calculated by computing the relative performance, with the
current method (Method 1) as the reference point. In this case Method 1 has a SSE (and thus a SAE) of
zero in some cases, meaning this way of computing the overall performance can not be used. To estimate
which method performs best, two other performance indicators are used. First of all we take a look at
the unweighed sum of squared or absolute errors, although some parts might have more influence on
the final value than others, this still gives an insight in how the method performs overall. Secondly, the
amount of times a method performs best out of all available methods is noted. In case multiple methods
perform best they will all be counted as the best method, the computation of this method can be seen
in Figure 9.

Figure 9: Methods who perform best in SSE and SAE per part

In Table 11 the performance of the sum of squared and absolute errors as well as a summary of Figure
9 can be found.

Method
∑

p SSE
∑

p SAE Performs best (SSE) Performs best (SAE)

Method 1 191.04 33.39 4 5
Method 2 189.60 34.27 2 3
Method 3 190.52 35.64 0 1
Method 4 205.48 34.84 5 5

Proposed method 1.1 1183.46 92.21 0 0
Proposed method 1.2 757.78 67.83 6 6
Proposed method 1.3 155.69 36.77 7 6

Table 11: Performance of the seven methods in periods with initial demand

As can be seen Proposed method 1.3 performs best in 3 out of 4 performance indicators, giving
enough reason to believe that overall this method performs best in the cases it was tested on. Given
the fact that the proposed method performs best in both cases with initial demand and cases without
initial demand, it must perform best in the situation in which both cases occur. The fact that Proposed
method 1.2 Has such a high sum of squared errors, whilst it still performs best in 6 cases is because of its
bad performance for part 9. Table 28 in Appendix A shows that for the other 10 parts, the performance
of Proposed method 1.2 is similar to the other methods.

The performance of all methods in all periods can be found in Tables 30 and 31 in Appendix A .
As can be seen the proposed method performs better than the current method in 8 of the 11 cases.
Furthermore, in these 8 cases the proposed method performs the best of all the methods reviewed. In
the three other cases the method performs worse than the current method. When looking at the total
performance, which is the average of all 11 cases, we see that the proposed method performs the best of
all methods. The proposed method shows to reduce the SSE with 8.5% compared to the current method,
and reduces the SAE with 4.3% compared to the current method.
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Method Relative error on SSE Relative error on SAE
Method 1 100.0% 100.0%
Method 2 99.7% 101.5%
Method 3 100.8% 103.4%
Method 4 96.4% 97.1%

Proposed method 1.1 186.3% 133.2%
Proposed method 1.2 107.0% 101.1%
Proposed method 1.3 91.4% 95.7%

Table 12: Relative error of forecasting methods for all periods

5.2.3 Selecting the optimal timespan for proposed method 1.3

Currently the chances for demand, as well as the expected demand in case o demand are computed
using data over the last 24 months. In order to ensure that a timespan of 24 is optimal, an analysis is
performed that uses various timespans in the same forecast. The details of this analysis are found in
Appendix C, a summary of the results is portrayed in Table 13.

Timespan n = 24 n = 18 n = 23 n = 25 n = 30
Relative error on SSE 100% 102.59% 102.03% 100.36% 100.06%
Relative error on SAE 100% 100.38% 100.24% 100.23% 99.95%

Average 100% 101.49% 101.13% 100.30% 100.01%

Table 13: Performance of the various timespans for 11 frequently early ordered parts

As expected, the differences between the various timespans are very small. When looking at both the
SSE and the SAE it can be seen that the 24 month timespan performs best in all cases except for the
SAE for the 30 month timespan. When looking at the average of the SAE and SSE it can be seen that
the 24 month timespan performs best overall. As a result of this, we will use proposed method 1.3 with
a timespan of 24 months in the simulation. Proposed method 1.3 is referred to as the proposed forecast
from now on.

5.3 Simulation results of the proposed forecast

When simulating the effect of the change in forecast method, four KPI’s are revised, Fill rate, Backorders,
Order fulfillment and Inventory relative holding costs. When simulating for all parts in the dataset, the
new method showed to have no significant impact on the KPI’s as can be seen in Table 14. The reason
could be because only a minor percentage of all parts have orders placed thus far in advance that they
are taken into account in forecasting. In order to get a more reliable result the simulation will be run
again only considering the parts that are affected by the new forecasting method. Out of the total 3638
parts, 238 are affected by the new forecasting method. When looking at the results of the simulation
for these 238 parts again there is no dramatic difference in performance on the KPI’s as can be seen in
Table 15.

This is surprising as the forecasting accuracy was increased. The reason for the performance may be
long lead times for the relevant parts. Although the forecast was more accurate, the resulting change
in inventory position came 2 to 3 months later, at this point the forecast was no longer relevant to the
performance. To tackle this problem, a third forecast is introduced, which is a smoothed varaint of the
proposed forecast. The exact calculations on this forecast can be found in Appendix D. When applying
this formula, results show a minor difference compared to the current method and proposed method 1.3.

The exact performance can be found in Table 14, as can be seen the number of backorders is similar
for all three methods, with it being the highest for the proposed method and the lowest for the smoothed
method. Regarding the fill rate, the performance is roughly the same for all three methods with a
maximum difference of only 0.08%. The same can be said when looking at the relative holding costs. All
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in all, there is a very small difference in the performance of all three methods, meaning that there seems
to be no improvement when applying the presented forecasting techniques.

Method Fillrate Number of backorders Holdingcosts
Current method 92.34% 1777 100%

Proposed method 92.28% 1792 99.44%
Smoothed method 92.36% 1774 100.35%

Table 14: Performance of the three methods in simulation for all 3638 parts

The reason for the fact that the performance differences are so small could be because of the fact
that only a minor fraction of the parts is affected by the newly introduced forecasting method. To have a
better idea of what the effect will be of the new forecasting method we will simulate the situation again,
but now only taking into consideration the parts that are influenced by the new method. The results of
these simulation can be seen in Table 15.

Method Fillrate Number of backorders Holdingcosts
Current method 93.62% 237 100%

Proposed method 93.47% 241 101.89%
Smoothed method 93.58% 234 99.38%

Table 15: Performance of the three methods for the parts for which the forecast changes

As can be seen in the table, the difference between the three methods remains very small. With
that being said, in this scenario there is one method which performs best on all three criteria, being
the smoothed method. When looking at the improvements of the smoothed method compared to the
current method, it can be seen that these are very small. For the fill rate there is no difference, and for
the relative holding costs there is just a 0.6% decrease. The smoothed method reduced the amount of
backorders by 3, being a 1.3% decrease. With that being said we can conclude that the new forecasting
method shows some potential, but there is not enough evidence to be an improvement for the Philips
scenario.

5.4 Sensitivity analysis of the proposed forecast

For the sensitivity analysis, the sensitivity of all three methods has been tested. To do so the relevant
input parameters are varied to see what effect this has on the simulation result. For the simulation the
following five input parameters were used: Lateralchance, Designfillrate, Holdingcostpercentage, Forecast-
delay and MCAalpha as can be seen in Table 8 It would make no sense to vary the relative holding cost
percentage, as this has only influence on the final calculations and not on outcomes during the simulation
and the decisions made in the simulation. The same can be said of the lateral chance, This will only
affect the backorders and will therefore have the same linear result for all three simulated methods. The
value of MCAalpha is fixed and is determined by the SPS department of Philips, therefore the decision
has been made to not perform a sensitivity analysis on this value.

As a result, only two values remain on which a sensitivity analysis will be performed, the Designfillrate
and the Forecastdelay. The initial input values of these parameters were 0.99 for the Designfillrate and
6 for the Forecastdelay. During the sensitivity analysis the value of the Designfillrate is varied over
[0.980, 0.985, 0.990, 0.995, 0.999] and the value for the Forecastdelay is varied over [4, 5, 6, 7, 8]. The
result of the simulations for these variables can be seen in Tables 16 and 17.

As can be seen in the sensitivity analysis on the designfillrate, an increase in the designfillrate leads
to less backorders and higher inventory costs and fill rate. For all five values of the designfillrate, the
performance of all three methods is very similar. On each performance indicator all methods perform
roughly the same, which is the same conclusion that could be drawn from Table 14.

When looking at the forecastdelay, There seems to be no correlation between the forecastdelay and the
performance of the simulation. This is surprising as a lower forecastdelay would mean that the moment
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of forecasting is later, increasing the amount of advance demand information. This means changing
the moment of forecasting, will have no effect on the performance on backorders. When comparing the
three methods, again the conclusion can be drawn that all three perform similar on the various values
of forecastdelay.

Current method
Designfillrate 0.98 0.985 0.99 0.995 0.999
Current method 2001 1902 1789 1614 1311
Holdingcost 87.45 % 90.53% 100 % 115.16% 145.47%
Fillrate 91.37% 91.79% 92.28% 93.04% 94.35%
Proposed method
Designfillrate 0.98 0.985 0.99 0.995 0.999
Backorders 2008 1843 1775 1591 1296
Holdingcost 86.46% 90.36% 100% 112.02% 144.29%
Fillrate 91.35% 92.05% 92.34% 93.14% 94.41%
Smoothed method
Designfillrate 0.98 0.985 0.99 0.995 0.999
Backorders 2019 1868 1734 1599 1311
Holdingcost 85.41% 87.92% 100% 110.99% 141.38%
Fillrate 91.29% 91.94% 92.52% 93.09% 94.34%

Table 16: Sensitivity analysis of the designfillrate for the three methods

Current method
Forecastdelay 4 5 6 7 8
Backorders 1772 1783 1749 1770 1802
Holdingcost 101.74% 101.01% 100% 100.29% 100.38%
Fillrate 92.35% 92.30% 92.45% 92.36% 92.22%
Proposed method
Forecastdelay 4 5 6 7 8
Backorders 1754 1801 1761 1782 1767
Holdingcost 101.00% 99.89% 100% 98.36% 101.39%
Fillrate 92.43% 92.22% 92.41% 92.31% 92.38%
Smoothed method
Forecastdelay 4 5 6 7 8
Backorders 1759 1801 1814 1815 1795
Holdingcost 101.58% 100.02% 100% 98.99% 99.99%
Fillrate 92.42% 92.23% 92.17% 92.17% 92.25%

Table 17: Sensitivity analysis of the Forecastdelay for the three methods

Overall, we can draw several conclusions from the sensitivity analysis. First of all, the designfillrate
has the expected effect on the performance of the simulation. An increase of the designfillrate leads to
an increase of the actual fill rate and an increase of inventory costs, furthermore it leads to a decrease
in backorders. Secondly, the forecastdelay shows to have no effect on the performance of the simulation
of all three methods. As a result of this, it means that there is no advantage to change the moment of
forecasting, Forecasting at an earlier or later stage will not lead to a reduction of backorders. Lastly, the
three forecasting methods have no sensitivity advantage over each other.

Conclusion

To conlcude, a new forecasting method has been developed which is designed specifically for the fore-
casting of intermittent demand while using advance demand information. The aim of this forecasting
method is to forecast when there will be demand, and in case of demand how much demand there will
be. The forecasting mehod shows to have a lower forecasting error compared to the current forecasting
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method. In the simulation the difference is neglectable however, even when the forecast is smoothed in
regard to the part leadtime.
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Chapter 6

Advance demand information in replenishment deci-

sions

Next to forecasting, there are several other fields in which a reduction of backorders can be realised using
advance demand information. One of these fields is the replenishment of service parts. Usually service
parts are replenished at the moment the inventory level drops below a certain value, an order to replenish
will be placed and the new stock will come in after the lead time. In some cases the the demand may
be known already because of advance demand information (ADI). In this case it is wise to replenish in
a proactive manner, to reduce the chance of being out of stock.

In this chapter this change in replenishing will be presented. First of all, a literature review on
advance demand information in replenishing is performed in §6.1. Secondly, a new replenishment strategy
is introduced in §6.2. Lastly, the performance of this strategy is reviewed in §6.3.

6.1 Replenishment and advance demand information

6.1.1 Replenishment and advance demand information in literature

Although sparse, literature exists on using advance demand information in replenishment decisions.
Gallego and Özer (2003) show that the use of advance demand information in replenishment decisions
lead to less inventory relative holding costs. Furthermore, this effect shows to increase as customers
place their orders longer in advance (Gallego and Özer, 2001). Next to a reduction of inventory costs,
the use of advance demand information in replenishment decisions can also lead to backorder reductions
(Karaesmen et al., 2004). Futhermore, the use of advance demand information leads to having the same
performance under lower base stock levels. Next to that, Topan et al. (2016) show that imperfect demand
information can be used in replenishment decisions as well. Lastly, Basten and Ryan (2015) apply the
using of ADI to the replenishment of spare parts in maintenance situations. Following the literature on
advance demand information in replenishment decisions, the conclusion is that using advance demand
information increases the performance of the service parts supply chain.

6.1.2 Current Situation

Currently, the decision to replenish, and the replenishment size, is determined by calculating the inventory
position. The inventory position is calculated using Equation 6.1

IPp,t = OHp,t + ITp,t (Equation 6.1)

Whenever the inventory position drops below the reorder point (ROPp,t), a replenishment order will
be triggered, the size of this replenishment order will be as shown in Equation 6.2

Ordersize = TSLp,t − IPp,t (Equation 6.2)

Where:
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IPp,t = The inventory position of part p at time t
OHp,t = The on hand inventory of part p at time t
ITp,t = The inventory in transit to the warehouse of part p at time t
TSLp,t = The target stock level of part p at time t

The performance of this method, which is the current situation at Philips can be found in Table 19.

6.1.3 Scope

When looking at the order replenishment strategy, there is no fixed amount of days the order should be
known in advance, for that reason all future orders can be incorporated in the strategy. It is questionable
however, at which time point it is wise to implement the order in the replenishment strategy. Whenever
the replenishment system starts taking into account the future order, it will trigger a replenishment
process to make sure that the stock level will be sufficient to full fill demand. In case the demand lead
time is equal to the lead time of service parts this would give a perfect timing. However, when the future
order is known at an earlier stage in time it will create extra stock, which first of all has extra costs
and secondly increases the chance that the stock level will exceed the maximum stock level. This could
mean that service parts are ordered but there is no place in the warehouse to stock them. In reality the
on hand stock, even with the new replenishment, never exceeds the TSL value, meaning that no extra
constraint is needed to prevent overstocking and exceeding warehouse capacity. This will mean that in
some cases parts will be ordered too early, leading to extra relative holding costs. These relative holding
costs can partly be prevented when optimizing the replenishment by taking leadtimes into account.

6.2 Implementing a proactive replenishment method

To anticipate towards future orders and replenish in time, a new variable is introduced and added to the
inventory position calculation. This variable is defined as future demand (futdem), and is calculated as
seen in Equation 6.3.

Futdemp,t = Ot with RDD > t > Orderdate (Equation 6.3)

Where RDD represents the requested delivery date, and the Orderdate represents the date the order
is submitted towards SPS. Future demand is then all demand that has a requested delivery date at least
1 day ahead, and is ordered in the past. The calculated future demand can be used to calculate the
adapted inventory position, and if necessary the replenishment order size.

IPp,t = OHp,t + ITp,t − Futdemp,t (Equation 6.4)

Whenever the adapted inventory position drops below the reorder point (ROPp,t), a replenishment
order will be triggered, the size of this replenishment order will be as shown in Equation 6.5

Ordersize = TSLp,t − IPp,t (Equation 6.5)

6.3 Simulation results of the proactive replenishment method

As a result of the adapted inventory position calculation, replenishment will be triggered at an earlier
stage. This reduces the chance of backorders, and increase the fill rate. On the other hand it increases
the average inventory on hand, which will increase the inventory costs. To see what the exact effects
are on the performance of the system, a simulation is run on all three forecasting methods using the
new replenishment strategy. The results of these simulations can be seen in Table 18, and can then be
compared with the results in Table 19, where the former replenishment strategy is used.
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Method Fillrate Number of backorders Holdingcosts
Current method 93.12% 1596 100%

Proposed method 93.17% 1584 100.57%
Smoothed method 93.18% 1582 99.76%

Table 18: Performance of the three methods using the proactive replenishment strategy

Method Fillrate Number of backorders Holdingcosts
Current method 92.34% 1777 100%

Proposed method 92.28% 1792 99.44%
Smoothed method 92.36% 1774 100.36%

Table 19: Performance of the three methods without the proactive replenishment strategy

Method Fillrate Number of backorders Holdingcosts
Current method +0.78% -10.19% +10.12%

Proposed method +0.89% -11.61% +11.36%
Smoothed method +0.82% -10.82% +9.46%

Table 20: Difference in performance comparing the new and old replenishment strategy

In Table 20 the percentual difference for the three methods between the old and new method can
be seen. As expected the fill rate and relative holding costs increases and the amount of backorders
decreases. When looking at the absolute values of the specific methods in Table 18 it can be seen that
the smoothed method performs best on all three criteria. When looking at the overall performance it
can be seen that the new replenishment strategy strongly reduces the amount of backorders with at least
10%. Furthermore, the fill rate increases in all cases with at least 0.78%. Overall, it can be concluded
that it is worthwile to introduce the new replenishment strategy to reduce backorders and increase the
fill rate.

6.4 Sensitivity analysis of the proactive replenishment method

As the previous sensitivity analysis has shown that the value for forecastdelay does not influence the
result of the simulation, this will not be taken in consideration in this sensitivity analysis. To ensure
that the forecastdelay has no influence on the replenishment, the simulation will be run for one of the
methods. In case the results are still the same for the various values of forecastdelay, we will assume
that the forecastdelay has no influence on the other two methods either.

Forecastdelay 4 5 6 7 8
Fillrate 93.27% 93.25% 93.33% 93.23% 93.12%
Backorders 1563 1567 1549 1569 1597
Holdingcosts 99.68% 99.31% 100% 99.39% 99.12%

Table 21: Sensitivity analysis for Forecastdelay with the new replenishment strategy

Table 21, with the varied value in bold and the initial simulation value in dark grey, shows that
the Forecastdelay has no influence on the performance of the method. This means that the sensitivity
analysis will be performed on the variable Designfillrate only. Again, this value will be varied over
[0.98, 0.985, 0.99, 0.995, 0.999].
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Current method
Designfillrate 0.98 0.985 0.99 0.995 0.999
Backorders 1704 1686 1592 1402 1193
Holdingcost 87.76% 92.08% 100% 112.17% 139.29%
Fillrate 92.66% 92.73% 93.12% 93.96% 94.86%
Proposed method
Designfillrate 0.98 0.985 0.99 0.995 0.999
Backorders 1795 1642 1569 1434 1159
Holdingcost 88.06% 92.42% 100% 112.73% 139.06%
Fillrate 92.27% 92.92% 93.24% 93.82% 95.01%
Smoothed method
Designfillrate 0.98 0.985 0.99 0.995 0.999
Backorders 1724 1713 1582 1447 1174
Holdingcost 86.45% 90.29% 100% 110.55% 140.43%
Fillrate 92.57% 92.62% 93.18% 93.76% 94.93%

Table 22: Sensitivity analysis of the three methods using the new replenishment strategy

The results of the sensitivity analysis in Table 22 show a change in designfillrate has a direct effect on
the fill rate, amount of backorders and the holdingcosts. The fill rate and relative holding cost increase
while the designfillrate increases, at the same time the amount of backorders decreases. Furthermore,
the methods perform similarly for each value of the designfillrate, there is no method that performs best
in every case. For this reason the conlcusion can be drawn that the different forecasting methods have
no effect on the performance of the new replenishment method.

Secondly, another interesting conclusion can be drawn. When looking at the relative holding costs
of the replenishment change for a designfillrate of 0.985, it is similar to the performance on the method
without the replenishment change for a designfillrate of 0.99. Also the fill rate seems to be relatively
the same for the two cases. When looking at the amount of backorders however, it can be seen that
the backorders for the scenario with procative replenishment are seriously lower than the amount of
backorders without proactive replenishment.

Current forecast method Current replenishment method New replenishment method Difference
Designfillrate 0.99 0.985 +0.005
Backorders 1777 1686 -5.12%
Holdingcost 100% 100.64% +0.64 %
Fillrate 92.34% 92.73% +0.39 %

Table 23: Comparison of the current method with the proactive replenishment strategy

Overall, this means that the amount of backorders is strongly reduced using the new replenishment
strategy while at the same time the costs are only increased by a relative small amount. Together with
the results of Tables 18 and 20, this provides strong support for the effectiveness of the new replenishment
strategy.

To conclude, the proposed replenishment strategy leads to a backorder reduction of at least 10%.
Furthermore, the fill rate is increased as well. The relative holding costs show to increase as well,
however the extra costs for inventory could be saved by having less, costly, backorders. The costs of
backorders are not taken into consideration in this research. Next to that, a backorder reduction can also
be realised, whilst having no cost increase, in this case the backorders will be reduced with about 5%.
All in all the proposed replenishment strategy shows to have the desired effect by reducing the amount
of backorders.
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Chapter 7

The use of advance demand information in shipping

A recurring problem in the service parts logistics is that the requested part is not delivered in time. When
this occurs the service engineer has to wait for the part to arrive before he can start the maintenance on
the system. To prevent this from happening the part could be sent at an earlier stage, which means that
the part will be stored at the customer for a short while until the service engineer arrives. Meaning that
shipping at an earlier stage leads to a lower chance of late arrival of the parts. Next to that the early
shipment of parts enables to use a slower, and possibly cheaper shipment. For the Benelux market this
makes a minor or even no difference, but it can be wise to research what the effect is of early shipping
on the fill rate, back orders and relative holding costs. For other markets it can then be interesting to
switch to shipping at an earlier stage in case the demand is known.

In this chapter a method will be presented on how to decide whether it is wise to ship at an earlier
moment, and what the effect will be on the overall supply chain performance. To do so, the current
situation will be sketched and the scope of the orders to which the method applies is defined in §7.1.
Afterwards, the method to ship parts at an early stage is developed in §7.2. Lastly, the effect of the
method on the supply chain performance is presented in §7.3..

7.1 Advanced demand information and variable shipping

7.1.1 Literature on advanced demand information and variable shipping

In literature very little information can be found on combining advanced demand information with
variable, or early, shipping. The only research that makes use of flexible shipping with advance demand
information shows that this can lead to a cost reduction of 14% (Wang and Toktay, 2008). This indicates
that using early shipping in combination with advance demand information can be beneficial.

7.1.2 Current situation

For the Benelux market currently all orders are processed to be shipped on the day that the part is
requested. Whenever there is a last minute order with high criticality, or when a part has not arrived in
time, an express shipment is used. For an express shipment a courier usually transports just the single
part, meaning it involves higher shipping costs. For the Benelux market all service parts are delivered
using road transportation, several carriers are used to deliver the parts within the Benelux. Parts are
picked up from the RDC at a daily basis, and delivered to the customers or engineers at the same day.

7.1.3 Scope

Regarding the early shipments of future orders, orders should at least be known before the designated
shipping date. Furthermore, the decision has to be taken whether or not the part should be shipped
early, or should be shipped using a normal shipment to maintain stock levels. For this reason, the order
has to be known at the moment the early shipment will take place, meaning the scope will be all orders
that have a difference between the order date and the requested delivery date that is bigger than the
early shipment time.
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7.2 Obtaining an anticipating shipping method

A first condition, to enable an early shipment is that stock has to be available to ship at an early stage.
Whenever there is no stock available at the moment a part is intended to ship early, there is no possibility
to ship early.

A part that can possibly be shipped early, has to be shipped eventually. meaning that it will make
no difference on the backorders if the part is shipped early or at normal timing, unless there will be a
replenishment of the parts between the early shipment date and the normal shipment date. In case there
will be no replenishment between these times, the part can be shipped early without affecting backorders.
The difference in this scenario could be that a backorder will occur on a different order compared to a
situation without early shipment. Therefore, it will make no difference to the performance of the model
which order will result in a backorder.

In case there is replenishment between the early shipment date and the normal shipment date, the
decision to ship the part early is more difficult. It needs to be based on the stock at hand, the incoming
goods in the period, the known demand in the period and the expected demand in the period. In case
there is a future order to be fulfilled before the replenishment, and stock is currently 1, it is unwise
to ship at this stage. In order to ship early, it has to hold that there will be no avoidable backorders
between the early shipment date and the normal shipment date. This means that for each day t between
these two dates it has to hold that

∀t ∈ [te, tn] : OHt +REPt ≥ Dt (Equation 7.1)

With REPt being the replenishment of parts on that day. As the demand for period t is unknown
at this stage, it should be estimated by using the known demand and expected demand.

OHt +REPt ≥ Ot + Ft (Equation 7.2)

The values for OHt, REPt, Ot are integers, whereas as Ft is any positive number. Furthermore, the
value of Ft is an estimation. In order to be more certain that the demand cannot exceed the inventory,
there should be a certainty to accompany this demand. This can be obtained using the inverse Poisson
probability. By using a Poisson probability it can be assured with a certain degree of certainty that the
demand will not exceed a certain value, given the expected demand. As the aim of the algorithm is to
lead to no extra backorders, the decision is made to be 99% sure that the demand will not exceed stock.

OHt +REPt ≥ Ot + C̄−1(Ft, 0.99) (Equation 7.3)

Where C̄−1(Ft, 0.99) results in a value that will be lower than the demand with a 99% certainty.
In case Equation 7.3 holds for all days t between the early shipment date and the intended shipment

date, it can be considered that it is safe to ship the part early. The change of backorders occurring that
were avoidable is thus small that it does not weigh heavier than the benefits of early shipment. The
expected demand for the period needs to be accounted for all days between the calculated date and the
early shipment date. Meaning it becomes

∀t ∈ [te, tn] : OHt +REPt ≥ Ot + C̄−1(

t∑
y=x+1

(Fy), 0.99) (Equation 7.4)

Where x is the early shipment date. The decision to ship early on day x is taken after the normal
demand is fulfilled on this day. As a result of this the incoming and outgoing stock of day x does not
need to be calculated. Furthermore, the part has to be shipped on the normal shipment day, meaning
that the incoming and outgoing stock of the normal shipment day does not need to be calculated as well.

After obtaining all the formulas, the algorithm that can decide whether it is wise to ship early can
be computed as follows.
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Algorithm 1 Early sending algorithm

For all parts p and all days t
for all orders with RDDp,t = t+ ∆E and Creationdatep,t ≤ t do
EDp,t = Dp,t

if OHp,t ≥ EDp,t then

if
∑t+∆E−1

y=t+1 ORDp,y−l +REPp,y−rl = 0 then
ESp,t = EDp,t

else if for all x in [t+ ∆E, t], OHp,x +REPp,x ≥ Op,x + C̄−1(
∑x

t+1(Fp,x), 0.99) then
ESp,t = EDp,t

else
ESp,t = 0

end if
else
ESp,t = 0

end if
end for

Where:

EDp,t = The demand that is known at the moment the decision to send early is made position of part p at time t
ESp,t = The demand that is actually send at an early stage of part p at time t

The algorithm constraints that need to be met for an early shipment to take place are described
before. The algorithm works according to the all or nothing principle. It selects the amount of orders
that can be shipped early (in other words, that are known at the moment of early shipment). For these
orders it checks whether the early shipment will not lead to possible backorders, in case this is negative
it will ship all demand early. In case the early shipment could lead to possible backorders it will ship
none of the demand early. Using this algorithm there are two shipment methods, the early shipment
method which is ∆E days before the normal shipment method. Or the normal shipment method. It is
not possible to ship in between these two dates, if an order is not shipped early, it will be shipped at the
normal shipment date. The value of ∆E can be varied of course depending on the characteristics of the
order.

7.3 Simulation results of the anticipating shipping method

The method is tested using the previously build simulation. The value of ∆E is varied over [3, 7, 10, 14].
The reason for this is that any value greater than 14 would lead to a very small sample size, as only a
few orders are ordered more than 14 days in advance. Furthermore, it would not make sense to let the
value of ∆E get smaller than 3, as sending one or two days in advance is creating extra complexity for a
minor improvement. The main objective of the algorithm is to avoid an increase of backorders, while at
the same time sending a proportion of the demand at an earlier stage. Next to the usual performance
indicators (backorders, relative holding costs & fill rate), the simulation also returns the number of parts
known ∆E days before the RDD and the number of parts send ∆E days before the RDD. When having
both these values, the percentage of sendable parts that is actually sent at an early stage can easily be
computed.

∆E Backorders relative holding costs Fill rate Early sent Early known %
0 1582 100% 93.18% - - -
3 1595 97.06% 93.12% 3390 5009 67.68%
7 1554 99.47% 93.30% 697 878 79.38%
10 1570 99.68% 93.24% 531 652 81.44%
14 1580 99.85% 93.19% 387 453 85.43%

Table 24: Simulation results method using the smoothed forecast
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∆E Backorders relative holding costs Fill rate Early sent Early known %
0 1592 100% 93.13% - - -
3 1580 97.40% 93.18% 3388 5009 67.64%
7 1562 99.80% 93.26% 698 878 79.50%
10 1596 98.38% 93.11% 535 652 82.06%
14 1552 99.92% 93.31% 385 453 84.99%

Table 25: Simulation results using the intial Philips forecast

As can be seen in Tables 24 and 25, there is no major change in the amount of backorders because of
the early sending of parts. At the same time, there seems to be a little decrease in the fill rate. Which
makes sense, as parts exit the warehouse at an earlier stage, increasing the chance of having no stock at
the warehouse. Furthermore, the inventory relative holding costs also show to decrease, this can also be
explained by the fact that parts leave the warehouse earlier.

When looking at the differences between the several values of ∆E, it can be seen that the highest
decrease of relative holding costs is obtained for ∆E = 3. This is quite surprising as for the other
mtehods, the warehouse is send out of the warehouse at an even earlier stage. The reason that the
saving is the highest for the value of ∆E = 3 is because much more parts can be taken into account
when sending three days before the RDD. This can also be seen in the fifth column of Table 24.

A second interesting finding is about the percentage of sendable parts that is actually send at an
early stage. These values are higher than expected. Furthermore the value increases as ∆E increases,
this is surprising as the calculations for a high value of ∆E are done for a longer period, meaning that
more conditions need to be met in order to allow the parts to be send early.

Another advantage of sending early, that does not come out of the simulation and can not be expressed
in a numerical value is the early arrival of the part at the customer. By sending the part early, the chance
that the part arrives late at the customer, e.g. because of external factors like carrier issues, is strongly
reduced. Leading to more satisfaction at the customer and the field service engineer that needs the part
to perform maintenance.

When evaluating the algorithm, we can conclude that the algorithm performs as desired. It leads to
no increase in backorders, while at the same time sending the majority of the parts at an early stage.
This leads to a decrease in inventory costs, and likely an increase in customer satisfaction. The algorithm
could be further improved by adding more possible send dates. Currently the method only allows to send
∆E days before the RDD or on the RDD. When more sending options are included in between these
days the inventory costs can be reduced even more. A note must be that for this step no major costs
reduction can be obtained, as the differences between the inventory relative holding costs are relatively
small for the scenario’s with ∆E = 7, 10, 14 and the scenario without early sending.

7.4 Sensitivity analysis of anticipating shipping method

For the early sending algorithm a sensitivity anaylis is performed as well. Similar to the previous sensitivy
analyses, the value of Designfill rate will be varied. Next to that, along with the introduction of the
sending algorithm, A new value was introduced. This value is to determine if the parts can be send
early in case there will be a replenishment between the normal and early sending date as can be seen in
Equation 7.5.

OHp,x +REPp,x ≥ Op,x + C̄−1(

x∑
t+1

(Fp,x),0.99) (Equation 7.5)

The value that is bold faced was kept equal to the designfillrate in the previous simulations. For the
sensitivity analysis, both values will be varied separately. The sensitivity analysis will only be run for
the values of ∆E = 3 and ∆E = 14, as this will give representative results for all values of ∆E. .

As can be seen in the Tables in Appendix E, the value of the algorithm, referred to as Sendfillrate,
does not influence the KPI’s of the various simulations. This is surprising as a lower value of Sendfillrate
should relax the algorithm, leading to more parts being send early and possibly more backorders and a
lower fill rate. When looking furher in the simulation results it can be seen that the majority, more than
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90%, of the early sended parts are allowed because of the fact that no replenishment occurs between the
early sending date and the normal sending date. This means that changing the Sendfillrate will have a
minor to no effect on the algorithms performance.

When looking at the Designfillrate it can be seen that the effect on the performance of the algorithm
is similar to the effect on the other two solutions. When the designfillrate increases the fill rate and
relative holding costs increase as well and the amount of backorders decrease. Regarding the early
sending algorithm it can be seen the the amount of parts being send early increase as the Designfillrate
increases.

Lastly, it can be seen that the performance for ∆E = 3 and ∆E = 14 is similar, meaning there is no
reason to perform a sensitivity analysis for the other values of ∆E.

Conclusion

To conclude, the Algorithm for sending parts at an early stage performs as desired. The amount of
backorders stay the same, while at the same time the majority of the orders are shipped at an earlier
stage. As a result of this there is a minor decrease in the relative holding costs. Next to this measurable
effect, it is also expected that less orders arrive late at the customer. Increasing the customer satisfaction
and the speed of maintenance actions. The early sending algorithm proofs that sending parts at an earlier
stage does not necessarily lead to backorders. This provides opportunities for batching orders or shipping
at a lower speed.
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Chapter 8

Conclusion, Recommendations, Limitations & Future

research

In this chapter a conclusion is given by answering the formulated research questions in §8.1.. Furthermore,
recommendations for Philips are given on how to interpret the outcomes of this research and how the
research can be used to increase performance in §8.2. Lastly, the limitations of the research are mentioned.

8.1 Conclusion

The main objective of this research was to increase the backorder performance on parts where the order
date was far ahead of the requested delivery date. These type of orders, referred to as future orders, are
scarcely used in the service part supply chain processes going on at Philips, while they contain valuable
information. This section presents the conclusions for the research questions that are formulated in §2.3.

In order to make use of future orders, it must be ensured that these orders are reliable. Historical data
analysis shows that 9 out of 568 orders were unreliable, corresponding to 1,6%. Meaning the conclusion
can be drawn that future orders are generally reliable.

A discrete event simulation is set up that replicates the warehousing processes for three years, using
historical order data. The multi item, single location model is used as a basis of this simulation model.
In order to compare the current situation and the proposed solutions the simulation presents three
performance indicators, the amount of backorders, the fill rate and the relative holding costs.

The first solution that is proposed, makes use of advance demand information in forecasting. A new
forecasting formula is presented that’s uses ADI in a case of intermittent demand. Simulation shows
that there was no serious difference on backorders, relative holding cost and fill rate between the current
method and the proposed method.

The second solution that is presented in this thesis, aims to improve the replenishment by making
use of advance demand information. Compared to the current situation, the amount of backorders is
reduced with at least 10%, but the relative holding costs increase with about 10% as well. Furthermore,
there is an increase in the fill rate of about 0.8%. The sensitivity analysis reveals that in case the relative
holding costs are kept equal, the new method reduces the backorders with 5.1%.

Lastly, the third solution combines advanced demand information with shipping options. The simu-
lation shows that this algorithm performed as desired, the amount of backorders is kept the same, while
67% to 85% of the possible orders are sent at an early stage. This leads to a decrease in relative holding
costs, albeit a minor decrease.

Overall this research shows the positive effects of using advance demand information in strategic
decisions in the field of service parts. By using advance demand information, companies can optimize
their inventory model and reduce backorders, relative holding costs, or increase fill rates. Advance
demand information shows to be beneficial at several stages in the supply chain, from forecasting to
delivery.

8.2 Recommendations

In this section an indication will be given on how Philips can benefit from the proposed solutions that
are presented in this thesis.
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First of all, although the current method of forecasting makes little use of advance demand infor-
mation, it does perform no worse than other methods that do make extensive use of advance demand
information. For that reason, we recommend to keep using the current method of forecasting as this
method is also easy to oversee. In case the amount of future orders show an enormous increase, it can
be wise to review the method of forecasting once again. If necessary the method of forecasting can then
be changed to make more use of future orders.

Secondly, we recommend to implement advance demand information when making replenishment
decisions. This procedure does not increase the complexity of the calculations but creates a strong
backorder reduction. A note must be that it also leads to an increase of relative holding costs. If the
increase of relative holding costs is undesired the method can also be implemented in such a way that
the relative holding costs remain the same, while the backorders are still seriously reduced.

Furthermore, we recommend to make use of early shipments. The benefits of early shipment can be
found throughout the whole supply chain, likely also increasing the customer satisfaction. When making
use of the early shipping algorithm, there are no negative side effects of early shipment as the amount
of backorders stays the same and the inventory relative holding costs are slightly reduced.

Lastly, this thesis shows the value of advance demand information. Therefore, we recommend to make
more use of the information that comes with future orders. Also it would be wise to encourage customers,
field service engineers and markets to place an order as soon as the order specifications are known. When
the proportion of future orders increases, the performance of the presented methods increases as well,
leading to more backorder reductions.

8.3 Limitations

Because of the assumptions made and the scope selected for this research, there are some limitations that
need to be taken into account when interpreting the results of this research. First of all the assumptions
made make a simplified version of the real world scenario. It could be that issues occur when implementing
the presented solutions in the Philips situation. Secondly, this research was conducted for the Benelux
market, For other markets, the scenario should work in a similar way bu factors like leadtime instability
could influence the results. Lastly, the simplifications also create a gap between the actual scenario and
the ideal scenario, an example of this is the worrying big difference between the designated fill rate and
the actually realized fill rate.

8.4 Future research

This research gives new insight in using ADI in forecasting intermittent demand, as well as using ADI
in replenishment strategies. However, there are some parts that need more future research to obtain
extra results. More research on the effect of the forecast on the stock levels when using ADI can create a
forecast that does increase the inventory model performance. Secondly, extra research in the anticipating
shipping method can be performed to look for more applications of the algorithm. Currently the method
is only used for shipping parts to the customer, but it can be imagined that shipping within the supply
chain can benefit from early sending as well.
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Gallego, G. and Özer, Ö. (2001). Integrating Replenishment Decisions with Advance Demand Informa-
tion. Management Science, 47(10):1344–1360.
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Appendix A

Forecasting errors of the discussed methods

Part: 1 2 3 4 5 6 7 8 9 10 11
Method 1 11.287 19.979 1.364 151.808 48.238 12.835 11.410 11.825 332.462 4.680 4.726
Method 2 11.287 19.979 1.364 151.808 48.238 12.835 11.410 11.825 332.462 4.680 4.639
Method 3 11.287 19.979 1.364 151.808 48.238 12.835 11.410 11.825 332.462 4.680 4.726
Method 4 11.146 21.409 1.329 164.221 57.087 7.861 6.635 6.790 663.004 5.236 4.507
Proposed method 1.1 10.603 18.424 1.031 150.492 48.229 9.777 8.427 9.097 250.685 4.502 4.248
Proposed method 1.2 10.603 18.424 1.031 150.492 48.229 9.777 8.427 9.097 250.685 4.502 4.248
Proposed method 1.3 10.603 18.424 1.031 150.492 48.229 9.777 8.427 9.097 250.685 4.502 4.248

Table 26: SSE over 11 parts for periods with Ot = 0

Part: 1 2 3 4 5 6 7 8 9 10 11
Method 1 8.286 11.68 2.165 31.33 21.41 10.7 10.11 10.29 50.59 5.598 5.734
Method 2 8.286 11.68 2.165 31.33 21.41 10.7 10.11 10.29 50.59 5.598 5.766
Method 3 8.286 11.68 2.165 31.33 21.41 10.7 10.11 10.29 50.59 5.598 5.734
Method 4 8.163 12.17 2.307 34.08 22.65 7.985 7.235 7.344 69.8 5.436 5.394
Proposed method 1.1 8.006 11.41 1.364 31.12 21.42 9.319 8.585 8.973 44.37 5.444 5.27
Proposed method 1.2 8.006 11.41 1.364 31.12 21.42 9.319 8.585 8.973 44.37 5.444 5.27
Proposed method 1.3 8.006 11.41 1.364 31.12 21.42 9.319 8.585 8.973 44.37 5.444 5.27

Table 27: SAE over 11 parts for periods with Ot = 0

Part: 1 2 3 4 5 6 7 8 9 10 11
Method 1 0.000 7.969 0.000 51.943 18.742 0.109 0.047 0.063 112.170 0.000 0.000
Method 2 0.000 6.066 0.000 51.943 18.742 0.222 0.170 0.170 112.170 0.016 0.103
Method 3 0.236 6.476 0.007 51.943 18.742 0.199 0.174 0.174 112.170 0.090 0.313
Method 4 0.124 4.843 0.000 30.100 11.535 0.065 0.039 0.041 158.592 0.044 0.093
Proposed method 1.1 3.190 2.723 9.358 44.427 14.403 3.776 3.903 3.321 1093.850 1.046 3.459
Proposed method 1.2 0.000 0.396 0.000 25.000 16.000 5.340 5.340 5.340 700.361 0.000 0.000
Proposed method 1.3 0.000 0.396 0.000 25.000 16.000 4.099 3.683 3.804 102.703 0.000 0.000

Table 28: SSE of the seven methods for periods with Ot ≥ 1
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Part: 1 2 3 4 5 6 7 8 9 10 11
Method 1 0.000 5.442 0.000 7.207 4.329 0.443 0.278 0.328 15.358 0.000 0.000
Method 2 0.000 4.838 0.000 7.207 4.329 0.667 0.583 0.583 15.358 0.208 0.493
Method 3 0.667 5.025 0.083 7.207 4.329 0.629 0.583 0.583 15.358 0.417 0.750
Method 4 0.456 4.255 0.000 5.486 3.396 0.349 0.276 0.284 19.626 0.319 0.396
Proposed method 1.1 2.866 2.947 4.920 6.665 3.795 3.088 3.089 2.992 57.007 1.726 3.109
Proposed method 1.2 0.000 1.244 0.000 5.000 4.000 3.917 3.917 3.917 45.833 0.000 0.000
Proposed method 1.3 0.000 1.244 0.000 5.000 4.000 3.487 3.314 3.366 16.358 0.000 0.000

Table 29: SAE of the seven methods for periods with Ot ≥ 1

Part: 1 2 3 4 5 6 7 8 9 10 11
Method 1 11.287 27.948 1.364 203.751 66.980 12.944 11.458 11.888 444.632 4.680 4.726
Method 2 11.287 26.045 1.364 203.751 66.980 13.057 11.581 11.996 444.632 4.696 4.742
Method 3 11.523 26.455 1.371 203.751 66.980 13.033 11.584 11.999 444.632 4.771 5.039
Method 4 11.270 26.252 1.329 194.321 68.622 7.926 6.674 6.831 821.597 5.280 4.600
Proposed method 1.1 13.792 21.147 10.390 194.918 62.631 13.553 12.330 12.418 1344.535 5.548 7.707
Proposed method 1.2 10.603 18.820 1.031 175.492 64.229 15.117 13.767 14.437 951.046 4.502 4.248
Proposed method 1.3 10.603 18.820 1.031 175.492 64.229 13.876 12.109 12.901 353.388 4.502 4.248

Table 30: SSE of the seven methods for all periods

Part: 1 2 3 4 5 6 7 8 9 10 11
Method 1 8.286 17.120 2.165 38.540 25.736 11.145 10.393 10.619 65.950 5.598 5.734
Method 2 8.286 16.516 2.165 38.540 25.736 11.368 10.698 10.874 65.950 5.807 6.260
Method 3 8.953 16.704 2.249 38.540 25.736 11.331 10.698 10.874 65.950 6.015 6.484
Method 4 8.620 16.421 2.307 39.568 26.047 8.334 7.511 7.628 89.425 5.755 5.790
Proposed method 1.1 10.873 14.357 6.284 37.785 25.217 12.407 11.675 11.965 101.374 7.170 8.379
Proposed method 1.2 8.006 12.654 1.364 36.120 25.422 13.236 12.502 12.889 90.200 5.444 5.270
Proposed method 1.3 8.006 12.654 1.364 36.120 25.422 12.806 11.900 12.339 60.725 5.444 5.270

Table 31: SAE of the seven methods for all periods

45



Appendix B

Multiplication versus summation of the forecast

Option1 : ×
∑24

j=1Dt−j × 1(Ot−j ≥ 1)∑24
j=1Ot−j

(Multiplication variant)

Option2 : Ot +

∑24
j=1(Dt−j −Ot−j)× 1(Ot−j ≥ 1)∑24

j=1 1(Ot−j ≥ 1)
(Summation variant)

When comparing the results of these two measures, the summation variant shows to perform better
as can be seen in Table 32. In 10 out of eleven parts the summation variant performs better than the
multiplication variant. Furthermore the average performance of the multiplication variant is 18% or 51%
worse compared to the summation variant, depending on which measure you refer to.

Part Type SSE SAE ∆SSE ∆SAE
1 Multiplication 11.2869 8.28616 +6% +3%

Summation 10.60281 8.006499073
2 Multiplication 21.7057 14.29528928 +15% +13%

Summation 18.81961 12.65447514
3 Multiplication 1.363897 2.165333333 +32% +59%

Summation 1.0314 1.36442236
4 Multiplication 152.808 32.3324374 -13% -10%

Summation 175.4917 36.11958256
5 Multiplication 66.97992 25.73627464 +4% +1%

Summation 64.22872 25.4222632
6 Multiplication 30.18513 16.83240037 +100% +27%

Summation 15.11735 13.23562144
7 Multiplication 28.76088 16.24581963 +109% +30%

Summation 13.76703 12.50200764
8 Multiplication 29.17586 16.42179386 +102% +27%

Summation 14.43722 12.88928039
9 Multiplication 2764.88 125.1248713 +191% +39%

Summation 951.0464 90.20032425
10 Multiplication 4.680377 5.598166667 +4% +3%

Summation 4.502281 5.444192262
11 Multiplication 4.726194 5.733525 +11% +9%

Summation 4.247917 5.269860611
Average +51% 18%

Table 32: Forecasting error of the multiplication method relative to the summation method
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Appendix C

Selecting optimal timespan for the forecast

In this part we will take a look at the effect changing the amount of months has on the performance of
the forecast. The performance of the forecast is measured using the sum of squared errors and the sum
of absolute errors. As the value of 24 has already been tested, the performance for using 18, 23, 25 and
30 months will be tested. The test is only applied to Proposed method 1.3 as analysis shows that this
method performs best.

In order to get the performance for the other timespan, the 11 parts that are most frequently ordered
are used to test on. The expectation is that the differences will be extremely small, especially between
using 23, 24 or 25 months. In most cases the values will be the same for all three timespans. As data is
only available from the first of January 2015 onwards, the cases of 25 and 30 months cannot be tested
for the whole of 2017. To compute the correct values for these cases an initialization phase that is the
size of the number of months is needed. This means that for 25 months the test is performed on the
last 11 months of 2017 and for 30 months the test will be performed on the last six months of 2017. To
have a fair comparison the results will be compared to the performance of the 24 month timespan for
the same months. In mathematical terms this will look like the following formula:

Ft =



∑n
j=1 1(Dt−j ≥ 1)× 1(Ot−j = 0)∑n

j=1 1(Ot−j = 0)
×

∑n
j=1Dt−j∑n

j=1 1(Dt−j ≥ 1)
if Ot = 0

Ot + min(

∑n
j=1(Dt−j −Ot−j)× 1(Ot−j ≥ 1)∑n

j=1 1(Ot−j ≥ 1)
, FAt) otherwise

(Summation variant)

Where n = 18, 23, 24, 25, 30

Timespan: 24 18 23 24 25 24 30
Part: 1 10.603 10.656 10.570 10.263 10.376 1.535 1.665
2 18.820 20.211 18.629 17.916 17.740 7.625 7.654
3 1.031 1.034 1.032 1.031 1.031 0.030 0.029
4 175.492 215.232 214.607 167.782 168.192 146.052 138.607
5 64.229 64.383 64.162 64.072 64.094 33.817 33.861
6 13.876 13.783 14.004 12.892 12.993 6.655 6.679
7 12.109 11.863 12.143 11.195 11.314 6.037 6.050
8 12.901 12.746 12.927 11.926 12.019 6.284 6.295
9 353.388 365.263 354.794 319.242 317.918 164.697 157.397
10 4.502 4.553 4.506 4.362 4.402 0.956 0.992
11 4.248 4.116 4.229 4.074 4.094 0.804 0.820

Table 33: SSE for several timespans for proposed method 1.3
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Timespan: 24 18 23 24 25 24 30
Part: 1 8.006 8.072 8.011 7.423 7.502 2.354 2.435
2 12.654 12.318 11.877 11.100 11.007 4.648 4.621
3 1.364 1.380 1.366 1.364 1.363 0.330 0.321
4 36.120 39.295 39.129 33.343 33.398 24.340 23.580
5 25.422 25.449 25.408 25.026 25.017 13.609 13.610
6 12.806 12.688 12.852 11.813 11.858 6.255 6.290
7 11.900 11.723 11.907 10.940 10.999 5.892 5.949
8 12.339 12.180 12.337 11.350 11.393 6.063 6.096
9 60.725 61.999 60.882 54.882 54.735 30.555 29.743
10 5.444 5.477 5.446 5.069 5.109 1.951 1.989
11 5.270 5.110 5.249 4.853 4.874 1.792 1.810

Table 34: SAE for several timespans for proposed method 1.3

After the computation of the sums of squared errors and the sum of absolute errors, a comparison is
made for the overall performance. To do so the performance of the 24 month period is used as a reference
and the performance of the different timespans is compared to this. The sum of squared errors and the
sum of absolute errors are found in Tables 33 and 34 in the appendix. As can be seen the timespan of
24 months is computed three times, the first one is for the 12 month period to be compared with the 18
and 23 month timespan. The second one is for the 11 month period to be compared with the 25 month
timespan. The third one is for the 6 month period to be compared with the 30 month timespan.

As can be seen in both tables, the differences between the various timespans are extremely small.
For most cases FAt is exactly the same, and when it differs there is only a minor change. In order to
compute the overall performance, the 24 month timespan is used as a reference point.
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Appendix D

Smoothing the proposed forecast

The fact that the currently used method performs better, is because of the smoothing which makes for
a stable forecast. The new method has a more volatile forecast though which increases and decrease the
target stock level. This phenomenon is visually represented in Figure 10.

Figure 10: Effect of the forecast values on the inventory position with a 0 month lead time (left) and a
2 month lead time (right)

In order to increase the performance of the system, the forecast should be more volatile for parts
with a short lead time, and smoother for parts with a long lead time. To achieve such an effect, the
forecasted value should be in the middle between the proposed forecast Ft, which is very volatile, and
the original forecast FAt, which is very smooth and stable. Short lead time parts should lean towards
Ft, while long lead time parts should lead to FAt. A way to achieve this can be seen in Equation 5.7

FF ′t = αp ∗ F ′t + (1− αp) ∗ FA′t (Summation variant)

Where FF ′t is the new updated forecast value and α is dependant on the leadtime of part p. In case
the leadtime is low, α should be high and vice versa. As can be seen the formula is very similar to the
formula that is used for exponential smoothing in forecasting, with the only difference that FF ′t is not
recurring in the formula. Instead the initial forecast FA′t is in it’s place.

As mentioned before α needs to be low in case the lead time is high and vice versa. Furthermore,
the change in alpha has to be rapid. When the leadtime is over a month a relative low alpha is desired,
and when the leadtime is under a month a relative high alpha is desired. Therefore a linear relation
between the leadtime and alpha is not likely to give the desired results. When reviewing literature on
this subject a formula that is mentioned several times is the so called time constant (Young, 2011). This
formula can be seen in Equation 5.8. In this formula ∆T is the fixed time interval and τ is the variable
time. Adapted to our case ∆T would be 1 month, or 30.42 days, and τ would be the leadtime for the
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part in days.

αp = 1− exp (
−∆T

τ
) (Summation variant)
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Appendix E

Sensitivity analysis of the early sending algorithm

∆E Sendfillrate Backorders relative holding costs Fill rate Early sent Early known %
3 0.5 1557 99.58% 93.29% 3370 5009 67.28%
3 0.6 1553 99.52% 93.31% 3374 5009 67.36%
3 0.7 1601 100.75% 93.09% 3386 5009 67.60%
3 0.8 1594 100.30% 93.14% 3406 5009 68.00%
3 0.9 1590 100.65% 93.12% 3398 5009 67.84%
3 0.99 1595 100% 93.11% 3390 5009 67.68%

Table 35: Sensitivity analysis of the Sendfillrate for the early sending algorithm

∆E Sendfillrate Backorders relative holding costs Fill rate Early sent Early known %
14 0.5 1586 100.16% 93.15% 388 453 85.65%
14 0.6 1580 99.09% 93.19% 389 453 85.87%
14 0.7 1610 99.65% 93.06% 389 453 85.87%
14 0.8 1564 99.80% 93.24% 388 453 85.65%
14 0.9 1573 100.00% 93.21% 388 453 85.65%
14 0.99 1580 100% 87.67% 387 453 93.19%

Table 36: Sensitivity analysis of the Sendfillrate for the early sending algorithm

∆E Designfillrate Backorders relative holding costs Fill rate Early sent Early known %
3 0.98 1722 88.21% 92.57% 3195 5009 63.79%
3 0.985 1677 92.30% 92.76% 3269 5009 65.26%
3 0.99 1575 100% 93.21% 3379 5009 67.46%
3 0.995 1396 113.61% 93.97% 3525 5009 70.37%
3 0.999 1187 142.36% 94.88% 3793 5009 75.72%

Table 37: Sensitivity analysis of the Designfillrate for the early sending algorithm

∆E Designfillrate Backorders relative holding costs Fill rate Early sent Early known %
14 0.98 1745 87.82% 92.48% 373 453 82.34%
14 0.985 1671 90.56% 92.80% 375 453 82.78%
14 0.99 1562 100% 93.26% 387 453 85.43%
14 0.995 1422 110.67% 93.87% 396 453 87.42%
14 0.999 1193 139.13% 94.85% 405 453 89.40%

Table 38: Sensitivity analysis of the Designfillrate for the early sending algorithm
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