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Abstract

In this master thesis project, we use mathematical inventory modeling to evaluate the performance
of a special branch of Philips’ spare parts service network. The focus lies on spare parts that are
distinguished in two different variants: new and repaired. In the current inventory policy, N-stock
is strictly replenished with new parts and only used for N-customers. U-stock is mainly replenished
by repaired parts but can also be replenished by new parts, and is used for U-customers. Several
alternative design scenarios are proposed. First, we study the effects of allowing one-way demand
substitution. Second, we introduce a ‘cross-replenishment policy’, where new parts that arrive in
U-stock replenishment shipments are allocated to N-stock instead. Third, we apply hold-back levels
to demand substitution. A single-echelon, single-location, two-item inventory model with one-way
demand substitution is described as base model. This model is based on the research of Reijnen
et al. (2009). With the base model as foundation, we create a new extension for the proposed
cross-replenishment policy. Last, the developed model is further extended with hold-back levels.
The hold-back level extension is based on the research of Van Wijk et al. (2012). The performance
of each design scenario for the provided business case is evaluated with an extensive case study.

The list of abbreviations and the list of notation is given in Appendix A and Appendix B, re-
spectively.
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Executive summary

This report is the result of a master thesis project, conducted at the Service Parts Supply Chain
(SPS) department of Royal Philips. Being one of the world leaders in healthcare technology, Philips
operates a worldwide service network to perform maintenance on their medical systems. The goal
of this extensive service network is to maximize spare parts availability while minimizing the costs.

Spare parts are distinguished between two types: consumables and repairables. Consumables
are used once and scrapped after failure. When a repairable spare part fails, it is returned from
the customer to SPS and put on defective parts stock. Failed repairable spare parts undergo heavy
testing before, during, after after the repair process. A repaired spare part is only put back on
stock at the warehouse when it is considered good-as-new. Repairable parts keep flowing in a circle
from customer, to defective stock, to warehouse, and back to the customer, until they are scrapped.

Due to regulatory changes, many types of spare parts are no longer allowed to be shipped into
China in repaired (or defective) state. Hence, for the relevant repairable spare parts, SPS must
now distinguish brand-new parts from ‘good-as-new’ repaired parts for this specific market. This
distinction is made at the regional distribution center (RDC) at Singapore. This RDC supplies
most of SPS’ smaller warehouses in Asia and Pacific.

A special branch of the spare parts service network has been created to address to these new
requirements: the New Parts Supply Chain (NPSC). In this project we focus on the replenishment
processes and demand allocation processes, of spare parts that are in the portfolio of the NPSC as
well as the regular service network. We first analyze the current inventory control policy, denoted
as design scenario 0. Based on the analysis of the current inventory control policy, we propose
several inventory policy changes in alternative design scenarios.

In the current inventory control policy, the flow of spare parts in the NPSC and the flow of
spare parts in the regular supply chain are completely separated. Stock that is required for China
(type 1 demand), is specifically as brand-new spare parts at the external suppliers. These parts
are allocated to special stocking locations, indicated as N-stock (type 1 stock). The stock that is
maintained for the regular customers (type 2 demand) is allocated to U-stock (type 2 stock). A
SKU’s type 2 stock is mostly replenished by repaired parts. However, type 2 stock is also replenished
by brand-new parts. This is a result of many different factors: uncertainty in the demand processes,
long repair lead times, high repair costs, high holding costs for excess stock if too many parts are
repaired, and limited repair capacity. While brand-new parts are suitable for type 2 demand, it is
currently not possible to use type 1 stock to satisfy type 2 demand when type 2 stock is empty.
Each brand-new spare part flowing into the network results in an increase of the total pool of
parts, which size is already a problem due to the NPSC. Defective repairable spare parts are often
scrapped to reduce the total pool size.

In design scenario 1 we study the effects allowing type 1 stock to be used to satisfy type 2
demand, when type 2 stock is empty. This is referred to as one-way demand substitution. A
penalty cost is accounted for each applied substitution, to compensate for the extra brand-new
part flowing into the network.

In design scenario 2 we introduce a ‘cross-replenishment policy’. In this policy, brand-new spare
parts that arrive in type 2 stock replenishment shipments will be put on type 1 stock instead of type
2 stock. This allows us to increase the proportion of repaired parts in type 2 stock and therefore
increase the utilization of repaired parts. Consequently, it allows us decrease the number of type 1
replenishment shipments that are required and therefore reduce the NPSC’s negative impact on a
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SKU’s total pool of parts. In design scenario 2 we furthermore allow one-way demand substitution.
In design scenario 3 we further extend the substitution policy, by using hold-back levels. A

SKU’s type 1 stock can only be used as substitute for type 2 demand when the on-hand stock
level is greater than the pre-specified hold-back level. The goal of this policy is to reduce the
negative effects of demand substitution, while still being able to utilize the positive effects. In
design scenarios 3a and 3b, we use hold-back levels to extend the inventory control policy of design
scenarios 1 and 2, respectively.

To the best of our knowledge, there is no literature on inventory control models that include
cross-replenishments or similar settings. Therefore, we use a well studied single-echelon single-
location two-item model as base model. With this base model as foundation, we create a new
model extension for the proposed cross-replenishment policy. Last, we combine the developed
model with available literature on hold-back levels. Hence, we develop a complete model for single-
echelon, single-location, two-item inventory control networks, with cross-replenishments and one-
way demand substitution with hold-back levels. Optimal solutions are determined by enumeration.

Results
The performance of each design scenario for Philips’ spare parts service network, is evaluated
with an extensive case study on 729 unique test instances. The test instances are determined with
factorial design, where each test instance represents a unique combination of SKU parameter values.
With this case study we determine for which type of SKUs each design scenario provides the best
(and worst) results.

The performance of design scenario 0, measured in expected service levels and expected costs,
is used as benchmark to evaluate the performance of the alternative proposed design scenarios.
The most important conclusion from design scenario 0 is that the holding costs account for the
majority of the total costs, while the emergency shipping costs are relatively low (we only consider
the variable costs, which in design scenario 0 consist of holding costs and the emergency shipping
costs). This effect is explained by the SKUs in our scope typically having a high value and a low
demand rate.

It is concluded that design scenario 1 does not provide good performance for the spare parts
service network. For 666 out of 729 test instances, the expected costs in design scenario 1 are higher
than in design scenario 0. The substitution penalty costs increase the total expected costs, while the
reduction in expected emergency shipping costs is not high enough to compensate. Moreover, the
type 2 basestock levels are increased to reduce expected substitution penalty costs, so the holding
costs increase as well. Design scenario 1 only provides improved performance for SKUs with the
following characteristics: low SKU value, high type 2 demand rate, and high emergency shipping
costs. However, even for these very specific type of SKUs, the expected costs are only reduced by
a small amount (average reduction of 12.5% per test instance).

The inventory policies of design scenario 2 provide a great improvement to the current perfor-
mance. The average expected costs over all 729 test instances are reduced by 34.4%. This is the
direct result of an increased utilization of repaired parts due to the cross-replenishment policy. The
number of required type 1 stock replenishment orders are reduced by an average of 23.4%. The
average expected cost savings as result of reducing the amount of brand-new parts flowing into
the network, are almost as high as the average expected holding costs. Design scenario 2 provides

v



especially good results for SKUs with a high type 1 and type 2 demand rate, low replenishment
accuracy (high portion of brand-new parts within type 2 stock replenishment orders), high SKU
value, and/or high difference in acquisition costs between a brand-new and repaired part. Many
different type of SKUs, characterized by a combination of two or three parameter categories, are
identified for which the expected costs of design scenario 0 are reduced by more than 100%. This
means that cost savings of the cross-replenishment policy are higher than the total of holding costs,
emergency shipping costs, and substitution penalty costs combined. A negative value for the ex-
pected costs is possible because we only consider the variable costs, the fixed costs are excluded.
Design scenario 2 does not perform well for SKUs that have a high type 2 demand rate or a low
replenishment accuracy, in combination with a low type 1 demand rate. For these type of SKUs,
there type 1 demand rate is too low to utilize the cross-replenishments, which therefore result in
increased holding costs and decreased cost savings.

Design scenario 3a provides a decent performance improvement, for the same type of SKUs that
have been identified in design scenario 1. The hold-back levels greatly reduce the negative effects
of demand substitution. Not even a single of the 729 test instances results in higher expected costs
than in design scenario 0. This effect is the result of hold-back levels completely blocking demand
substitution, if any other hold-back level results in higher expected costs.

Design scenario 3b provides the best performance of all proposed design scenarios. The cross-
replenishments result in great cost savings and the hold-back levels allow to utilize the positive
effects of demand substitution while reducing the negative effects. This allows to greatly reduce
the number of type 1 stock replenishment orders. Thus, greatly increasing the utilization of re-
paired parts and decreasing the number of brand-new parts used for type 2 demand. Even for the
complete set of test instances in the case study, the expected costs per test instance are reduced
by 52.8%. Many different type of SKUs have been identified, for which the cost savings from cross-
replenishments are expected to exceed the total of holding costs, emergency shipping costs, and
substitution penalty costs combined.

Recommendations
Design scenario 2 and 3b offer a great opportunity to improve the current service network perfor-
mance. In the case study we have identified SKU specific characteristics for which the greatest
reduction in costs are expected. Design scenario 3b requires an extra change to the current in-
ventory control policy compared to design scenario 2, but this is not considered to be a difficult
implementation. It must be noted, that it is currently not possible to distinguish brand-new parts
from repaired parts in type 2 stock replenishment shipments that arrive at the RDC. There are
many different suppliers, with many different processes. Therefore, we first recommend the fol-
lowing: identify for which suppliers it is easy to make a distinction between the new and repaired
parts, that arrive in type 2 stock replenishment shipments. Furthermore, currently there is no
data available on the replenishment accuracy (proportion of repaired parts in a SKU’s type 2 stock
replenishment shipments). We recommend Philips to collect this data for the type of SKUs that
have been identified to provide the greatest cost reduction from the as-is situation. This results in
the main recommendation: select a subset of SKUs, based on the list of suppliers for which it is
easy to distinguish new and repaired parts in type 2 replenishment shipments, collected data on
the replenishment accuracy, and the SKU characteristics that are identified to provide the greatest
performance improvement. For this subset of SKUs, implement the proposed policies of design
scenario 3b in practice with a pilot study.
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1 Introduction

As one of the world leaders in healthcare technology, Royal Philips (henceforth Philips) aims at
improving people’s live through medical innovation. Hospitals and other health care providers over
the whole world use their medical systems to aid in diagnosing, monitoring, and treating medical
conditions. The hospitals that use these machines are known for their extremely tight schedules, in
which even a slight disruption can have major impact. Because the hospitals rely on the reliability
of these machines, uptime is crucial. Failure of even a single small component can already result
in downtime. The increasing complexity of these machines makes it difficult for the end user or
third parties to execute maintenance and repairs, hence for many systems Philips remains respon-
sible for maintenance. To secure that performance and uptime is maximized, service contracts for
the machines can be offered. Offering maintenance of the machine, or even renting machines as
a service instead of just selling the machine itself, is becoming a common practice among original
equipment manufacturers (OEMs) of high-tech equipment Driessen et al. (2015).

On-site repair on these complex medical systems is often not possible because of the high
complexity of the components. A failed part must therefore typically be replaced by a working
spare part. If the correct spare part is not available at the required place, it will be impossible
to execute repair in an acceptable time frame. This makes spare part availability one of the most
important elements to guarantee the agreed service level. Spare parts can be very expensive to
produce and to keep on inventory, resulting in a trade-off between availability and costs. As
Philips maintains their medical systems around the whole world, supporting sales in more than 100
countries, an extensive world-wide spare part network is required.

To reduce production costs and environmental stress, repairing failed parts is often preferable
over producing new parts. The distinction is made between two types of stock keeping units (SKUs);
repairables and consumables. When a repairable SKU fails it is sent into repair, consumable SKUs
are always scrapped. During and after the repair process parts are tested thoroughly, so that they
can be marked good-as-new. In the past this meant that for repairable SKUs no distinction had
to be made between repaired spare parts and brand-new spare parts. However, China, one of
Philips biggest customers, has made changes to their service requirements that has had disruptive
consequences on the whole network: for many types of medical system spare parts, China only
allows brand-new parts to be used. This means that for the relevant repairable SKUs, Philips must
now distinguish individual spare parts into two variants: brand-new and repaired.

In this master thesis we will focus on the inventory control of spare parts that are distinguished
in two different variants. First we analyze Philips’ current inventory control policy on these type
of spare parts. Based on that analysis we propose several design scenarios which are expected to
have positive impact on performance and/or costs. An extensive case study will be performed on
each design scenario to support recommendations to Philips for improving their inventory control
policy.

1.1 Report structure

The research is introduced in Chapter 1 and a description about the research environment is
provided in Chapter 2. In Chapter 3 we will explain the problem context, describe the relevant
company departments, and analyze the processes relevant for the problem context, and provide
the research scope. In this chapter we furthermore analyze the current inventory control policies
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(as-is design) and propose several alternative design scenarios, each consisting of different inventory
control policies. In Chapter 4 we provide the mathematical models used to evaluate and optimize
each design scenario. In Chapter 5 we perform an extensive case study, to provide results for each
design scenario. The report ends with conclusions on the case study and recommendations to the
company in Chapter 6, and directions for further research in Chapter 7.
The list of abbreviations used throughout the report is given in Appendix A. The list of notation
used in the mathematical models is given in Appendix B.
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2 Research environment

2.1 Company background

Philips is a worldwide renowned electronic company, founded in Eindhoven (Netherlands) in 1891
by Gerard Philips and his father Frederik Philips. Philips started with producing light bulbs and
quickly grew to being Europe’s leader in light bulb production. Philips has invested in research
and innovation. By investing in research and innovation, Philips created a broad product portfolio.
Well-known innovations developed by Philips are the compact audio cassette (CAC), and together
with Sony they developed the compact disc (CD) and later the digital versatile disc (DVD). In
1998, Royal Philips officially gained its royal honorary title (‘Koninklijke’, in Dutch).

While lighting helped Philips to grew to be the company it is today, Philips spun-off its light-
ing devision in 2016. This allows Philips to completely focus on healthcare solutions, with their
organization consisting of two divisions: Philips Consumer Health and Well-being and Philips Pro-
fessional Healthcare (formerly known as Philips Medical Systems). Philips visualizes healthcare
as a continuum and believes healthcare should be seamless, efficient, and effective. The strategy
of optimizing and integrating healthcare across the health continuum is illustrated in Figure 1.
Philips strives to make the world healthier and more sustainable, with the goal of improving the
lives of 3 billion people a year by 2025.

Figure 1: Philips health continuum (Koninklijke Philips, 2018)

To support this strategy and goal, Philips employs over 77,000 people in 120 countries including
over 10,000 employees in research and development (Koninklijke Philips, 2018). With their own
training school called ‘Philips University’, Philips provided 700,000 training hours in 2018 alone.
With 2018 sales revenue of e18.1 billion in total (5% growth from 2017), Philips’ two biggest
customer markets are the United states (33.3% of total sales revenue) and China (13.1% of total
sales revenue). Philips managed a gross margin of e8.5 billion in 2018.

In this master thesis we focus on Philips’ spare part service network. This network is controlled
by the Service Parts Supply Chain department, which will be described in the next section.

2.2 Service Parts Supply Chain

Philips’ Service Parts Supply Chain (SPS) department is responsible for managing the global service
network. The goal of SPS is to maximize the spare part availability while minimizing the operational
and inventory costs. The service network control consists of two echelon levels. The first echelon
level consists of the regional distribution centers (RDCs), located in the Netherlands (Roermond,
RMD), the United States of America (Louisville, LVL), and in Singapore (Singapore, SGP). These
RDCs serve the warehouses at the second echelon level, which consist of three warehouse types:
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local distribution centers (LDCs), forward stocking locations (FSLs), and key market warehouses
(KMs). FSLs typically have a smaller set of SKUs on stock than LDC’s, and are used to address
specific high and local service requirements. All LDCs and FSLs are controlled by SPS. KMs are
controlled by the market itself, which is responsible for both inventory control and maintaining
relationships with the end customers. By supplying these three types of smaller warehouses from
the large RDCs, SPS uses the positive effects of demand and inventory pooling. Especially expensive
slow-moving SKUs are very cost-inefficient to keep on stock in each small warehouse, so the RDCs
acts as hubs to which demand is aggregated. Some SKUs are put on stock in only a single RDC
while others are put on stock on two or all three RDCs. This decision is based on several factors, e.g.
part price, production/repair origin, or how the demand is spread geographically. SPS cooperates
mainly with Accenture, UPS, and Sanmina. Accenture is responsible for transactional activities,
UPS is responsible for most of warehousing and transport, and Sanmina operates the reverse flow
of defective parts. In 2017 alone, together they were responsible for 1.8 million transactions moving
service parts between SPS locations, customers and suppliers. The relationship between SPS,
Accenture, UPS, and Sanmina is illustrated in Figure 2.

Figure 2: Logistics fulfillment cooperating parties

2.3 Inventory policy

Inventory service levels are measured in material availability (MA), also known as fill-rate. The
fill-rate of a SKU is the fraction of demand directly satisfied from stock. Each SKU is allocated
to a certain SKU network. The composition of these networks is based on different factors, e.g.
the SKU’s root location, SKU category, machine category the SKU is used for, the SKU being
repairable or consumable, or supplier location. Every SKU is linked to a single network, and every
network has multiple SKUs. Service targets for the RDC’s are set and maintained per network per
market (country).

Downstream demand requests are initiated by an FSE or by a KM. The planning system links
the part demand to the corresponding warehouse. Demand as result of preventive maintenance
can be scheduled in advance. On the contrary, for demand as result of corrective maintenance,
SPS relies on demand forecast based on past data. When an LDC or FSL is unable to satisfy
demand, then the first option is to ship the part from another LDC or FSL. This is referred to as
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a lateral transshipment. Each LDC and FSL has a fixed sequence of other LDCs that are checked
for on-hand inventory. This sequence typically consist only of LDCs and FSLs in the same country,
but can also consist of neighboring countries. In case all LDCs and FSLs in this sequence are not
able to satisfy the request for a lateral transshipment, the demand must be satisfied through an
emergency shipment from an RDC. At the first echelon (RDC) level, demand is satisfied following
the same process. If demand cannot be satisfied directly from the first associated RDC, then the
system will look if the other RDCs keep this SKU on stock and if there is on-hand stock available.
If none of the RDCs are able to satisfy the demand, it must be satisfied through an emergency
shipment from the external supplier. While we refer to an external supplier, this can also be a
business innovation unit (BIU) factory owned by Philips.

Inventory replenishments for the whole spare part service network are executed by the planning
tool on a daily basis. The planning tool first calculates the demand forecast per part per location,
based on demand predictions and actual placed orders. The second step is inventory optimization.
The tool uses business rules, for example part reorder levels, minimum or maximum total stock
worth, or hazard rules, to fill up the replenishment plan. This replenishment plan includes replen-
ishment orders from the external suppliers to the RDCs as well as allocating inventory from RDCs
downstream to the LDCs and FSLs. The planning tool retrieves its data from the ERP system
and after creating the replenishment plan it sends the plan as a single package back to the ERP
system.

While the forward flow of spare parts starts at the external suppliers and goes to RDC to
LDC/FSL to customer, there is also a reverse flow of spare parts. After failure, repairable SKUs
are bought back from the market for a portion of the original price. The FSE sends the defective
part to a Blue Room (BR) where it is inspected. If it is possible to repair the part, it is either send
into repair or it is put on defective parts stock (D-stock) at the BR. The total stock of defective
parts for a given SKU is also referred to as the repair-pool. The repair process itself is executed by
a repair center or by the external supplier of the part. Simple repairs can also be executed in the
BR. If it is not possible to actually repair the failed part it will be scrapped. The repair process
of repairable SKUs is distinguished in two types: push-repair and pull-repair. Defective parts with
push repair are sent into repair straight away. Defective parts with pull-repair are kept on D-stock
until a repair order in initiated, either by the planning tool or manually.

The forward flow of spare parts and reverse flow of spare parts through all entities in the service
network is illustrated in Figure 3.

Figure 3: Forward and reverse flow of spare parts in SPS’ service network
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3 Problem context

3.1 New Parts Supply Chain

In the past Philips’ spare part requirements have been similar for all markets. The differences
among markets, and among customers within a market, only regarded specific SKU availability
and service levels. However, disruptive changes have been made to spare part requirements for
China. Since 2015, China’s law prohibits the import of used medical spare parts. China is Philips’
second biggest market and at the same time one of the fastest growing markets, which makes it
important to adhere to this new requirement. Therefore, Philips has developed a new branch to
its supply chain specifically to address China’s special requirements: the New Parts Supply Chain
(NPSC). Moreover, there are now more countries besides China that are becoming interested in
service contracts for strictly brand-new (medical) spare parts. Russia, Vietnam, and Indonesia
are examples of such countries. While Philips prefers to maximize the usage of repairable spare
parts due to environmental consequences, it is possible that in the future more countries become
interested in receiving strictly brand-new spare parts.

In the old spare part service network there was no need to distinguish between brand-new
parts and repaired parts of a repairable SKU. Defective parts undergo extensive testing during
all phases of the repair process, and are only accepted back into the service network when they
are considered to be ‘good-as-new’. Hence, repaired parts and brand-new parts of a repairable
SKU were considered equal, but this no longer holds for all customer markets. With China’s new
requirements, SPS must distinguish between brand-new and repaired parts for each SKU that is
subject of these new requirements (each NPSC-relevant SKU). The regulation applies to any part
that is considered to have medical functionalities, e.g. it does apply to a part that is linked to
a MRI-scanners core functionalities but does not apply to the casing. Special stocking bins are
created strictly for storage of new parts. These bins are called N-stock, which are the counterpart
of U-stock (U for used). The product number of a brand-new or repaired variant of a SKU is
equal, the distinction is made in the stocking bins. N-stock is currently only required for China,
so it is mostly located at the RDC in Singapore. In the LDCs and FSLs there is no need to split
N-stock and U-stock of a SKU, because the inventory in an LDC is intended only for the country
in which the LDC resides. So LDCs in China only keep N-stock for the relevant SKUs, and all
other LDCs only keep U-stock. Henceforth we will refer to any customer that is linked to U-stock
as a U-customer, and any customer that is linked to N-stock as an N-customer.

The NPSC has been implemented as a solution to the disruptive new spare part requirements.
While SPS’ regular service network has grown steadily over the years and has been subject to
continuous improvement, the NPSC did not experience such a controlled development. In the
current inventory policy the NPSC is a completely separated flow of parts. From ordering stock
replenishments at the supplier, to stocking parts in the RDC, to allocating stock to customers: the
flow of N-stock is completely separated from the flow of U-stock. Hence, the N-stock and U-stock
of a single SKU have the same part number and may be stocked in the same warehouse, but the
NPSC is completely separated from the rest of the service network. While the inventory policies
of the regular service network have been the subject of many different studies, the NPSC has
been implemented just recently and the performance of its inventory policies are not clear. Philips
requested research on the performance of the NPSC’s inventory policies, which will be the focus of
this master thesis. The research assignment is explained in detail in the next section.
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3.2 Research assignment

The main research assignment following from the problem context is given below.

What are the current performance and costs of spare parts in Philips’ new parts supply
chain, and how can the performance and costs be improved?

As this is a design assignment, we will analyze the design of the as-is spare parts service network
thoroughly, and propose several alternative design scenarios. The alternative design scenarios will
be based on analysis of the current network design and on available literature on the topic. The
expected performance and costs of each design scenario will be determined with mathematical
inventory modeling. These models will be based on existing models available in literature, and
modified and/or extended where required. With an extensive case study we will make a supported
assessment of each design scenario’s behavior, to support our recommendations to Philips’ service
parts supply chain.

3.3 Scope

It is not feasible to include the Philips’ entire spare part service network in this research. The
following scope is defined to reduce complexity and to eliminate parts of the network that are not
relevant for this research.

� The spare part service network of SPS consists of three RDCs at the first echelon level, and
the LDC’s and FSL’s at the second echelon level. As mentioned in Section 3.1, only RDCs
can contain both U-stock and N-stock of the same SKU. While there are three RDCs, demand
from China is typically rooted to the RDC in Singapore. Since China is currently the only
country for which SPS uses the NPSC, we will focus on the inventory control at the RDC in
Singapore.

� The LDCs, FSLs and KMs that order stock replenishments at the RDC in Singapore are
seen as the customers. The RDC has certain service levels that it must maintain with these
customers.

� Consumables are left out of scope, because these parts will never be repaired and therefore
are not relevant for this research.

� Not all repairable SKUs are relevant for the NPSC. The NPSC requirement that a spare part
must be brand-new does not apply to all types of SKUs. Hence, the scope only includes
repairable SKUs for which it is relevant to make the distinction between new and repaired
parts.

� It is not allowed to import a defective or repaired part into China, but when a part experiences
failure in China then it is allowed to repair the part in China itself. It can then be used to
satisfy demand, as long as the defective part has not left the country. Both the forward flow
and reverse flow of a part that is repaired within China remains within the countries borders.
Hence, SKUs that are repaired within China only account for demand at the RDC when extra
(brand-new) parts are required.

� Defective spare parts of a given SKU that are revised to a new or upgraded version, are
considered to be new SKUs. Hence, when revising a defective part instead of just repairing
the part, it is allowed to allocate the part to demand in China. However, since part revisions
can only be applied in exceptional situations these are left out of scope of this research.
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� Field Change Orders (FCOs) are left out of scope. With FCOs, parts are shipped in large
quantities to replace existing parts of an entire line of machines. This disturbs normal demand
trends, because all medical systems containing the old parts will be upgraded in a relatively
short time frame.

� All SKUs have different characteristics. As we will research the effects of several inventory
policies, with regards to handling new versus repaired variants of a SKU, it is expected that
different proposed policies are optimal for different type of SKUs. Therefore, we will analyze
the behavior of each SKU separately for each proposed policy, with each SKU consisting of
two stocking variants.

3.4 As-is situation

Spare parts in the NPSC are strictly brand-new. When a replenishment for N-stock is ordered at
the supplier they will always ship brand-new spare parts. On the contrary, it does not hold that
all spare parts on U-stock are repaired or used. SPS aims at maximizing the usage of repaired
parts. However, due to demand uncertainty, repair leadtime and repair capacity it is impossible to
supply the network with repaired parts at exactly the same rate as the rate at which the actual
demand occurs. For most parts the problem does not lie in the availability of defective parts that
can be repaired, on the contrary: a growing pool of defective parts is a problem for many SKUs.
The reason why these parts are not repaired at a higher rate is because the actual demand rate
is uncertain. Repairing more parts than there is demand for leads to excess U-stock, which result
in high holding costs. By definition SKUs with pull-repair typically have plenty D-stock available,
while parts with push-repair do not.

The difference in the supply of repaired parts entering the network and the demand for U-
parts exiting the network is moderated by placing purchase orders at the part supplier. Hence,
while a SKU’s N-stock strictly contains only brand-new parts, the U-stock actually contains a
mix of repaired parts and new parts. It is unknown which specific parts in a SKU’s U-stock are
actually repaired and which are new. Moreover, it is not known which parts are repaired and which
are new when a replenishment shipment for U-stock arrives at the warehouse. Because of part
complexity, the external supplier of the part and the repair vendor is often the same entity. When
a replenishment shipment for U-stock arrives at a RDC, it can contain parts from repair orders and
parts from purchase orders. It is unknown whether a specific part on the shipment itself is actually
repaired or new. It is only known that the shipment is a replenishment for U-stock. Furthermore,
while for some SKUs repair orders are initiated by SPS, there are also SKUs for which the repair
process is controlled by the external supplier. Defective parts are sent back to the part supplier
after which the supplier is responsible for controlling the stock of defective parts, and therefore the
rate at which defective parts are repaired and scrapped. When this is the case, SPS replenishes
the U-stock fully by purchase orders and the portion of actual repaired parts and new parts is
unknown.

In the current network design, U-customers are strictly linked to U-stock and N-customers are
strictly linked to N-stock. Hence, the new parts that are present in the U-stock will always end up
being allocated to U-customers. These new parts can never be allocated to N-customers. On the
other side, while all parts in N-stock are new, these new parts can only be allocated to N-customers.
These new parts cannot be used to satisfy demand coming from U-customers, even when there is
no U-stock available. The process flow of handling replenishment shipments that arrive at the
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warehouse is given in Figure 4. The process flow of handling customer demand to the warehouse
is given in Figure 5.

The current network design will be analyzed to assess the current performance and costs. Fur-
thermore, the current network design will serve as a benchmark to which performance of alternative
network designs can be compared. The current network design is therefore denoted as design sce-
nario 0.

Design scenario 0: Philips’ current service parts supply chain inventory policy for a SKU’s
new and repaired parts, at the regional distribution center.

Figure 4: Current process flow of handling stock replenishments at the RDC

Figure 5: Current process flow of handling customer demand at the RDC

3.5 Alternative designs for the inventory control policy

Allocating repaired parts to N-customers is not allowed because of strict customer requirements.
However, for U-customers both repaired parts and new parts could be used to satisfy demand. In
the current inventory policy a SKU’s U-stock consists of a mix of repaired and new parts. While
U-customers currently receive repaired as well as new parts from U-stock, it is not possible to
use new parts from N-stock for these U-customers. Using N-stock as substitute for U-stock when
there is insufficient U-stock available to satisfy demand, could improve performance of the service
network. This is referred to as one-way demand substitution.

The effects of one-way product or demand substitution are well documented in literature. Sub-
stitution of products used to satisfy demand is mostly studied in consumer goods settings, because
substitution is a common effect in e.g. supermarkets and clothing stores: when a certain brand
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or product is not available, a portion of the consumers will buy a comparable brand or product
as substitute (Smith & Agrawal, 2000). In consumer goods, substitution between two products
typically goes both ways. For capital goods, substitution typically goes only one direction (Ahiska
& Kurtul, 2014), (Li et al., 2006). The performance and quality of products in capital goods are
often a critical factor, hence products of lower grade can be substituted by products of higher grade,
but not vice versa. An industry example can be given for the semi-conductor industry, where it
can be allowed to substitute a lower grade chip with a higher grade chip, with the higher grade
chip being able to deliver at least the same performance. The same logic is applicable to Philips’
situation described in Section 3.4: repaired parts of a SKU can be seen as lower grade variants
and brand-new parts as higher grade variants. The remainder of the literature review on demand
substitution is given in Appendix C. While exact settings and applications differ between papers
on demand substitution, the overall effects are similar. Allowing a certain product A to be used
as substitute, to serve demand for product B that is out of stock, can have positive impact on the
service level of product B and on the emergency shipment costs. At the same time it can have
negative impact on the service level of product A, because the chance of having a stock-out of part
A can increase. By adjusting the stock levels of both products accordingly, the positive effects can
be utilized while mitigating the negative effects.

Regarding costs, the effects of substitution depend on whether the customer or the supplier
accounts for the difference in price. For SPS, spare part prices are stated in the service contract
with the customer. The customer pays a fixed price for a SKU, independent of the part being new
or repaired. If SPS would use a part from N-stock as substitute to serve a U-customer in case of
empty U-stock, SPS itself must account for the difference in acquisition costs of a new and repaired
part.

The cost for SPS of buying a new part is equal to the purchase price. The cost of acquiring a
repaired part consists of two elements. First there is the buyback cost, the cost that is paid to the
market for buying back the defective part. Second are the repair costs. These consist of the costs
for the actual repair process including material handling costs, and also accounts for the holding
costs for the time spent on D-stock. Most SKUs suffer from a growing pool of defective parts at
the BR, hence parts on D-stock must be scrapped regularly to keep the pool size stable. This is
very cost-inefficient, because SPS pays a price to the market to buy back the defective part. A
negative effect of allowing N-stock to serve as substitute for empty U-stock, is an increased inflow
of new parts into the network. Each extra new part flowing into the network will eventually result
extra D-stock. In the case study we will analyze the behavior of different SKUs with different
part characteristics, to assess for each type of SKU whether the positive effects of allowing demand
substitution outweigh the negative effects.

To conclude, allowing N-stock to be used as substitute in case of empty U-stock, is expected to
have positive effects on service levels. However, it is also expected to have negative effects on the
network costs because of an increased inflow of brand-new parts at the cost of using repaired parts.
We will research if we can utilize the positive effects can be utilized while mitigating the negative
effects, by optimizing the stock levels accordingly. It is expected that allowing substitution will
have positive effects on overall network performance for at least a subset of all SKUs. Hence, in
design scenario 1 we will analyze the effects of implementing demand substitution in SPS’ spare part
service network, allowing demand from U-customers to be satisfied by using parts from N-stock
as substitute when U-stock is empty. The proposed process flow of handling customer demand
including one-way substitution is given in Figure 6. The replenishment process remains unchanged
from design scenario 0, as illustrated in Figure 4.
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Design scenario 1: Allow one-way demand substitution, where N-stock can be used as sub-
stitute for U-stock when U-stock is empty.

Figure 6: Process flow of handling customer demand at the RDC, including one-way demand sub-
stitution

Mentioned as being a negative factor of demand substitution: the cost of producing a new part
is higher than the cost of ‘producing’ a repaired part, while they are sold for the same price. In
SPS’ current inventory policy it is not possible to actively use N-stock as substitute for U-stock, as
described in Section 3.4. However, as mentioned before U-stock does not only consist of repaired
parts, but actually contains an unknown mix of repaired and new parts. For every demand from
a U-customer satisfied by U-stock there is a chance that the part allocated from U-stock is a new
instead of repaired. Hence, in the current inventory policy it is not possible to actively use new
parts from N-stock as substitute for empty U-stock to satisfy U-customer demand, but at the
same the warehouse passively uses new parts within U-stock to satisfy U-customer demand. While
these new parts within U-stock meet all the requirements necessary for N-customers, the warehouse
cannot use these parts for N-customers simply because it is not known which specific parts within
the U-stock are in fact new.

There is no visibility and no consistency in the inventory at U-stock. It is expected that not
knowing which parts in U-stock are new and which are repaired has a negative effect on service
levels and costs. Suppose there is demand for a new part of a certain SKU, while the N-stock of that
SKU is empty. There might be one or more new parts present within the U-stock. Since U-stock
cannot be used for N-customers, a very expensive (cost and time wise) emergency shipment from
the supplier is required to satisfy the demand. Moreover, when there are new and repaired parts
present in the U-stock at the same time while it is not known which specific parts in the stock are
new and repaired, it is possible that a new part is allocated to a U-customer while there are plenty
(cheaper) repaired parts available.

As explained before, replenishment orders for U-stock can contain repaired parts as well as new
parts. Introducing a hard split between a SKU’s stock of repaired parts and stock of new parts is
expected to have positive impact on both service levels as well as costs. Replenishment shipments
for U-stock that contain a repaired part will be put on U-stock. Replenishment shipments for U-
stock that contain a new part will be put on N-stock. When this hard inventory split is combined
with allowing demand substitution as proposed in design scenario 1, all parts that are ordered
as replenishment for U-stock can still be used to satisfy U-customers, even though some parts in
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these replenishment shipments might end up in N-stock. To the best of our knowledge, there is no
available literature on inventory control networks with a comparable policy.

Every time a replenishment shipment for U-stock contains a new part, putting this part on
N-stock instead of U-stock will allow the warehouse to use the part for both types of customers
instead of only for U-customers. A replenishment shipment for U-stock containing a new part
instead of a repaired part will be referred to as a ‘cross-replenishment’, because it results in N-stock
being replenished instead of U-stock. Is expected that cross-replenishments will increase network
performance because an increased pooling effect can be utilized from N-stock. Furthermore, demand
from U-customers would always be satisfied from U-stock unless U-stock is empty. When U-stock
consists only of repaired parts instead of a mix of repaired and new parts, this could increase the
portion of repaired parts used for satisfying U-customer demand. Only when U-stock is empty, will
the demand be satisfied from N-stock (unless this is also empty, then an emergency shipment is
required). Hence, while we would allow the warehouse to actively use N-stock as substitute when U-
stock is empty, combining this with a hard split of new N-stock and repaired U-stock could actually
reduce the total amount of new parts allocated to U-customers, in comparison with the current
situation of a mixed U-stock (design scenario 0). Therefore, it is expected that introducing a hard
inventory split with cross-replenishments, while allowing demand substitution, will positively affect
both the service levels and the costs. The proposed process flow of handling stock replenishments
at the RDC is given in Figure 7, the process flow of handling demand in Figure 6. This leads to
the proposal of the second alternative inventory control policy.

Design scenario 2: Introduce a cross-replenishment policy, in which new parts that are re-
ceived within replenishment shipments ordered for U-stock will be allo-
cated to N-stock instead of U-stock. These parts can then be used for
N-customers as well as for for U-customers in case U-stock is empty.

Figure 7: Process flow of handling stock replenishments in a cross-replenishment policy

Allowing N-stock to be used for U-customers when U-stock is empty results in an increased
total demand for N-stock. This can have a negative effect on the service rate for N-customers.
To safeguard the service rate for N-customers, the warehouse could reserve the last few parts on
N-stock solely for N-customers. Furthermore, in our problem context there is a penalty cost to
applying demand substitution because a new part is by definition more expensive than a repaired
part. Allowing demand substitution in the network but blocking it in some cases can therefore
have a positive impact on network costs. Such a policy is studied by Van Wijk et al. (2012),
where they evaluate a single-item multi-location inventory control model following basestock policy,
in which hold-back levels are applied to lateral transshipments. When warehouse A requests a
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lateral transshipment from warehouse B, this lateral transshipment is only accepted when the on-
hand stock level at warehouse B is above the hold-back level. By using hold-back levels in their
model, Van Wijk et al. (2012) manage to utilize the positive effects of lateral transshipments while
decreasing the negative effects. By blocking a portion of the demand that warehouse B receives
from warehouse A, it is possible that warehouse B can reach its target service level with a lower
basestock. While Van Wijk et al. (2012) apply hold-back levels to lateral transshipments, this
policy can also be applied to substitution. Similar policies are studied by Zhao et al. (2006) who
use game theory to solve a decentralized system where each dealer (warehouse) is independent from
each other, and Xu et al. (2003) who consider a two-location model that combines hold back levels
with a (Q, R) replenishment policy. In each paper a performance increase, either higher service or
lower cost or both, was realized by implementing hold-back levels. The remainder of the literature
review on hold-back levels is given in Appendix C.

In the third design scenario, we will study the effects of applying hold-back levels to demand
substitution. The process flow for handling customer demand with hold-back levels on substitution
is given in Figure 8.

Design scenario 3a: Apply hold-back levels on demand substitution to safeguard a portion of
N-stock for N-customers, while adhering the as-is replenishment policy
(extending design scenario 1),

3b: Apply hold-back levels on demand substitution to safeguard a portion of
N-stock for N-customers, while adhering the cross-replenishment policy
(extending design scenario 2).

Figure 8: Process flow of handling customer demand at the RDC, including one-way demand sub-
stitution with hold-back levels

13



4 Inventory control model

The main research setting throughout each design scenario discussed in section 3.2, regards a
single location that stocks two different variants of a single type of spare part (SKU): brand-new
and repaired. The goal is to find the optimal network configuration, by comparing the performance
and costs of the different design scenarios. Even though we consider two different variants of a
single SKU, we consider each of the variants to be a unique part. Therefore a two-item (or multi-
item) model is required. To be able to make a substantiated assessment of each design scenario’s
performance, research is conducted on mathematical inventory models available in literature.

The most comprehensive model is required for design scenario 3b, since this design scenario
contains the combination of each preceding design scenario’s inventory policy extensions. Conduct-
ing research on existing literature led to the following conclusion: there is no available literature
on spare part inventory control models that combine all features as required by design scenario 3b.
Therefore, the required functionalities of each design scenario are separated, to conduct literature
review on mathematical models for each of the them. In the literature review, suitable models
are analyzed to be combined into the development of new model. This new model will be able to
handle all required functionalities in each design scenario’s inventory control policy. In each model
section we will provide a summary of the relevant literature review, with the complete literature
review given in Appendix C.

From literature it is concluded that models as required for design scenario’s 0 and 1 have been
studied extensively. On the contrary, to the best of our knowledge, there is no literature available
on inventory control models that include cross-replenishments, or similar settings, as required for
design scenario 2 and 3b. Hold-back levels on demand substitution, as proposed in design scenario 3,
is a topic that has been studied before, but must be combined with a model for cross-replenishments.

Therefore, we will follow a step-by-step development approach. First, in section 4.1 we start
with a widely studied and proven single-echelon single-location two-item model, which will be the
base model. Second, with the base model as foundation, we will develop a new model extension for
our proposed cross-replenishment policy, in section 4.2. Last, in Section 4.3, we will combine the
newly developed model from section 4.2 with available literature on hold-back levels, to develop
the final model that is applicable to design scenario 3b as well as all preceding design scenarios.

4.1 Base model

4.1.1 Introduction

Mathematical models are used to evaluate the performance of each proposed design scenario. In
this section we will introduce the base model, which will act as the foundation on which further
model extensions are build.

The setting regards a single location which stocks two different variants of a single SKU. These
different variants are seen as unique parts, because both variants have their own stocking location,
customer group, and target service level. As explained in Section 3.2, the as-is inventory control
policy does not allow demand substitution between the two variants. However, allowing one-way
substitution (repaired parts with new parts, not vice versa) could increase the performance of the
spare part service network. Our base model is based on the model that is proposed by Reijnen
et al. (2009). They developed a fast and accurate approximation algorithm, that evaluates the
performance under given basestock levels. They also propose a heuristic to optimize the basestock
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levels. The proposed model and approximate evaluation algorithm allow easy adaption for devel-
oping model extensions. The proposed model by Reijnen et al. (2009) considers a multi-location,
single-item network with lateral transshipments between location. To fit the model to our network,
we change the setting to a single-location, multi-item network with substitution among the different
items. These two settings are equal from modeling perspective, no changes to the mathematical
model are required. Furthermore, we simplify two parts of the model: we only consider a two-item
setting instead of a multi-item setting, and we only consider one-way substitution instead of both
ways.

4.1.2 Model description

Consider a single-echelon, single-location, two-item, continuous time inventory control model with
basestock policy. Let I denote a set of stocking locations for a given SKU, with |I| = 2 since we
consider a single ‘type’ of SKU having two different stocking locations. Let i ∈ I be numbered {1, 2}.
Stock i = 1 denotes the stock location for brand-new parts (notice that stock i = 1 corresponds
with N-stock). Stock i = 2 denotes the stock location intended for repaired parts, but this stock can
also contain brand-new parts (notice that stock i = 2 corresponds with U-stock). There are also
two different types of customers. Type 1 customers strictly demand spare parts to be brand-new,
these customers therefore account for demand to stock i = 1 (corresponding with N-customers).
Type 2 customers do not have this strict requirement, and therefore account for demand to stock
2 (corresponding with U-customers). Hence, we denote type i ∈ I demand which corresponds with
type i stock. The two customer types are mutually exclusive; each customer is either type 1 or type
2. Spare part failure processes, and therefore the demand for spare parts, are assumed to follow
constant Poisson processes (Huyps, 2015). The sum of independent Poisson distributed random
variables with rates Xj , is known to also follow a Poisson distribution, with mean

∑
j Xj . This

allows us to aggregate the customers of each of the two customer types, resulting in a total demand
rate from type 1 customers to stock i = 1 and a total demand from type 2 customers for stock
i = 2. The demand for stock i ∈ I is indicated by λi. basestock policy, also known as an (S − 1, S)
policy, indicates that the on-hand stock of each i ∈ I plus the stock in transit is kept equal to
a pre-specified basestock level Si. Demand that cannot be satisfied from stock is satisfied by an
emergency shipment from the external supplier, which from modeling perspective is seen as a lost
sale. A vector containing both basestock levels is denoted by S. The lead time for replenishment
shipments is assumed to be exponentially distributed with mean trepi for stock i ∈ I. The mean
replenishment rate for stock i ∈ I is indicated by µi, with µi = 1/trepi .

When demand from customer type i ∈ I arises (type i demand), the demand can be satisfied
through one of following modes. The first mode is to allocate a part directly from stock i. When
there are no parts on-hand in stock i, the first alternative is to use a part from the other stock as
substitute. However, this can only be done if the part’s restrictions allow this and when there are
(enough) substitute parts available. Brand-new parts are suitable as substitute for repaired parts,
but not vice versa. Therefore, when type 2 stock is empty, parts on type 1 stock are suitable to
be used as substitute to satisfy type 2. Parts on type 2 stock are never allowed to be allocated
to type 1 demand. Notice that in design scenario 0, it is also not allowed to use type 1 stock for
satisfying type 2 demand. When substitution is not possible, the demand must be satisfied by the
second alternative mode; an emergency shipment from the external supplier. An illustration of
these demand allocation processes is given in figure 6.

The proportion of type i ∈ I demand that is satisfied directly from stock i is known as the
fill-rate, indicated by βi. The proportion of type i demand that is satisfied by emergency shipments
is indicated by θi. Demand type i = 2 also has a proportion of demand that is satisfied by allocating
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a part from stock i = 1 as substitute, indicated by α2. Since each demand is satisfied through one
of these modes, it holds that

β1 + θ1 = 1,

β2 + α2 + θ2 = 1.
(4.1)

The service contracts with customers specify certain maximum delivery times. When demand is
satisfied from the warehouse, regardless whether the warehouse ships the originally requested part
or viable substitute, the service time constraint will always be met. However, when the part must
come from an external supplier by means of emergency shipment, this delivery time constraint will
be violated. Accordingly, we introduce the term ‘demand satisfaction level’, denoted by

γ1 = β1,

γ2 = β2 + α2.
(4.2)

For both customer types, an individual target level is set for the demand satisfaction. The target
demand satisfaction level, for demand type i ∈ i, is denoted by γobji . The target demand satisfaction
levels are pre-determined and assumed to be sufficient to comply with each individual customer’s
service agreement.

The expected inventory network costs per time unit t are determined over all variable cost
factors. Fixed costs are left out of scope, because the model does not influence the fixed costs.
There are three different (variable) cost factors. The first cost factor is holding costs. The holding
costs per time unit t per item on stock are equal for both stock types, denoted by Ch. Holding costs
occur from the moment a part is ordered at the external supplier, until it is allocated to customer
demand. So, holding costs account for on-hand stock as well as parts in the replenishment pipeline.
In the basestock policy, for stock i ∈ I, the number of parts on-hand plus in the pipeline is always
kept equal to Si. The expected holding costs for stock i per time unit t are therefore determined
by SiC

h. The second cost factor is shipping costs. The warehouse must account for shipping costs
from the external supplier to the warehouse, while the customer accounts for shipping costs for
parts leaving the warehouse. Emergency shipment costs are also equal for both i ∈ I and therefore
denoted by Cem. The costs of an emergency shipment are determined as the extra costs, over
the costs of a regular replenishment shipment. This means that regular replenishment shipment
costs are occurred for each demand, regardless of the demand being satisfied from stock or by
emergency shipment. Thus, regular replenishment shipment costs are fixed and therefore not taken
into account in the model. The expected emergency shipment costs per time unit t are therefore
determined by λiθiC

em, for i ∈ I. Part acquisition costs per time unit also depend on demand
only, and are not influenced by the model. Moreover, acquisition costs correspond with the price
for which the part is sold to the customer. We do not account a profit for selling a part, and
assume the acquisition costs for type i = 1 stock to be equal to the selling price of type i = 1
stock and the acquisition costs for type i = 2 stock to be equal to the selling price of type i = 2
stock. Hence, acquisition costs are fixed and not taken into account in the expected (variable)
inventory network costs. In the as-is inventory policy, as explained in Section 3.4, demand type
i = 1 can only be satisfied by stock type i = 1 and demand type i = 2 can only be satisfied by
stock type i = 2. However, in the alternative design scenarios we extend the demand allocation
policies by allowing one-way demand substitution. Now, type 2 demand can be satisfied from stock
type 2 stock but also by using a part from type 1 stock as substitute. Type 1 stock consists only
of expensive brand-new parts, while type 2 stock consists mostly of cheaper repaired parts. This
leads to the third cost factor: the penalty costs for satisfying type 2 demand with a substitute part,
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denoted by Csub
2 . This penalty cost accounts for the difference in acquisition costs of the provided

substitute part from type 1 stock and a part for type 2 stock. The expected substitution penalty
costs per time unit t, for using parts from stock 1 as substitute for stock 2 demand, is determined
by λ2α2C

sub
2 . An overview of the notation and terms with their descriptions is given in Appendix

B.

4.1.3 Summary of the assumptions

To provide our results in this section, we make the following assumptions:

1. Poisson demand
Spare part component failure in capital goods is typically assumed to follow a Poisson pro-
cess. Additionally, previous research validates that this statement is true for SPS spare part
network; Huyps (2015) performed a generic χ2 test on five unique random SKUs to validate
the Poisson demand assumption. For each of the five SKUs, the hypothesis that demand
follows a Poisson process could not be rejected.

2. basestock policy
Inventory is controlled by a continuous (S − 1, S) policy, also known as basestock policy.
Capital asset spare parts are typically controlled by a basestock policy, because of their high
holding cost and low demand rates. Our scope only includes repairable ‘medical’ spare parts,
supporting this assumption.

3. Ample stock at external suppliers
The external suppliers are out of scope of our inventory control and assumed to have ample
stock. This allows us to limit the system to a single echelon.

4. External supplier of brand-new parts and repair vendor are same entity
Capital asset spare parts are typically very complex and custom-made for the company. For
this reason typically the initial supplier of the part is also responsible for executing repairs.
Hence, both brand-new parts as well as repaired parts are ordered from the same place.

5. Equal replenishment leadtimes per SKU variant
The average replenishment leadtime per part, are equal to each other for both variants of
stock for any given SKU.

6. Equal holding costs per SKU variant
The holding costs per part per time unit, are equal for both variants of stock of any given
SKU.

4.1.4 Model objective

The model objective is to determine the optimal basestock policy in terms service levels and costs.
Each customer type has an individual constraint for the demand satisfaction level. Therefore, the
following inequalities must hold: γ1(S1, S2) ≥ γobj1 and γ2(S1, S2) ≥ γobj2 . The optimal basestock
policy is achieved by finding the configuration of basestock levels that provides the lowest expected
costs, while respecting the demand satisfaction constraints.

The total costs per time unit consists of the holding costs, emergency shipment costs, and
penalty costs for applying demand substitution, as explained in Section 4.1.2. The total expected
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costs per time unit t, for given basestock levels S1 and S2), is denoted by C(S1, S2) and determined
by

C(S1, S2) = (S1 + S2)C
h + (λ1θ1 + λ2θ2)C

em + λ2α2C
sub
2 . (4.3)

The mathematical optimization problem is formulated below;

minimize C(S1, S2)

subject to γ1(S1, S2) ≥ γobj1 ,

γ2(S1, S2) ≥ γobj2 ,

S1 ∈ N0,

S2 ∈ N0.

(4.4)

4.1.5 Evaluation

The approximate evaluation algorithm is based on the Poisson overflow algorithm, described by
Reijnen et al. (2009). This is a well-known algorithm, widely used in literature to evaluate the
performance of spare part service networks for a given basestock policy S = (S1, S2). Not all
functionalities that Reijnen et al. (2009) uses are required for our model, so we describe a simplified
form of the approximate evaluation algorithm, which is applicable to our single-location two-item
inventory control model. Values for βi, θi, and α2 will be approximated and we will determine the
expected costs C(S). A solution of S is only feasible when the demand satisfaction constraint γobji

is met for both demand types i ∈ I.
The behavior of any stock i ∈ I can be evaluated using the Erlang loss model (Tijms, 2003).

An example of the transition rates of type 2 stock for a given basestock level is Figure 4.1.5. In the
Erlang loss model, we see each item within the basestock of stock i as being an individual server.
Thus, type i stock has Si servers with i.i.d. replenishment rate µ = 1/trep. A server is idle when the
item is present in on-hand stock (Xi) and a server is busy (replenishing) when the item is missing
from on-hand stock. Steady state behavior of on-hand stock is equal to steady state behavior of
idle servers in the Erlang loss system, with Si servers and offered load ρi = λit

rep. The Erlang loss
function is given by

Li =
ρSi
i /Si!∑Si

n=0 ρ
n
i /n!

, ∀ i ∈ I. (4.5)

In the Poisson overflow algorithm of Reijnen et al. (2009), the Erlang loss model is used to
determine initial results for the fill-rate of each type of demand. These initial results for the fill-
rate are used to determine the demand overflow. Demand overflow is the unsatisfied demand for
a certain part’s stock, that flows over to another part’s stock. Hence, for our model we consider
demand overflow from stock 2 to stock 1 while we do not consider demand overflow from stock
1 to stock 2. In the model of Reijnen et al. (2009), they consider demand overflow going both
ways. This is a typical assumption in spare part literature with lateral transshipments (Reijnen
et al. (2009), Van Wijk et al. (2012), Van Houtum & Kranenburg (2015)). In these models, the
initial fill-rates are used to determine the demand overflow, and the demand overflow is used to
update the fill-rates. These steps are performed iteratively, until the change in fill-rate between
two consecutive iterations is almost negligible. However, since we consider two types of stock, a
single warehouse location, and only one-way substitution, we do not need this iterative procedure
for the approximate evaluation algorithm. The fill-rate of type 2 demand influences the demand
overflow to type 1 stock, and therefore the fill-rate of type 1 demand. The fill-rate of type 1 demand
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however, does not influence any demand overflow and therefore does not influence the fill-rate of
type 2 demand. This allows us to perform the approximate evaluation algorithm in three main
steps, instead of requiring the iterative procedure. First, determine the behavior of type 2 stock
with the Erlang loss model. Second, determine the demand overflow from type 2 stock to type
1 stock. Third, determine the behavior of type 1 stock while taking the demand overflow into
account. Notice that this gives an exact evaluation of the behavior of type 2 stock.

Figure 9: Example of the transition rates for given individual part i = 2, with S2 = 3

Thus, the behavior of type 2 stock is determined using equation 4.5. The fill-rate of any demand
type i ∈ I is determined by the chance of having at least one part on-hand on stock i. Therefore,
the fill-rate for is determined by

βi = 1− Li, ∀ i ∈ I. (4.6)

The fill-rate of type 2 demand, β2, is used to determine the demand overflow. The demand overflow
is denoted by λ̂2, and corresponds with the average rate per time unit t at which type 2 demand
cannot be satisfied from type 2 stock and flows over to type 1 stock. This rate is determined by

λ̂2 = (1− β2)λ2. (4.7)

The memoryless property of the Poisson distribution states that each demand is mutually indepen-
dent from each other. This allows us to determine the total average demand rate that type 1 stock
experiences by

Λ1 = λ1 + λ̂2. (4.8)

A stock that receives demand overflow will experience a potential increase in offered load. An
initial value of the offered load was determined by ρi = λit

rep
i . The offered load for type 1 stock is

now updated by taking demand overflow into account, and determined by

ρ1 = Λ1t
rep. (4.9)

It still holds that ρ2 = λ2t
rep. Using the updated offered load in the Erlang loss function given in

Equation (4.5), allows us to evaluate the behavior of type 1 stock while taking the behavior of type
2 stock into account. An example of the transition rates type 1 stock, including demand overflow,
is given in Figure 10

To finalize the approximate evaluation, we determine the proportion of type 2 demand that is
satisfied by means of substitution

α2 =
λ̂2
λ2
β1. (4.10)

Demand that cannot be satisfied from stock mu be satisfied by an emergency shipment from the
external supplier. The proportion of demand satisfied by emergency shipment follows from Equation
(4.1) and Equation (4.2), and is determined by

θi = 1− γi, ∀ i ∈ I. (4.11)
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Figure 10: Example of the transition rates for type 1 stock, with S1 = 2

The formal algorithm for the approximate evaluation is given in Algorithm 1.

Algorithm 1: Approximate evaluation for two-item, single location spare part service
networks, with one-way demand substitution

Input
I = {1, 2},
initialize values for; S1, S2, λ1, λ2, t

rep,

set λ̂2 = 0.

Step 1: Evaluate behavior of stock 2
determine fill-rate β2, using (4.6) and ρ2 = λ2t

rep.

Step 2: Determine influence of stock 2 on stock 1

update the demand overflow rate λ̂2, using (4.7).

Step 3: Evaluate behavior of stock 1
determine total demand rate Λ1, using (4.8),
determine offered load ρ1, using (4.9),
determine fill-rate β1, using (4.6).

Finalization
determine α2, using (4.10),
γ1 and γ2, using (4.2),
θ1 and θ2, using (4.11).

4.1.6 Optimization

In the previous section we described an approximate algorithm for the evaluation of a system with
given basestock levels. In this section we propose a heuristic method to find a good solution to
the optimization problem (4.4). In an enumeration method we test each possible combination of
S1 and S2, until the total set of feasible solutions ϕ(S1, S2) is defined. To prevent the enumeration
from running perpetually increasing S1 and S2, it is constrained by upper bounds Sub

1 and Sub
2 .

Type 1 stock can be used to satisfy type 1 demand and type 2 demand. Type 2 stock can only
be used to satisfy type 2 demand. Hence, the upper bound for type 1 stock is found by setting
S1 = 0 and S2 = 0, and incrementing S1 until both demand satisfaction levels achieve the following
inequality; γ1 ≥ γobj1 + (1− γobj1 )/2 and γ2 ≥ γobj2 + (1− γobj2 )/2. Notice that set the upper bound
at the basestock level for which both demand types have double the demand satisfaction level as
is required by the target level (example: suppose γobj1 = 0.90, then γobj1 + (1 − γobj1 )/2 = 0.95).
This is done because reaching the target service level does not mean that increasing the basestock
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by 1 increment always results in an increase of the total expected costs. The expected holding
costs increase, but the expected emergency shipment costs decrease. The upper bound for type 2
stock is found by setting S1 = 0 and S2 = 0, and incrementing S2 until γobj2 ≥ γobj2 + (1 − γobj2 )/2
is met. The set of feasible solutions ϕ(S1, S2) is therefore defined by enumerating each possible
basestock combination of basestock levels (S1, S2), from (0, 0) up to (Sub

1 , S
ub
2 ), and removing each

solution for which either γobj1 or γobj2 is not met. The optimal basestocks levels, S∗
1 and S∗

2 , are
determined by selecting the basestock combination with the lowest expected costs from the set of
feasible solutions. The optimization algorithm is given in Algorithm 2.

Algorithm 2: Optimization of basestock levels by enumeration

Initialization
I = {1, 2},
determine Sub

1 , by calculating lowest S1 for which γ1 ≥ γobj1 + (1− γobj1 )/2 and

γ2 ≥ γobj2 + (1− γobj2 )/2, with S2 = 0,

determine Sub
2 , by calculating lowest S2 for which γ2 ≥ γobj2 + (1− γobj2 )/2, with S1 = 0,

set S1 = 0 and S2 = 0,
set S∗

1 to S1 and S∗
2 to S2,

set C(S∗
1 , S

∗
2) to ∞.

for S1 = 0 to Sub
1 do

for S2 = 0 to Sub
2 do

determine γ1(S1, S2) and γ2(S1, S2),
determine C(S1, S2),

if C(S1, S2) < C(S∗
1 , S

∗
2) & γ1(S1, S2) ≥ γobj1 & γ2(S1, S2) ≥ γobj2 , then

set S∗
1 to S1,

set S∗
2 to S2.

end if
end for

end for

Finalization
The optimal solution is found at S∗

1 , S
∗
2 .

4.2 Model extension by including cross-replenishments

4.2.1 Introduction

In this section we propose a new feature to the inventory control model described in Section 4.1.
Besides allowing the warehouse to apply demand substitution, we also allow the external supplier
to apply demand substitution. Stock i = 1 is intended for brand-new parts and stock i = 2 is
intended for repaired (or used) parts. When the warehouse orders a replenishment for type 2
stock, it is possible that the warehouse receives a brand-new part instead of a repaired part. The
warehouse does not know whether a repaired or brand-new part shipped when ordering a type 2
stock replenishment. Whether the part is repaired or brand-new is noticed when the shipment is
physically received. When the warehouse receives a brand-new part in a replenishment shipment
intended for type 2 stock, it will now be put on stock type 1 stock instead of type 2 stock. Hence,
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on-hand stock level X1 is actually replenished instead of on-hand stock level X2. This effect is
referred to as a ‘cross-replenishment’. A type 2 stock replenishment shipment that contains a
repaired part will be put on type 2 stock. Type 1 stock replenishment shipments always contain
brand-new parts and never contain repaired parts. Thus, cross-replenishments can only occur from
stock i = 2 to i = 1, and not vice versa. When a cross-replenishment arrives at the warehouse, this
means that X2 does not receive its ordered replenishment. Hence, a new replenishment shipment
is ordered for X2. There are many different reasons for a supplier to ship a brand-new part instead
of a repaired part. The most important factors are

� too few parts being send into actual repair process due to demand uncertainty,

� the supplier not receiving enough defective parts to repair,

� long repair lead times,

� unsuccessful repairs,

� limited repair capacity.

The assumption that all external suppliers have ample stock, as made in the previous sections,
must therefore be removed. Ample stock of brand-new parts is still assumed, since the production
restrictions do not apply to brand-new parts. Besides the case of new versus repaired spare part
variants, the model we will describe in this section can be applied to any real-life case where a spare
part service network allows a supplier to send a different part when they are unable to satisfy the
originally requested part. The only restriction that applies, is that the supplier must send a part
that can be used as substitute for the original requested part. The substitute part must have at
least equal performance to the original requested part. It could regard a brand-new variant instead
of a repaired variant, as is the main case in this research, but it could also regard a comparable
part of higher quality, a part that offers the same and more functionalities, a comparable part
but in different color (in cases where the part aesthetics are not relevant), or any other similar
case where the substitute part offers at least equal performance as the originally requested part.
Since the substitute part can be allocated to all customers of the originally requested part, as well
as to customers that strictly request the substitute part itself, it is expected that service levels
of the spare part service network will increase. Moreover, by definition a given part can only be
substituted a part that offers equal or greater performance. Hence, the substitute part has an equal
or higher value than the original part. When there is a difference in acquisition costs between the
two parts, the cross-replenishment policy is expected to result in savings in acquisition costs. This
acquisition cost saving results from the warehouse ordering a replenishment for stock i = 2, with
corresponding acquisition costs. When the received spare part can, and will, be put on stock i = 1
while the average acquisition costs of stock i = 1 are higher, the warehouse saves this difference in
acquisition costs.

The approximate evaluation algorithm described in section 4.1 is based on an important as-
sumption: the replenishment processes and stock levels of each i ∈ I are independent from each
other. This assumption allows each stock i ∈ I to be analyzed independently, in order to determine
approximations for performance of the whole network. However, for cases where replenishment
shipments for a certain stock (stock 2) have the possibility to contain a different part than re-
quested (a part corresponding with stock 1), the total replenishment rate for stock 1 at time t is
not only dependent on the current on-hand level of stock 1 itself. The total incoming replenish-
ments shipments for stock 1 at time t is also dependent on the current replenishment rate for stock
2, and therefore on the on-hand stock level X2. This is in direct conflict with the independence
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assumption made in section 4.1, as based on the model by Reijnen et al. (2009). In this section
we propose a new algorithm, to solve this conflicting issue and to solve inventory control models
with cross-replenishments. The algorithm is based on a combination of three different models and
algorithms; the Poisson overflow algorithm introduced by Reijnen et al. (2009), the approximate
evaluation including state-dependent demand rates introduced by Van Wijk et al. (2012), and the
evaluation algorithm for systems with heterogeneous servers introduced by Saglam & Shahbazov
(2007).

The remainder of this section is organized as follow. In Section 4.2.2 we describe the math-
ematical inventory model, with the assumptions stated in Section 4.2.3. The model objective is
explained in Section 4.2.4. In Section 4.2.5 we describe the approximate evaluation method of
networks with given basestock levels. In Section 4.2.6 we describe optimization of basestock levels
for inventory control networks with cross-replenishment policy.

4.2.2 Model description

In this section we extend the model described in Section 4.1. Hence, we will only describe new and
changed model features. Equation (4.5), proposed in section 4.1, is used to determine the chance
that all servers of stock i are busy, equivalent to the chance of having no stock on-hand (each server
of stock i corresponds with 1 item in Si, with a server being busy when the item is not on-hand).
Let yi denote the number of busy servers for any stock i ∈ I. Then yi is equal to Si − Xi. The
number of busy servers is at most equal to the basestock level; ymax

i = Si − 0 = Si, since in this
state the on-hand stock is completely empty and each item of basestock Si is being replenished.

When a warehouse requests a replenishment for stock i = 2, but receives brand-new part instead
of a repaired part, the received part is put on stock i = 1. Hence, the on-hand stock level X1 receives
a cross-replenishment. The number of cross-replenishments per time unit t, that stock 1 receives
from replenishment orders intended for stock 2, is denoted by µ̂2. It is possible that a cross-
replenishment arrives when the on-hand stock level X1 is already equal to its basestock level S1.
Therefore, it is possible that the on-hand stock level X1 exceeds its pre-specified basestock level S1.
While we do allow on-hand stock to exceed the basestock level when receiving a cross-replenishment,
it is undesired that the on-hand stock grows excessively. In theory, it is possible that the on-hand
stock grows perpetually over time. Suppose for a given SKU there is a low availability of repaired
parts at the supplier, while the supplier is allowed to substitute repaired parts by brand-new parts.
The warehouse will keep replenishing type 2 stock, while receiving brand-new parts that are put
on type 1 stock, until X2 reaches S2. If the average type 1 demand rate is very low, then it could
be possible that rate at which cross-replenishments arrive at type 1 stock is higher than the type
1 demand, resulting in a perpetually growing type 1 stock. This would be an extreme case, but
since supply and demand are not deterministic, a warehouse can experience peaks of relatively low
demand for a part while receiving relatively many cross-replenishments. Holding costs are known
to be one of the biggest cost factors, so having excessive stock would result in significantly increased
inventory network costs. Hence, we will restrict on-hand level for type 1 stock, to prevent it from
growing exceptionally high. The on-hand level of type 1 stock, X1, has an upper bound equal to
the sum of the basestock level of type 1 stock itself, plus the basestock level of type 2 stock (from
which it can receive cross-replenishment shipments). This upper bound is based on the following
assumption: when a certain type of stock can be used to serve its own demand, as well as serve as
substitute for another stock’s demand, it would never be desired to have a higher on-hand stock
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level than the sum of both pre-determined basestock levels. Correspondingly, the upper bound for
the on-hand level of type 2 stock is equal to its basestock level S2, similar as described in the model
of Section 4.1. The maximum on-hand stock level for any stock i = 1 and i = 2, denoted by Xub

i ,
is therefore constrained by;

Xub
1 = S1 + S2,

Xub
2 = S2.

(4.12)

When a warehouse receives cross-replenishment for stock i = 1, while X1 = Xub
1 , the received

part is put on the originally requested stock i = 2. Note that in the previous policy, as discussed
in section 4.1, this is always the case; in the policy of section 4.1 replenishment shipments that
are ordered for type 2 stock are always put on type 2 stock, regardless of the received part being
brand-new instead of repaired. In the newly proposed policy this only occurs when the on-hand
stock level is equal to the upper bound.

The proposed policy is referred to as the ‘cross-replenishment policy’. The policy respects
suppliers’ part availability uncertainty while also preventing the warehouse on-hand stock to grow
out of proportion. As result of the cross-replenishments, it is expected that the average on-hand
stock level of type 1 stock is increased, compared to its average on-hand stock level in a regular
base-stock policy. It is therefore expected that for a network with given basestock levels, the
demand service levels will increase but the holding costs will also increase. While the holding costs
increase, it is expected that the savings in acquisition costs as result of the cross-rpelenishments
will compensate for the increased holding costs. It is furthermore possible that with the cross-
replenishment policy, a inventory control network can reach its target performance levels with
lower basestock levels, than would be required in a basestock policy without cross-replenishments.
This can be a result of increased pooling effect, because type 1 stock can be used for both demand
types. Hence, it is also possible that the holding costs are decreased.

The acquisition costs of a part brand-new part are by definition higher than the costs of a
repaired part (notice that stock i = 1 can only be replenished by brand-new parts and stock i = 2
can be replenished by repaired as well as brand-new parts). In section 4.1.2 we identified the cost
factor Csub

2 as the penalty cost for satisfying type 2 demand by allocating a part from type 1 stock
as the substitute, with the penalty cost accounting for the difference in average acquisition costs
between the two types of stock. With cross-replenishments we apply the same logic to the supply
side of the warehouse instead of the demand side. Instead of satisfying type 2 demand by a part
from type 1 stock, and occurring a penalty cost corresponding with the price difference (Csub

2 ), we
now apply the exact opposite: we order, and therefore pay, for a replenishment for type 2 stock,
receive a ‘substitute’ part which is put on type 1 stock, and therefore experience a savings in costs
equal to the difference in average acquisition costs between the two types of stock. The cost savings
per cross-replenishment are denoted by Ccr

2 . When a cross-replenishment arrives at type 1 stock,
while there is already a replenishment order for a type 1 stock in the pipeline, then this pipeline
replenishment shipment of type 1 stock is canceled. This is done for two reasons. The first reason is
that the replenishment shipment for this stock was ordered because a part was needed according to
the basestock policy, but after the cross-replenishment arrived, the on-hand stock is already at the
desired level. The part in the pipeline is no longer needed, so it is canceled to prevent unnecessary
holding costs. The second reason this allows us to furthermore reduce the number of brand-new
parts flowing into the network. Therefore, canceling a pipeline replenishment order for type 1 stock
and re-ordering a part for type 2 stock after a cross-replenishment occurs, helps reducing the total
network costs. Not every cross-replenishment shipment that arrives at the warehouses results in an
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actual cross-replenishment, due to the upper bound for on-hand type 1 stock. Hence, the expected
cost savings as result of cross-replenishments are determined as µ̂2(1 − P [X1 = Xub

1 ])Ccr
2 . The

holding costs per time unit are determined over number of parts on-hand and in the replenishment
pipeline. In Section 4.1, the replenishment processes always followed a basestock policy, hence
the parts on-hand plus the parts in the replenishment pipeline for any stock i ∈ I were always
equal to Si. This no longer holds for the cross-replenishment policy, because on-hand stock level
X1 can exceed the basestock S1. Moreover, the number of parts in the replenishment pipeline no
longer equal to Si −Xi for both types of stock. The expected holding costs per time unit are now
calculated by determining the average number of parts on-hand;

E[X1 +X2] =

Xub
1∑

k=0

P [X1 = k] · k +

S2∑
n=0

P [X1 = n] · n, (4.13)

and the average number of parts in the pipeline;

E[PL1 + PL2] = λ1(1− θ1)trep + λ2(1− θ2)trep. (4.14)

Notice that to determine the average number of parts in the pipeline we use assumptions (5) and
(6); for a given SKU, the replenishment leadtime is equal for for both stock types i ∈ I, and the
holding costs are equal for for both stock types i ∈ I.

4.2.3 Summary of the assumptions

All assumptions stated in Subsection 4.1.3 hold, except when stated otherwise. The assumptions
listed below are additional assumptions required for the cross-replenishment model extension.

7. Cross-replenishments for type 1 stock
When a supplier has insufficient not able satisfy a replenishment order for stock i = 2 by a
repaired part, he is allowed to send a brand-new part instead. The warehouse stocks puts
the part on stock i = 1, as is intended for brand-new parts. The warehouse pays for the
repaired part as has been ordered. A part can only be used as substitute if it has at least
equal performance as the originally requested part. Hence, the supplier is not allowed to
send a repaired part when a brand-new part is ordered, thus stock i = 2 does not receive
cross-replenishments.

8. Cross-replenishment visible after receiving shipment
The warehouse does not know whether the supplier sends a brand-new or repaired part when
a replenishment order for stock i = 2 is placed. This is known at the moment the warehouse
physically receives the shipment.

9. basestock policy with cross-replenishments
For each stock i ∈ I, the warehouse replenishes the stock continuously until the on-hand stock
level plus pipeline stock reaches basestock. The pipeline stock is equal to all outstanding
replenishment orders. When there is a cross-replenishment in the pipeline, this is not known
until it is received. Hence, the warehouse ‘sees’ a replenishment for the originally requested
stock i = 2, and does not see a cross-replenishment for stock i = 1.

10. Cross-replenishment replaces possible pipeline order
When the warehouse orders a replenishment shipment for stock i = 2, but receives a brand-
new part instead of a repaired part, the on-hand level of stock i = 1 is actually replenished
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instead of the on-hand level of stock i = 2. A replenishment shipment for stock i = 2 is
reordered immediately. If there is an outstanding replenishment shipment for stock i = 1,
this shipment is no longer needed because the stock is already replenished. Thus, if stock
i = 1 receives a cross-replenishment while there is a replenishment shipment for this stock
i = 1 in the pipeline, the pipeline shipment is canceled.

11. Maximum on-hand stock level
The on-hand stock of a part is limited to a maximum, equal to the sum of its own basestock
level plus the basestock level of a stock for which it can be used as substitute.

12. No cross-replenishments when stock is at maximum level
A cross-replenishment arriving at stock i = 1, while the on-hand level of stock i = 1 is equal
to its maximum level, will be put on the originally ordered stock i = 2.

4.2.4 Model objective

Extending the inventory control model from section 4.1 with cross-replenishments affects the be-
havior of the inventory network, and therefore the expected performance and costs. However, the
objective of the model does not change: find the configuration of basestock levels S1 and S2, that
achieve the demand satisfaction constraints with the lowest expected costs.

The implementation of a cross-replenishment policy adds a new cost factor to the cost function,
as explained in Subsection 4.2.2. The total expected costs per time unit t depend on the expected
holding costs, the expected shipping costs, the expected substitution penalty costs, and the expected
cross-replenishment cost savings. The total expected costs per time unit t, for given basestock levels
S1 and S2, is therefore determined by

C(S1, S2) = (E[X1 +X2] + E[PL1 + PL2])C
h + (λ1θ1 + λ2θ2)C

em

+λ2α2C
sub
2 − µ̂2(1− P [X1 = Xub

1 ])Ccr
2 .

(4.15)

In this cost function the term µ̂2 denotes the number of cross-replenishments arriving per time unit
t, as result of replenishment shipments ordered for type 2 stock. Using this updated cost function,
and taking cross-replenishments into account in evaluating system behavior, the mathematical
optimization problem is as given in (4.4).

4.2.5 Approximate evaluation

Replenishment (in)accuracy and cross-replenishment rate
Spare part service networks with basestock policies are typically assumed to have homogeneous
replenishment rates; for given stock i, any item missing from basestock is replenished with equal
(homogeneous) rate µi. The actual replenishment rate for part i at time t in a system with
homogeneous servers is dependent on the number of items not present on-hand, given by µi(t) =
(Si − Xi(t))µi. In our inventory network, type 1 stock is used for a SKU’s brand-new parts
and type 2 stock is intended for a SKU’s repaired parts, but can contain brand-new parts as
well. Replenishment shipments that are ordered for type 2 stock have a chance to contain a
brand-new part instead of a repaired part. Let r2 represent the replenishment accuracy of type
2 stock; the chance that a replenishment shipment ordered for type 2 stock actually contains a
repaired part. The actual replenishment rate for type 2 stock at time t is therefore determined
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by µ2(t) = r2(S2 −X2(t)). The chance that a replenishment shipment for type 2 stock contains a
brand-new part (which corresponds with type 1 stock) is referred to as replenishment inaccuracy
r̂2. It therefore holds that

r1 = 1,

r2 + r̂2 = 1.
(4.16)

The replenishment rate µ2(t) = r2(S2 −X2(t)) is not exact but an approximation. The upper
bound Xub

1 , and Assumption 6, state the following: when X1(t) = Xub
1 and a replenishment ship-

ment for type 2 stock turns out to contain a brand-new part, we do not apply a cross-replenishment.
The received part put on type 2 stock, as has been ordered. Therefore, the exact replenishment rate
for stock 2 at time t is equal to: µ2(t) = r2(S2−X2(t))µ2, if X1(t) < Xub

1 , and µ2(t) = (S2−X2(t))µ2
if X1(t) = Xub

1 . However, by definition the chance of having Xub
1 parts on-hand on type 1 stock is

very small, with the chance of receiving a cross-replenishment while Xub
1 being even smaller. More-

over, the actual level of X1 is unknown when evaluating stock i = 2. This chance is therefore not
taken into account in the approximate evaluation method. The effect this on the accuracy of the
approximate evaluation method will be analyzed in the validation of the method, in Appendix D.2.

The replenishment (in)accuracy is assumed to be given and constant in time. The concept of
replenishment (in)accuracy can be applied to any case that does not assume ample stock at the
suppliers and allows the suppliers to substitute parts. For any stock i ∈ I, the actual replenish-
ment rate for each level of on-hand stock, as well as the chance that this replenishment shipments
contains a different part, are known. The average number of parts per time unit t, that arrive at
stock i = 1 as result of replenishment shipments intended for stock i = 2, is referred to as the av-
erage cross-replenishment rate µ̂2. When at given time t the number of parts in the replenishment
pipeline of stock 2 is equal to S2 − X2(t), then the cross-replenishment rate at time t is equal to
µ̂2(t) = r̂2(S2 −X2(t))µ2.

When evaluating behavior of stock i = 1 by equation (4.5), the actual on-hand stock level
(and therefore the actual replenishment rate) of stock i = 2 is unknown. However, since we can
evaluate the behavior of any stock individually, we can approximate the average cross-replenishment
rate µ̂2 based on the behavior of stock 2. The average cross-replenishment rate is approximated
by taking the product of the stationary probability distribution (SPD) of each possible on-hand
stock level for stock 2, the corresponding replenishment rates for each on-hand stock level, and
the replenishment inaccuracy r̂2. This average cross-replenishment rate arriving at stock 1, as
result of replenishments shipments requested for stock 2, is therefore determined by µ̂2 =

(
P [X2 =

S2] · 0 + P [X2 = S2 − 1] · 1, . . . ,+P [X2 = 0] · S2
)
· µ2 · r̂2. The formal equation for the average

cross-replenishment rate from stock 2 to stock 1 is given by;

µ̂2 = µ2 · r̂2
S2∑
k=0

P [X2 = S2 − k] · k. (4.17)

Stationary probability distribution
In modeling spare part service networks it is typically assumed that on-hand stock levels do not
exceed the basestock levels. Furthermore, as stated before, it is typically assumed that stock is
replenished by homogeneous servers, where each item missing from stock i (each busy server) has an
independent and identically distributed (i.i.d.) replenishment process with average rate µi. These
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two assumptions allow the behavior of each stock i ∈ I in the spare part service network to be
determined by Equation (4.5). In the proposed cross-replenishment policy both these assumptions
are violated. As mentioned before, when dealing with cross-replenishments it is possible for the
on-hand stock level to exceed its pre-specified basestock. Furthermore, allowing on-hand stock to
exceed the basestock level, as well as including a stationary cross-replenishment rate, violates the
assumption that each busy server has an i.i.d. replenishment process. Therefore, in the rest of
this section we show how we can extend Equation (4.5) to be equivalent to the cross-replenishment
policy.

On-hand stock level for stock i = 1 can vary from 0 to Xub
1 = S1 + S2. This means that the

Erlang loss system of stock i = 1 has S1 + S2 + 1 states and S1 + S2 servers. For stock i = 2,
the assumption that all servers follow an i.i.d. replenishment process still holds, since Xub

2 = S2
and this stock does not receive cross-replenishments. For stock i = 1 this assumption does not
hold, however the assumption still holds for a subset of the servers: each missing item from the
basestock level S1 is replenished with an i.i.d. process with rate µ1. Thus, there are exactly S1
servers following an i.i.d. replenishment process with rate µ1. Besides this first group of servers,
which account for replenishment shipments requested by stock i = 1 itself, we must also account for
the cross-replenishments coming from stock i = 2. The cross-replenishment rate does not follow the
i.i.d. replenishment process of µ1. Since the cross-replenishment rate is determined as an average
term (Equation (4.17)), the cross-replenishment rate from stock 2 to stock 1 can be approached as
being a single server with replenishment rate µ̂2.
When the on-hand level of stock i = 1 is equal to Xub

1 , the on-hand stock is at its maximum, thus
there are no busy servers. When the on-hand stock is empty, X1 = 0 and all S1 + S2 servers are
busy. As stated above, only the servers accounting for stock levels below basestock follow an i.i.d.
process with rate µ1. Hence, the number of busy servers with i.i.d. rate µ1 is known for any given
on-hand stock level, being equal to (S1 −X1)

+. The cross-replenishment rate µ̂2 is determined as
an average rate, independent of the actual on-hand level of either stocks i = 1 and i = 2. Hence,
for stock i = 1 there is one server with rate µ̂2, accounting for cross-replenishments coming from
stock i = 2. This server is always busy, except when the on-hand stock plus pipeline stock of i = 1
is equal to Xub

1 . This leaves the remainder of S2−1 servers. These servers account for the fact that
the cross-replenishment rate is determined as an average term, independent of the actual on-hand
stock levels. Therefore, these are dummy servers with a replenishment rate equal to 0.
Thus, for any stock i = 1 the number of busy servers in stock with replenishment rate µ1, as well as
the number of busy cross-replenishment servers with corresponding rate, is known for each possible
on-hand stock level X1 ∈ {0, ..., Xub

1 }. Hence, the number of busy dummy servers is known as well
for each on-hand stock level, determined by (S2 + 1−X1)

+. For stock i = 2, all servers follow an
i.i.d. replenishment process with rate µ2, and the number of busy servers is determined by S2−X2.
The SPD of stock i = 2 therefore follows from Equation 4.5, and is determined for each possible
number of busy server y by

L2(y) =

λy2
µy2y!

S2∑
n=0

λn2
µn2n!

, y = 0, . . . , S2. (4.18)

While the servers of stock i = 1 do not follow i.i.d. replenishment processes, it is known which
specific servers are active and which specific servers are idle for each possible level of on-hand stock.
An Erlang loss system in which the servers do not follow i.i.d. replenishment processes is referred

28



Figure 11: Example of the transition rates for type 1 stock (i = 1) (top) and type 2 stock (i = 2)
(bottom), with S1 = 2, S2 = 3

to as a system with heterogeneous servers. Equations (4.5) and (4.18) are based on the assumption
of homogeneous servers, and can therefore not be used for stock i = 1. To solve Erlang loss systems
with heterogeneous servers we will make use of available literature. Saglam & Shahbazov (2007)
study such a system, where they provide the probability of losing a customer in queuing networks
with heterogeneous servers. In their paper, when evaluating systems with heterogeneous servers,
only the number of busy servers is known. It is typically not known which specific servers are
busy. Thus, in systems analyzed by Saglam & Shahbazov (2007) it is not known what the total
replenishment rate of the busy servers is for any given number of busy servers. An approximation is
required to account for each possible combination of busy servers and corresponding replenishment
rates. However, in our system, we can make use of a helpful feature; even though the system has
heterogeneous servers, it is known exactly for any possible state of on-hand stock which servers
are busy and which are idle. Therefore, it is not required to account each state for all its possible
combinations of servers and replenishment rates. This property simplifies the problem and model
proposed by Saglam & Shahbazov (2007).

In this chapter we make use of the feature that the total replenishment rate is known for each
possible state of on-hand stock. So, we denote by η1(X1) the total state-dependent replenishment
rate for type 1 stock, at on-hand stock level X1. The total state-dependent replenishment rate for
type 1 stock is determined by

η1(X1) = (S1 −X1)
+µ1 + µ̂2, for all 0 ≤ X1 ≤ Xub

1 . (4.19)

In Figure 11 an example is given to illustrate the transition rates for given stock types i = 1
and i = 2. In the figure, it is clearly shown that even though we do not assume homogeneous
servers, the total replenishment rate is still known for each possible state of on-hand stock. The
figure also clearly shows that the on-hand stock level X1 can only exceed its basestock level S1
in case a cross-replenishment occurs, while the direct demand and overflow demand processes are
equal in each state of on-hand stock.

With the total replenishment rate known for each possible state, we can determine the SPD
for stock i = 1. The SPD for stock i = 1, in the system with heterogeneous servers and cross-
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replenishments, is determined for each possible number of busy servers y by

L1(y) =

Λy
1

y∏
k=1

η1(X
ub
1 − k)

Xub
1∑

n=0

Λn
1

n∏
m=1

η1(X
ub
1 −m)

, y = 0, . . . , Xub
1 . (4.20)

Performance indicators
The service levels for each type i ∈ I demand are measured by the fraction of demand that is
satisfied from stock directly (fill-rate βi), the fraction of demand that is satisfied using part from
the other stock type as substitute (αi), and the fraction of demand that is satisfied by an emergency
shipment (θi). These performance indicators are required to determine the expected network costs.
The fill-rate is calculated similar to (4.6). However, one needs to take into account that there is
a new limitation to on-hand stock level for stock type i = 1. The on-hand stock level X1 can
reach up to Xub

1 instead of S1. So, the on-hand stock of i = 1 is not empty when there are S1
busy servers; it is empty when there are Xub

1 busy servers. For stock i = 2, which does not receive
cross-replenishments, these two terms are equal; S2 = Xub

2 . The fill-rate for any stock i ∈ I is
therefore determined by

βi = 1− Li(X
ub
i ), ∀ i ∈ I. (4.21)

The proportion of demand that is fulfilled by substitution and by emergency shipments can be
determined by Equations (4.10) and (4.11), respectively.

Approximate evaluation algorithm
The cross replenishment rate µ̂2 directly influences the SPD of stock i = 1, similar to the de-
mand overflow as explained in Section 4.1. Thus, through both the demand overflow and cross-
replenishments, the SPD of stock i = 2 influences SPD of stock i = 1. There is no overflow of
demand and no cross-replenishments from stock 1 to stock 2, so the SPD of stock 1 has no influ-
ence on the SPD of stock 2 through any of these two modes. As explained in the beginning of this
section, the chance and influence on system behavior of a cross-replenishment for stock 1 arriving
while X1 = Xub

1 is very small and therefore left out of the approximate evaluation model. Hence,
we assume the SPD of stock 1 has no influence on the SPD of stock 2. This allows to evaluate
the system behavior in three steps (besides initialization and finalization), similar to Algorithm 1,
whereas systems in which both SPDs influence each other would require an iterative approximation
procedure.

The first step is evaluating the exact behavior of stock i = 2, by determining the SPD using
Equation (4.18). In the second step we use the SPD of stock 2 to approximate the influence of
stock 2 on stock 1, in the form of cross-replenishments and demand overflow. The third step is
evaluating the behavior of stock 1, using direct demand and replenishment processes of stock 1
itself, as well as the cross-replenishment rate and demand overflow rate coming from stock 2.

30



The approximate evaluation algorithm for two-item single-location spare part service networks,
with one-way demand substitution and cross-replenishments, is given Algorithm 3

Algorithm 3: Approximate evaluation for two-item, single location spare part service
networks, with one-way demand substitution and cross-replenishments

Input
I = {1, 2},
initialize values for; S1, S2, λ1, λ2, t

rep, r2,

set λ̂2 = 0,
set µ̂2 = 0,
determine r̂2, using (4.16),

determine Xub
1 and Xub

2 , using (4.12).

Step 1: Evaluate behavior of stock 2
determine the SPD of stock i = 2, using (4.18),
determine fill-rate β2, using (4.21).

Step 2: Determine influence of stock 2 on stock 1

update the demand overflow rate λ̂2, using (4.7),
update the cross-replenishment rate µ̂2, using (4.17).

Step 3: Evaluate behavior of stock 1

determine the state-dep. replenishment rate η1(X1), ∀ X1 ∈ {0, ..., Xub
1 }, using (4.19),

determine the total demand rate Λ2, using (4.8),
determine the SPD of stock i = 1, using (4.20),
determine fill-rate β1, using (4.21).

Finalization
determine α2, using (4.10),
γ1 and γ2, using (4.2),
θ1 and θ2, using 4.11.

4.2.6 Optimization

Extending the base-model of Section 4.1 with the cross-replenishment policy, has required numerous
new equations and adaptations for the approximate evaluation algorithm and the expected costs
function. The optimization problem however, does not require any changes from problem (4.4), as
discussed in Section 4.2.4. The principle of solving the optimization problem remains the same; test
each possible combination of S1 and S2 in the set of feasible solutions ϕ(S), to find the configuration
with the lowest expected costs. The bounds of the set of feasible solutions are also determined in
the exact same way as in Section 4.1.6. Hence, while using approximate evaluation Algorithm 3 and
the updated cost function (4.15), the optimal basestock levels S∗

1 and S∗
2 are found with Algorithm

2.
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4.3 Further model extension by including hold-back levels

4.3.1 Introduction

Both the base-model described in Section 4.1, as well as the cross-replenishment extension described
in Section 4.2, allow one-way demand substitution in the spare part service network. Notice that
is also possible to deny both ways of substitution, by omitting demand overflow. In this one-way
demand substitution policy, any type 1 demand can only be satisfied by type 1 stock. Hence, type
1 demand experiences no pooling effect from the other stock. Any type 2 demand however, can be
satisfied by both type 2 stock and type 1 stock. For type 2 demand there is a complete pooling
effect of stock; only if the complete pool of stock for any i ∈ I is empty, will the demand not be
satisfied by the warehouse.

Allowing demand substitution can improve costs and performance of the system, by making use
of the increased pooling effect. However, type 1 stock will not only experience the type 1 demand,
but also all the overflow of unsatisfied type 2 demand. This can have several negative effects;

� the increased total demand for type 1 stock may reduce the service levels for type 1 demand,

� the increased total demand for type 1 stock may require the basestock level to be increased,

� increased basestock levels lead to higher holding costs,

� substitution can lead to increased total network costs due to the penalty costs for each applied
substitution.

Both policies, either always allowing stock i = 1 to be used as substitute or never allowing stock
i = 1 to be used as substitute, have different positive and negative effects regarding service levels
and expected costs. In this section we propose a policy to find an optimal balance, by determining
for which on-hand stock levels X1 we should or should not allow a part from type 1 stock to be used
as substitute to satisfy type 2 demand. This is referred to as ‘hold-back policy’. A hold-back policy
allows to utilize the positive effects of substitution while reducing the negative effects. Literature
review on inventory control models with hold-back levels is given in Appendix C. The remainder of
this section is be based on the inventory model and Poisson overflow algorithm that are proposed
by Van Wijk et al. (2012). In this paper, the authors consider a continuous-time, single-echelon,
multi-location inventory control model with Poisson demand processes. For our system we first
change the setting of the model from single-item multi-location to multi-item single-location. This
is equal from mathematical perspective; each item has its own location, and lateral transshipments
between different locations are equivalent to substitution between different stocks. The setting
is furthermore simplified to our two-item single-location system with one-way substitution. The
model and algorithm proposed by Van Wijk et al. (2012) are an extension to an earlier model by
Reijnen et al. (2009). The model by Reijnen et al. (2009) is the same model as is used for our
base-model, as described in Section 4.1. Thus, in the remainder of this section we will combine
both the cross-replenishment extension proposed in Section 4.2, and the hold-back level extension
as proposed by Van Wijk et al. (2012), into one complete inventory control model. This complete
inventory control model is applicable to two-item, single location spare part service networks, with
one-way demand substitution, hold-back levels, and cross-replenishments.
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4.3.2 Model description

In this section we further extend the model described in Section 4.1 and Section 4.2. Hence, only
new model features and changed model features will be described.

Demand of type i = 2 will always be fulfilled from type i = 2 stock when there is on-hand stock
available. In case of a stock out of type 2 stock, the demand can be fulfilled by using a part from
type 1 stock as a substitute. In the inventory control models discussed in Section 4.1 and Section
4.2, any available on-hand stock of X1 would always be allocated to type 2 demand when X2 = 0.
Now let h1 denote the hold-back level for stock 1, with h1 ∈ {0, ..., Xub

1 }. Only if X1 > h1, will it be
allowed to use a part from stock 1 as substitute part. Notice that we do not consider a hold-back
level for type 2 stock, since this stock is never allowed to be used as substitute to satisfy type 1
demand.

4.3.3 Assumptions

All assumptions stated in Subsection 4.1.3 and Subsection 4.2.3 hold. The following assumption is
added:

14. The hold-back level can vary from 0 up to the maximum on-hand stock level
The hold-back level for any stock i = 1, denoted by h1, has a minimum value of 0 (equivalent
to having no hold-back level) and a maximum value of Xub

1 (equivalent to having no demand
substitution). Stock i = 2 cannot be used as substitute, hence there is no hold-back level for
this stock type.

4.3.4 Model objective

Extending the inventory control model described in Section 4.2 with hold-back levels affects the
behavior of the model, and therefore the service levels and expected costs. Furthermore, allowing
hold-back levels introduces a new decision variable in the model; h1. Hence, the total expected
costs per time unit t depend on the input levels of S1, S2, and h1. The total costs per time unit
consist of the holding costs, the emergency shipping costs, the substitution penalty costs, and the
cross-replenishment cost-savings. The total expected costs per time unit t, for given basestock
levels S1 and S2, and given hold-back level h1, is determined by

C(S1, S2, h1) = (E[X1 +X2] + E[PL1 + PL2])C
h + (λ1θ1 + λ2θ2)C

em

+λ2α2C
sub
2 − µ̂2(1− P [X1 = Xub

1 ]Ccr
2 .

(4.22)

The model objective now depends on the decision variable h1 as well. The objective is finding
the configuration of basestock levels S1 and S2 and hold-back level h1, that achieve the demand
satisfaction constraints (γ1(S1, S2, h1) ≥ γobj1 , γ2(S1, S2, h1) ≥ γobj2 ) with the lowest expected costs.
The mathematical optimization problem is formulated below;

minimize C(S1, S2, h1)

subject to γ1(S1, S2, h1) ≥ γobj1 ,

γ2(S1, S2, h1) ≥ γobj2 ,

S1 ∈ N0,

S2 ∈ N0,

h1 ∈ {0, ..., Xub
1 }.

(4.23)
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Figure 12: Example of the transition rates for given part i = 1 (top) and i = 2 (bottom), with
S1 = 2, S2 = 3, h1 = 1

4.3.5 Evaluation

Type i = 2 demand results in demand overflow to type i = 1 stock when X2 = 0. The average
rate at which parts from stock 1 will be requested to be used as substitute part for stock 2 is
determined with Equation 4.7, as the demand overflow rate λ̂2. Adding the demand overflow rate
to the ‘direct’ demand rate for type 1 stock (λ1) gives the total demand rate that the stock i = 1
experiences (Λ1), as determined in Equation (4.8). Until now, this total demand rate has been
independent of the on-hand stock level X1; the total demand rate for stock i = 1 always followed
a Poisson distribution with mean Λ1. With the implementation of hold-back levels this no longer
holds. Since we now only allow using stock 1 as substitute for stock 2 when X1 > h1, stock 1 only
experiences the demand overflow rate λ̂2 when X1 > h1. When X1 ≤ h1, the demand overflow from
stock 2 to stock 1 is blocked and stock 1 does not experience the extra demand rate λ̂2. Thus, by
applying hold-back levels the total demand rate for stock i = 1 with will be dependent on its own
on-hand stock level X1. The state-dependent demand rate of stock i = 1, for any on-hand stock
level X1 ∈ {0, ..., Xub

1 }, is denoted as ζ1(X1) and determined by

ζ1(X1) = λ1, for 0 ≤ X1 ≤ h1,
ζ1(X1) = λ1 + λ̂2, for h1 < X1 ≤ Xub

1 .
(4.24)

Notice that the average demand rate for type 2 stock is equal to λ2 for any on-hand stock level,
hence we do not denote a state-dependent demand rate for type 2 stock. The SPD of type 2 stock
is therefore determined by Equation (4.18). In Figure 12 an example is given to illustrate the tran-
sitions rates for given stock types i = 1 and i = 2, with hold-back level h1. In the figure it is clearly
shown that even though we do not assume homogeneous servers for stock i = 1 demand processes
as well as stock i = 1 replenishment processes, the total demand rate and the total replenishment
rate is still known for each possible state of on-hand stock. The figure also clearly shows that stock
type 1 can be used as substitute to serve overflow demand from stock type 2 only when the on-hand
stock level is greater than the hold-back level.

Using the state-dependent demand rate and the state-dependent replenishment rate, we can use
the Erlang loss model to evaluate the behavior of stock type 1 by determining its SPD. The equation
that is used to determine the SPD of stock type 1 in the previous section, Equation (4.20), needs
to be updated to incorporate the hold-back levels. The SPD is determined for any given number
of busy servers y, where the number of busy servers for stock type 1 corresponds with Xub

1 −X1,
as explained in Section 4.2.5. Thus, the SPD for stock i = 1 is determined by
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L1(y) =

y−1∏
p=0

ζ1(X
ub
1 − p)

y∏
k=1

η1(X
ub
1 − k)

Xub
1∑

n=0

n−1∏
q=0

ζ1(X
ub
1 − q)

n∏
m=1

η1(X
ub
1 −m)

, y = 0, . . . , Xub
1 . (4.25)

The proportion of type i demand that is satisfied from type i stock is determined as the fill-rate
βi, by Equation (4.21). The proportion of type 2 demand that is satisfied by using stock type 1
as substitute, α2, now depends on the hold-back level h1. Hence, Equation (4.10) no longer holds.
This proportion now depends on the chance that there are at least h1 + 1 parts on stock, instead of
the chance of having any parts on stock. Hence, the proportion of type 2 demand that is satisfied
by using a part from type 1 stock as substitute is given by

α2 =
λ̂2
λ2

Xub
1 −h1∑
y=0

L̃1(y) (4.26)

With this updated equation for the proportion of type 2 demand satisfied by means of substi-
tution, the proportion of type 2 demand that is satisfied by means of emergency shipment can be
determined by Equation (4.11).

As explained in Section 4.2.5, in our two-item inventory control network both the demand
substitution as well as the cross-replenishments take place in the same direction; they originate
from stock and demand type i = 2, and flow to stock and demand type i = 1. While the SPD
of stock type 2 influences the SPD of stock type 1 through both the demand overflow and the
cross-replenishments, the SPD of stock type 1 does not influence the SPD of stock type 2. By
applying hold-back level h1, the proportion of demand type 2 that can be satisfied from stock type
1 will depend on the on-hand stock level X1, and therefore on the SPD of stock type 1. However,
even though the SPD of stock type 1 influences the service level of demand type 2, the SPD stock
type 1 does not influence the SPD of stock type 2. This is because for X2 = 0, there is no difference
whether type 2 demand will be satisfied by taking a part from stock 1 as substitute or by requesting
an emergency shipment for part 2 at the external supplier. Hence, the approximate evaluation can
be analyzed in the same three steps as performed in Algorithm 1 and Algorithm 3; evaluate the
exact behavior of stock 2, determine the influence of stock 2 on stock 1, evaluate the behavior of
stock 1. The algorithm for the approximate evaluation is given in Algorithm 5.
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Algorithm 4: Approximate evaluation for two-item, single location spare part service
networks, with one-way demand substitution, hold-back levels, and cross-replenishments

Input
I = {1, 2},
initialize values for; S1, S2, λ1, λ2, t

rep, r2, h1,

set λ̂2 = 0,
set µ̂2 = 0,
determine r̂2, using (4.16),

determine Xub
1 and Xub

2 , using (4.12).

Step 1: Evaluate behavior stock 2
determine the SPD of stock i = 2, using (4.18),
determine fill-rate β2, using (4.21).

Step 2: Determine influence of stock 2 on stock 1

update the demand overflow rate λ̂2, using (4.7),
update the cross-replenishment rate µ̂2, using (4.17).

Step 3: Evaluate behavior stock 1

determine the state-dep. demand rate ζ1(X1), ∀ X1 ∈ {0, ..., Xub
1 }, using (4.24),

determine the state-dep. replenishment rate η1(X1), ∀ X1 ∈ {0, ..., Xub
1 }, using (4.19),

determine the SPD of stock i = 1, using (4.25),
determine fill-rate β1, using (4.21).

Finalization
determine α2, using (4.26),
γ1 and γ2, using (4.2),
θ1 and θ2, using (4.11).

4.3.6 Optimization

In the spare part service networks described in Section 4.1 and Section 4.2, a network’s performance
and expected costs depend on many different parameters, but only the basestock levels S1 and
S2 are decision variables. Therefore, optimization Algorithm 2 can be used for both models of
Section 4.1 and Section 4.2, where each feasible combination of S1 and S2 is evaluated with the
corresponding approximate evaluation algorithm. With the introduction of hold-back levels, there
is a new decision variable in the model; h1. Hence, a new optimization algorithm is proposed.

In our two-item spare part service network, with one-way demand substitution, cross-replenishments,
and hold-back levels, for given stock types i = 1 and i = 2, there are three decision variables; S1, S2,
and h1. An enumeration method is proposed to find a good solution to the optimization problem
(4.23). In the enumeration method we test each possible combination of S1, S2, and h1, until the
total set of feasible solutions ϕ(S1, S2, h1) is defined. To prevent the enumeration from running
perpetually it is constrained by upper bounds. The upper bound for stock type i = 1, Sub

1 , is

found by setting S1 = 0, S2 = 0, and h1 = 0, and incrementing S1 until γ1 ≥ γobj1 + (1 − γobj1 )/2

and γ2 ≥ γobj2 + (1 − γobj2 )/2. The upper bound for part 2, Sub
2 , is found by setting S1 = 0,
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S2 = 0, and h1 = 0, and incrementing S2 until γ2 ≥ γobj2 + (1 − γobj2 )/2. The combination
of S1 = Sub

1 , S2 = Sub
2 , h1 = S1, is set as the upper bound of the feasible solutions. The to-

tal set of feasible solutions ϕ(S1, S2, h1) is defined by enumerating each possible combination of
S1 ∈ {0, ..., Sub

1 }, S2 ∈ {0, ..., Sub
2 }, and h1 ∈ {0, ..., S1}, and removing each solution for which

either γobj1 or γobj2 are not met. The optimal solution of basestock levels S∗
1 and S∗

2 with optimal
hold-back level h∗1 is determined by finding the combination with the lowest expected costs from
the set of feasible solutions. The optimization algorithm is given in Algorithm 5.

Algorithm 5: Optimization of basestock levels and hold-back levels by enumeration

Initialization
I = {1, 2},
determine Sub

1 , by calculating lowest S1 for which γ1 ≥ γobj1 + (1− γobj1 )/2 and

γ2 ≥ γobj2 + (1− γobj2 )/2, with S2 = 0,

determine Sub
2 , by calculating lowest S2 for which γ2 ≥ γobj2 + (1− γobj2 )/2, with S1 = 0,

set S1 = 0, S2 = 0, h1 = 0,
set S∗

1 to S1, S
∗
2 to S2, h

∗
1 to h1,

set C(S∗
1 , S

∗
2 , h

∗
1) to ∞.

for S1 = 0 to Sub
1 do

for S2 = 0 to Sub
2 do

for h1 = 0 to Xub
1 do

determine γ1(S1, S2, h1) and γ2(S1, S2, h1),
determine C(S1, S2, h1),

if C(S1, S2, h1) < C(S∗
1 , S

∗
2 , h

∗
1) & γ1(S1, S2, h1) ≥ γobj1 & γ2(S1, S2, h1) ≥ γobj2 ,

then
set S∗

1 to S1,
set S∗

2 to S2,
set h∗1 to h1.

end if
end for

end for

end for

Finalization
The optimal solution is found at S∗

1 , S
∗
2 , h

∗
1.
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5 Case study

Introduction
In each design scenario we evaluate different inventory policies for stock replenishment and demand
allocation. The performance and expected costs for each design scenario do not only depend on the
applied inventory policies, but also the characteristics of the SKUs that are used as input. Different
SKU characteristics can result in different preferred design scenarios. Furthermore, a certain design
scenario does not have to be applied to the entire warehouse. The changes proposed in each design
scenario can be applied to individual SKUs.

To be able to make a complete and substantiated analysis of the performance of each design
scenario, we perform a factorial design case study to each of the proposed design scenarios. This
includes the as-is situation, evaluated in design scenario 0. With factorial design, each possible
combination of parameter values is analyzed. This allows us to not only study the effects of in-
dividual parameters, but also the effects of different parameter combinations. By analyzing each
possible combination of parameter values, the case study contains every possible unique type of
SKU. With the case study we will evaluate the performance of each design scenario, and determine
for which type of SKUs Philips will be able to achieve the greatest cost reduction and/or service
improvement. Moreover, because the factorial design includes each possible combination of param-
eter values, Philips will be able to make a quick and easy assessment to determine the optimal
inventory policy for any given SKU in the future.

The following parameters are identified with regards to SKU behavior:

1. Type 1 demand rate per time unit (λ1),

2. Type 2 demand rate per time unit (λ2),

3. Replenishment leadtime (trep),

4. Replenishment accuracy for type 2 replenishment shipments (r2),

5. Target demand satisfaction level for type 1 demand (γobj1 ),

6. Target demand satisfaction for type 2 demand (γobj2 ),

and the following parameters are identified with regards to service network costs:

8. Holding costs per item per time unit (Ch),

9. Emergency shipment costs per item (Cem),

10. Substitution penalty costs per item (Csub
2 )

11. Cross-replenishment cost savings per item (Ccr
2 )

Data analysis
The research scope only includes SKUs for which the RDC in Singapore distinguishes between
type 1 stock (N-stock) and type 2 stock (U-stock). Data for all SKUs that fit this requirement is
collected over calender year 2018. The entire case study will be performed in time unit ‘months’.
Any SKU with an average demand rate below 1 part per year, for either demand types, is omitted
from the data. These are omitted because it is assumed that no basestock is maintained for SKUs
with a demand rate below 1 part per year. Moreover, there is a large group of SKUs with a forecast
below 1 part per year, which greatly affects the mean and median values of the demand rates.
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The average type 1 demand rate per month and the average type 2 demand rate per month, of
any SKU, are based on the demand forecast made by Philips’ planning tool. The replenishment
leadtime to the warehouse is assumed to be equal for all SKUs and equal for both stock types,
with a mean value of 2 weeks. There is no available data on the replenishment accuracy of type
2 stock for any SKU. Thus, different case values for the replenishment accuracy are determined in
consolation with subject experts at Philips. For both type 1 stock and type 2 stock, the target
demand satisfaction level is set at 0.90 for all SKUs. Thus, numbers 3, 5, and 6 on the list of
parameters are assumed to be constant values.

Holding costs are determined as 20% of a SKU’s stock value per year. This includes weighted
cost of capital, insurance, operating costs, warehousing costs, taxes, and cost of debt. For any
SKU, the stock value for for a brand-new and a repaired part are equal. Hence, the stock value for
type 1 stock and type 2 stock are equal. Emergency shipment costs are also assumed to be equal
for both stock types. Substitution penalty costs and cross-replenishment cost savings are based
on the difference in average acquisition costs for type 1 stock and type 2 stock. This consists of
two elements: the difference in acquisition costs between a repaired part and a brand-new part,
and the chance that a replenishment order for type 2 stock actually contains a repaired part (r2).
From stock perspective, applying a cross-replenishment is the exact opposite of applying demand
substitution. The penalty cost for applying one demand substitution is therefore equal to the
cost savings of applying one cross-replenishment. Thus, for each SKU there is one parameter
that determines the SKU value (therefore also the holding costs), one parameter that determines
costs of emergency shipments, and a parameter that determines both the penalty costs of applying
demand substitution and the cost savings of applying cross-replenishments. This leaves a total of
6 parameters for the factorial design. To prevent the case study from becoming unfeasibly large,
the possible values of each parameter are divided into three categories: low, mid, and high. The
categories of each parameter are determined by data analysis and made in consolidation with the
company. The list of parameters and the corresponding case values per category are given in Table
5. It must be noted that the case values of parameter ‘SKU value’ and parameter ‘emergency
shipment costs’ are scaled, due to confidential company data. All results that are denoted in costs
in e, are scaled accordingly. In the remainder of the case study we will use abbreviations to indicate
each of the parameters, these abbreviations are given in Table 5 as well.

The six parameters with three categories per parameter result in a total of 36 = 729 unique test
instances. This includes each possible combination of SKU characteristics, therefore each instance
represents a unique type of SKU. While the advantages of this design have been explained, there
is also a disadvantage. The case values for each parameter’s categories are based on their repre-
sentation in the data, but this does not mean that every unique combination is equally likely to
occur. To illustrate with an example: parameters (C) and (F) both have three different categories,
each representing roughly the same amount of SKUs in the data set. However, this does not mean
that in the warehouse there are an equal amount of SKUs that have parameter (C) category low
in combination with parameter (F) category high, as the amount of SKUs with parameter (C)
category high in combination with parameter (F) category low. Nevertheless, as the case study
includes each possible combinations of different parameter categories, this problem is also easily
mitigated. We will not only focus on the overall results per design scenario, and on which SKU
characteristics provide the best results, but we will also look at effects of excluding the most op-
timistic SKU characteristics from the total set of test instances. As mentioned before, in design
scenario 0 we evaluate the as-is inventory policies. The results of design scenario 0 will serve as a
benchmark, to compare the results of the alternative design scenarios. Following from the problem
context described in Chapter 3 and restrictions from Philips, the following constraint is applied to
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Parameter (unit) Param. indicator Category Case value
Type 1 demand rate (A) low 0.15
(parts per month) mid 0.40

high 3.50
Type 2 demand rate (B) low 0.80
(parts per month) mid 2.80

high 11.00
Repl. accuracy of type 2 stock (C) low 75%
(percentage of repl. shipments) mid 90%

high 96%
SKU value (D) low e214.29

(euro per part) mid e928.57
high e5,714.29

Emergency shipping costs (E) low e7.50
(euro per emerg. shipment) mid e11.43

high e53.57
Difference in acquisition costs- (F) low 10%

between a new and repaired part mid 25%
(percentage of SKU value) high 40%

Table 5: Case study input parameters, parameter categories and case values

the case study: it is not allowed to increase a SKU’s current basestock level for type 1 stock. The
basestock levels for type 1 stock are only allowed to be decreased or remained equal. For type 2
stock, there are no constraints for the basestock levels. Hence, for each test instance, the basestock
level for type 1 stock that is determined in design scenario 0 will be used as upper bound for in
each alternative design scenario.

5.1 Design scenario 0: As-is replenishment policy and as-is demand allocation
policy

The case study results of design scenario 0 are analyzed to evaluate the current performance and to
serve as benchmark for the proposed alternative design scenarios. We will start with an evaluation
of the average results over all test instances, and after that zoom in on the different cost factors
and different parameter categories.

In design scenario 0, the total costs per month for any SKU consists of the holding costs over
both types of stock and the emergency shipment costs for both types of demand. As mentioned
before, replenishment shipment costs and SKU acquisition costs are not included. These are only
dependent on the demand rate and are not affected by the decision variables of the model (Si, and
therefore βi, αi, θi, do not influence these costs for both i ∈ I). Moreover, SKU acquisition costs
are balanced with the price for which the SKU is sold, our goal is minimizing the variable and
operational costs. Hence, fixed costs are not included in the scope, we focus on the variable costs.
Henceforth, with SKU costs we refer to the variable inventory network costs that are included in
the cost functions of Equation 4.3, 4.15, and 4.22.

The target service level for each of the instances in design scenario 0 is achieved with an average
monthly cost of e274.97 per test instance, resulting in an average fill-rate of 0.9546. The median
expected cost lies at e97.95, with 50% of all instances ranging between e41.77 and e476.93. The
total costs per instance consist mainly of holding costs; an average of e89.02 for type 1 stock and
e178.62 for type 2 stock. The emergency shipment costs for type 1 demand and type 2 demand
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are only a small portion of the total costs, with an average value of e1.47 and e5.86 respectively.
This low emergency shipment costs, relative to the holding costs, is explained by our scope. The
scope only includes repairable SKUs, all consumables are excluded. Repairables are typically very
expensive compared to consumables, hence the decision to repair the SKU after failure instead
of consuming it and producing a new one. Therefore the average SKU value in our case study
is relatively high, compared to the average SKU value of all SKUs that exist in the warehouse.
Furthermore, we set the target service level for each individual SKU. By analyzing the average
costs, we do not take into account that aggregate service targets could be achieved with lower
holding costs by increasing the stock of cheap SKUs and decreasing the stock of expensive SKUs.
This also explains the average service level being well over the target. The SKUs in our scope are
typically characterized as expensive slow movers. Hence, for many test instances the last increment
of basestock level that is required to pass the 0.9 target level, will result in a service level well above
0.9. To illustrate this effect with an example: in design scenario 0, instances with parameter (A)
category mid have a fill-rate of 0.8556 when S1 = 1. Increasing the basestock by 1 just increment
to S1 = 2, results in a fill-rate of 0.9859.

average: i = 1 i = 2
Si 2.37 4.78
βi 0.9561 0.9531
αi 0 0
γi 0.9561 0.9531
θi 0.0439 0.0469

expected costs per month: average value:
holding costs e267.64
emergency ship. costs e7.33
total costs e274.97

Table 6: Average performance (design scenario 0)

The effects of each parameter on the expected costs per test instance, is illustrated with box
plots in Figure 13. Each box plot indicates the results (in total costs) of all test instances with
the corresponding parameter category. Hence, the three box plots for each parameter contain all
729 test instances and each separate box plot per parameter contains 247 test instances. For each
box plot, the box itself indicates the interquartile range (IQR, the distance between the 25th and
75th percentile) of all results. The horizontal line within the box indicates the median value and
the cross indicates the mean value. A line is drawn between the mean values of a parameter’s
categories, to illustrate the correlation between the parameter’s categories and the mean results.
The vertical lines extending out of the top and bottom of the box are called the whiskers. The
whiskers extend to the maximum and minimum value that lies within 1.5 IQR range from the box.
All values outside the whiskers are indicated as single points, called outliers.

The results of design scenario 0, measured in the average costs per test instance, are heavily
influenced by the category of parameter (D). This is as expected, due to the expected holding costs
directly depending on parameter (D). In the beginning of this section we have already shown that
holding costs account for the biggest part of the total costs. The influence of parameter (D) on the
average expected costs per instance is so high, that there is no overlap in the range of expected
costs of all instances with parameter (D) category high, and all other remaining instances. Even the
single test instance with the lowest expected costs of all instances with parameter (D) category high,
has higher expected costs than every single instance with category mid or low in this parameter. It
is also clearly shown that parameters (A), (C), (E) and (F) have several outliers with high values,
for different categories. For parameter (D), these values are not outliers: they all lie within the
whisker of category high. The same holds for parameter (B).

Parameters (A) and (B) also show a positive correlation with the average expected costs, al-
though not as strong as parameter (D). Moreover, parameters (A) and (B) have a very high variance
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Figure 13: Results per parameter category (design scenario 0)

for each of their categories. The effect of parameter (E) on the expected costs is very small, the
box plots of each parameter (E) category are almost identical. This is explained by the total costs
consisting mostly of holding costs. The expected emergency shipment costs are very low, relative
to the expected holding costs. In design scenario 0, the inventory control policy does not include
demand substitution nor cross-replenishments. Thus, parameters (C) and (F) do not influence the
costs in design scenario 0 and the box plots per category of parameters (C) and (F) are identical.

The variance of the results of parameters (A) and (B) category high is very high. This is
explained by the expected holding costs per month not only depending on the holding costs per
item on stock (parameter (D)), but also on the average number of items on stock and in the
pipeline. The average number of items on stock and in the pipeline depends on the demand rates,
thus parameters (A) and (B). Therefore, test instances with a high category on either parameter
(A) or (B) (or both), and a high category on parameter (D) as well, result in the highest expected
costs. For each combination of two specific parameter categories, there are 1 · 1 · 34 = 81 test
instances in the total set. The average expected costs per test instance per month, for every
possible combination of two parameter categories (category pairs), is given in Table 7 In the table,
categories ‘low’, ‘mid’, and ‘high’ are abbreviated to ‘l’, ‘m’, and ‘h’, respectively. It is clearly
shown that highest expected costs result from instances with a high category for parameter (A) or
(B) in combination with a high category for parameter (D). The opposite also holds, the lowest
expected costs are found for instances with a low category for parameter (A) or (B) in combination
with a low category for parameter (D).
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category pairs for corresponding parameters, with l=low, m=mid, h=high
parameters l, l l, m l, h m, l m, m m, h h, l h, m h, h

(A), (B) 115.43** 192.87 360.12 153.43 230.87 398.12 233.91 311.35 478.60*

(A), (C) 222.81** 222.81** 222.81** 260.81 260.81 260.81 341.29* 341.29* 341.29*

(A), (D) 26.09** 94.94 547.40 29.56 110.32 642.54 40.16 145.99 837.73*

(A), (E) 218.27** 219.45 230.71 256.33 257.50 268.59 333.99 335.92 353.97*

(A), (F) 222.81** 222.81** 222.81** 260.81 260.81 260.81 341.29* 341.29* 341.29*

(B), (C) 167.59 167.59** 167.59** 245.03 245.03 245.03 412.28* 412.28* 412.28*

(B), (D) 17.71** 69.72 415.35 26.10 101.92 607.08 51.99 179.61 1005.24*

(B), (E) 165.90** 166.33 170.54 242.48 243.12 249.50 400.20 403.42 433.22*

(B), (F) 167.59** 167.59** 167.59** 245.03 245.03 245.03 412.28* 412.28* 412.28*

(C), (D) 31.93** 117.08 675.89* 31.93** 117.08 675.89* 31.93** 117.08 675.89*

(C), (E) 269.53** 270.96 284.42* 269.53** 270.96 284.42* 269.53** 270.96 284.42*

(C), (F) 274.97** 274.97 274.97 274.97 274.97 274.97 274.97 274.97 274.97

(D), (E) 27.86 29.15 38.79 111.20 112.70 127.35 669.53 671.03 687.11*

(D), (F) 31.93** 31.93** 31.93** 117.08 117.08 117.08 675.89* 675.89* 675.89*

(E), (F) 269.53** 269.53** 269.53** 270.96 270.96 270.96 284.42* 284.42* 284.42*

*: category combination(s) with highest average costs, per given pair of parameters
**: category combination(s) with lowest average costs, per given pair of parameters

Table 7: Expected average costs per test instance in e per month, for specific category pairs (design
scenario 0)

To reduce the scope of test instances further, we evaluate each possible combination of three dif-
ferent parameter categories (tri-category combination). For each possible tri-category combination,
there are 27 test instances with the corresponding combination of parameter categories in the total
set of 729 test instances. As there are a total of 540 different tri-category combinations possible,
we only evaluate the 10 tri-category combinations with the highest average expected costs and the
10 tri-category combinations with the lowest average expected costs. The total results, for all 540
possible tri-category combinations, are given in Appendix E.1 in Tables 40, 41, 42, and 43. From
the tri-category combinations, it is furthermore concluded that the categories of parameter (B) and
parameter (D) are the most important characteristics to for a SKUs expected costs per month. For
the 10 tri-category combinations with the lowest average costs, all 10 contain parameter (B) cate-
gory low and parameter (D) category low. In addition, for the 10 tri-category combinations with
the highest average costs, all 10 contain parameter (B) category high and parameter (D) category
high. Parameters (C), (E), and (F) prove to be the least important for a the expected costs. For
parameter (C) and (F) this is explained because they do not affect the expected costs for design
scenario 0. For parameter (E), this is explained by the emergency shipment costs only accounting
for a small portion of the total expected costs. The influence of the parameters that determine the
expected holding costs are dominant over the parameters that determine the emergency shipment
costs.

5.2 Design scenario 1: As-is replenishment policy and demand substitution
policy

In design scenario 1 extend the as-is inventory policies by allowing demand substitution. With
deisgn scenario 1 the total set of test instances result in average expected costs of e483.42 test
instance per month. This is a 25.6% increase from the average costs determined for design scenario
0. A total of 63 out of the 729 test instances result in a decrease in expected costs, with an average
of -8.00%. All of the remaining 666 instances result in an increase of their expected costs.
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10 combinations with highest average costs
parameters categories avg. expected costs
(A), (B), (D) h, h, h e1167.08
(B), (C), (D) h, l, h e1005.24
(B), (C), (D) h, m, h e1005.24
(B), (C), (D) h, h, h e1005.24
(B), (D), (E) h, h, l e990.68
(B), (D), (E) h, h, m e994.11
(B), (D), (E) h, h, h e1030.94
(B), (D), (F) h, h, l e1005.24
(B), (D), (F) h, h, m e1005.24
(B), (D), (F) h, h, h e1005.24

total average e1021.43

10 combinations with lowest average costs
parameters categories avg. expected costs
(A), (B), (D) l, l, l, e11.86
(A), (B), (D) m, l, l e15.33
(B), (C), (D) l, l, l, e17.71
(B), (C), (D) l, m, l e17.71
(B), (C), (D) l, h, l e17.71
(B), (D), (E) l, l, l, e16.30
(B), (D), (E) l, l, m e16.73
(B), (D), (F) l, l, l, e17.71
(B), (D), (F) l, l, m e17.71
(B), (D), (F) l, l, h e17.71

total average e16.65

Table 8: Highest and lowest average expected costs, for combinations of three specific parameter
categories (design scenario 0)

As explained in Chapter 3, it is important for the business case that the amount of brand-new
parts flowing into the service network is kept at a minimum. In this design scenario we allow type
1 stock to be used as substitute when type 2 stock is empty, thus the amount of brand-new parts
flowing into the network is expected to increase. The unfavorable result of an increased amount of
brand-new parts flowing into the network is denoted in the penalty costs for each demand applied
demand substitution. Hence, in this design scenario we analyze whether the positive effects of
demand substitution can exceed the negative effects of an increased amount of brand-new parts
flowing into the network. However, while the negative effects of extra brand-new parts are expressed
in expected substitution penalty costs, we are not only interested in the cost-wise effects. We are
also interested in the effects on the number of replenishment orders that are required for type 1
stock. We therefore introduce a new term: ωi, the number of requested replenishment shipments
for type i stock per time unit. As we are interested in reducing the amount of type 1 replenishment
orders, and only type 1 stock can serve as substitute for type 2 stock and not vice versa, we only
denote ω1 and not ω2. Note that in design scenario 0, the amount of type 1 replenishment orders
per month equals ω1 = β1λ1. In design scenario 1, each applied substitution results in an extra
part taken from type 1 stock, and each part taken from type 1 stock results in a replenishment for
type 1 stock. Hence, in design scenario 1 this rate equals ω1 = β1λ1 + α2λ2.

average of all instances: Des. Sc. 0 Des. Sc. 1 difference diff. (%)
holding costs e267.64 e299.98 e32.34 12.1%
emergency shipping costs e7.33 e2.08 =e5.26 =71.7%
substitution pen. costs 0 e43.25 e43.25 n/a
total costs e274.97 e345.30 e70.33 25.6%
ω1 1.283 1.369 0.086 6.7%

Table 9: Average costs per instance (design scenario 1)

The overall results for the expected costs of design scenario 1 are given in Table 9. The expected
costs are indicated per cost factor, including the difference and percentage difference between the
results of design scenario 1 and design scenario 0. The percentage difference for any value is
calculated by (new − old)/old · 100, where old denotes the value in design scenario 0 and new
denotes the value in the proposed alternative design scenario. Hence, a decrease in expected costs
from design scenario 0 is denoted as a negative value.
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The values for ω1 are indicated in the Table 9 as well. Extending the inventory policies of design
scenario 0 by allowing demand substitution, results in a 6.7% increase of the amount replenishment
shipments for type 1 stock. This corresponds with an average of e43.25 expected substitution
penalty costs per instance per month. While the average emergency shipping costs are reduced by
71.7%, this corresponds with a reduction of only e5.26. The positive effects of substitution are not
prevalent in the average expected costs when analyzing the whole set of 729 test instances.

As we allow demand substitution, the target service level for type 2 demand no longer corre-
sponds with the fill-rate (β2) only. It also includes the proportion of demand satisfied satisfied by
substitution (α2). The average service levels of design scenario 1 are given are given in Table 10.
The average demand satisfaction level for type 2 demand is increased to 0.9977. This is a signifi-
cantly higher than is required by the service level constraint: the demand satisfaction level for each
type of demand must be equal to or higher than 0.90. Hence, having 0.10 emergency shipments for
each occurring type 2 demand would have been sufficient. Despite, the lowest expected costs per
instance correspond with an average θ2 equal to 0.0023. This is a factor 20.4 reduction from the
average θ2 in design scenario 0.

Design scenario 0 Design scenario 1
average: i = 1 i = 2 i = 1 i = 2
Si 2.37 4.78 2.37 5.57
βi 0.9561 0.9531 0.9431 0.9570
αi 0 0 0 0.0407
γi 0.9561 0.9531 0.9431 0.9977
θi 0.0439 0.0469 0.0569 0.0023

Table 10: Average basestock and demand service levels per instance (design scenario 1)

The exceptionally low value for θ2 is explained by the demand allocation policy of this design
scenario. The policy does not just indicate that type 1 stock can be used te satisfy type 2 demand
when type 2 stock is empty, it indicates that type 1 stock will be used to satisfy type 2 demand
when type 2 stock is empty. In design scenario 3 we will apply hold-back levels to block a portion
of demand substitution requests, but in design scenario 1 we follow a simple substitution policy
where substitution requests are satisfied whenever possible. In order to constrain the number new
parts flowing into the service network, we are not allowed to increase the as-is basestock levels of
type 1 stock. When type 1 stock must always satisfy substitution requests when there is stock on
hand, but S1 cannot be increased to compensate for the extra demand overflow from type 2 stock,
the average on-hand type 1 stock will decrease. Therefore, to achieve the target service level for
type 1 demand, there is only one solution: increase S2 to reduce the demand overflow to type 1
stock.

The problem however, is that the average type 2 demand rate is higher than the average type
1 demand rate. Illustrated with an example: Suppose λ1 = 2, λ2 = 5, β2 = 0.90. As the remaining
10% of λ2 will result in substitution requests at type 1 stock, there will be an total demand rate
for type 1 stock equal 2 + 5 · 0.10 = 2.5. Hence, 10% unsatisfied type 2 demand can result in a 25%
increased demand rate for type 1 stock. A higher relative difference between both demand rates,
results in an increased influence from demand overflow and substitution. Moreover, as each applied
substitution results in penalty costs, the only solution to reduce expected penalty costs is to reduce
the demand overflow. Hence, again the only solution is to increase S2. As increasing S2 results in
increased holding costs, the optimization problem must balance between increasing holding costs
and increasing substitution penalty costs, to find the feasible solution with the lowest total expected
costs. While the target service level γobj2 might already achieved for a given combination of S1 and
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S2, it can still be cost-efficient to increase S2. The decrease in expected penalty costs (and expected
emergency shipment costs) can be higher than the increase in expected holding costs.

To conclude, each applied demand substitution reduces the service level for type 1 demand and
increases the expected substitution penalty costs. The only solution for achieving the required
service level for type 1 demand, and for preventing the total inventory costs from increasing, is to
maintain a relatively large basestock level for type 2 stock.

The results of all test instances for each parameter’s categories are given in Figure 14. The
y-axis indicates the difference in expected costs, compared to expected costs of the corresponding
test instance in design scenario 0. Note that the average difference in expected costs is not the same
as the difference in average expected costs. The average difference in expected costs, is determined
by taking the cost difference in percentages between design scenario 0 and 1 for each separate
instance, and calculating the average over each separate difference. This is indicated as the mean
value in each box plot in Figure 14. The difference in average expected costs, is determined as the
difference between the average expected costs of design scenario 0 and the average expected costs
of design scenario 1, as indicated in Table 9. To illustrate the difference between these two average
values with an example: Suppose, in design scenario 0 the instances 1 and 2 result in e10 and e12
respectively. Now suppose that in design scenario 1 the instances 1 and 2 result in e12 and e10
respectively. The average difference in costs equals ((12 − 10)/10 + (10 − 12)/12)/2 = 1.7%. The
difference in average costs equals (10 + 12)/2− (12 + 10)/2) = 0%.

The box plots show that the mean values for all parameter categories lie above 0%, indicating
an increase in expected costs from design scenario 0. Moreover, not only the mean value but
the entire IQR for every category lies above 0%. There are 241 test instances for each individual
parameter category, this means that for each of these groups of 241 test instances more than 75% of
the test instances result in increased costs from design scenario 0. The demand substitution policy
results in increased holding costs for most test instances, instead of decreased holding costs. This
is explained earlier, by the demand overflow resulting in an increased S2 for most test instances
to reduce the substitution requests. Therefore, it is expected that the substitution policy only
results in decreased holding costs when the type 1 demand is greater than the type 2 demand
rate. This will be analyzed later, we first analyze the individual parameter’s effects as illustrated
in 14. The box plots of parameters (A) and (B) show that parameter (A) is positively correlated
with a reduction of expected costs, and parameter (B) is negatively correlated with a reduction of
expected costs. Especially parameter (B) category high results in a large increase of test instances’
expected costs. While we do not consider cross-replenishments in this design scenario, the box
plots of parameter (C) still show a slight difference in the results for each category. This effect is
explained by the determination of the penalty costs per applied substitution (Csub). The penalty
cost of using a part from type 1 stock as substitute to satisfy demand for type 2 stock, does not only
depend on the difference in acquisition costs between a brand-new and repaired part. Each part
that is taken from type 2 stock also has the chance of being brand-new. Hence, we the substitution
penalty costs as the difference in acquisition costs between type 1 stock and type 2 stock, which is
determined by the difference in acquisition costs between a brand-new and repaired part multiplied
by the proportion of repaired parts in type 2 stock. The proportion of repaired parts in type 2
stock corresponds with the replenishment accuracy r2, hence parameter (C) having an effect on the
results in design scenario 1 even though we do not yet consider the cross-replenishment policy.

Continuing on the remaining parameters, parameter (D) is negatively correlated with a reduc-
tion of expected costs, explained by the increased basestock levels for type 2 stock. Parameter (E)
is positively correlated with a reduction of expected costs, explained by the major reduction in
number of emergency shipments for type 2 demand. Parameter (F) is negatively correlated with

46



a reduction in expected costs, which is a direct result of increasing penalty costs for each applied
substitution.

Figure 14: Difference in costs, per parameter category (design scenario 1)

It is clear that for each separate parameter, none of the categories provide positive results.
Still, 63 of the 729 test instances do result in a decrease in expected costs. Hence, we will evaluate
combinations between categories of two different parameters. As there are a total of 135 possible
combinations, we only show the average of the difference in expected costs per instance for each
of the category pairs. These are given in Table 11. From the table it is concluded, that even
when looking at test instances for each possible combination of two specific parameter categories,
there is only one combination that has an average decrease in costs from design scenario 0: the
average difference in costs of the test instances with parameter (D) category low and parameter
(E) category, is a decrease of 2.91% from design scenario 0. Especially bad results are found
for test instances with different combinations between the following parameters and categories:
parameter (A) category low, parameter (B) category high, parameter (D) category high, parameter
(E) category low, and parameter (F) category high. These bad results are furthermore explained
by the demand overflow resulting in an increased type 2 basestock instead of a decreased tpye 2
basestock, for most test instances. Parameter (A) category low and parameter (B) category high
directly result in furthermore increased S2. Parameter (D) category high increases the negative
effects as result of the increased S2. Parameter (E) category low prevents to compensate the with
cost savings from the highly reduced values for θ2. Parameter (F) category high directly increased
the expected substitution penalty costs, which are always equal to zero in design scenario 0.

To evaluate the performance of the design scenario for more specific type of SKUs, we further
reduce the scope of test instances. A subset of test instances is created for each possible com-
bination of three different parameter categories (tri-category combination). For each tri-category
combination, there are 27 out of the total 729 test instances remaining. The average difference
in costs for each possible tri-category combination is given in Tables 44, 45, 46, and 47. Due
to size, these tables are given in Appendix E.2. We evaluate the 10 tri-category combinations
that provide the best results and the 10 tri-category combinations that provide the worst results,
which are given in Table 12. Out of all 540 possible tri-category combinations, there are exactly
10 tri-category combinations that result in an average decrease of the expected costs. Thus, all
tri-category combinations that provide an average decrease in costs are given in Table 12.

Regarding the 10 tri-category combinations with the best results, 9 out of 10 contain parameter
(D) category low, 9 contain parameter (E) category high, and 8 contain the combination these two
parameter categories. This is explained by parameter (D) category low resulting in relatively low
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category pairs for corresponding parameters, with l=low, m=mid, h=high
parameters l, l l, m l, h m, l m, m m, h h, l h, m h, h

(A), (B) 11.8% 14.7% 29.9%** 8.8% 12.6% 29.2% 6.9%* 10.3% 24.6%
(A), (C) 17.4% 19.1% 19.9%** 14.4% 17.5% 18.7% 12.2%* 14.4% 15.3%
(A), (D) 8.4% 21.2% 26.8%** 7.7%* 19.0% 23.9% 9.1% 14.4% 18.2%
(A), (E) 23.8%** 22.1% 10.6% 21.4% 19.7% 9.5%* 16.2% 15.0% 10.5%
(A), (F) 11.5% 19.4% 25.5% 6.2% 17.8% 26.6%** 6.2%* 14.6% 21.0%
(B), (C) 7.3%* 9.6% 10.6% 11.0% 12.9% 13.7% 25.7% 28.4% 29.5%**

(B), (D) 7.0%* 9.7% 10.9% 8.2% 13.7% 15.7% 10.1% 31.3% 42.3%**

(B), (E) 10.3% 9.9% 7.3%* 14.8% 14.0% 8.8% 36.3%** 32.9% 14.4%
(B), (F) 1.7%* 9.5% 16.2% 3.8% 14.3% 19.5% 18.4% 27.9% 37.4%**

(C), (D) 7.0%* 16.2% 20.8% 8.7% 18.8% 23.6% 9.6% 19.7% 24.6%**

(C), (E) 18.6% 16.9% 8.4%* 20.8% 19.5% 10.6% 21.9%** 20.4% 11.5%
(C), (F) 6.7%* 15.2% 22.1% 8.3% 17.7% 25.0% 9.0% 18.7% 26.1%**

(D), (E) 15.7% 12.4% -2.9%* 21.9% 20.8% 11.9% 23.8%** 23.6% 21.6%
(D), (F) 0.9%* 9.0% 15.3% 9.4% 18.9% 26.3% 13.6% 23.8% 31.6%**

(E), (F) 11.5% 21.2% 28.7%** 10.0% 19.7% 27.1% 2.4%* 10.9% 17.3%
*: category combination with best results, per given pair of parameters
**: category combination with worst results, per given pair of parameters

Table 11: Average difference in expected costs, per specific category pair (design scenario 1)

impact from the increased stock levels on the expected holding costs, and parameter (E) category
high resulting in a high exploit of the reduced amount of emergency shipments. The other pa-
rameters and categories do not have predominant representation. There is only one tri-category
combination that provides an average decrease in costs of more than 10% per test instance: param-
eters (B), (D), (E) with categories high, low, high, respectively. This is explained by parameter
(B) category high resulting in relatively number of emergency shipments, which increases the cost
savings from the reduced θ2 by parameter (E) category high. Moreover, the negative effects from
both the increased expected holding costs and expected substitution penalty costs are reduced by
parameter (D) category low. Reduced holding costs are only found for test instances with parame-
ter (B) category low in combination with parameter (A) category low or mid. This is furthermore
explained by the negative effect of demand overflow on the service levels of type 1 demand, only
with parameter (B) category low can the substitution policy result in lower S2 instead of higher S2
than in design scenario 0. However, with parameter (B) category low, the number of emergency
shipments for type 2 demand is low as well. Therefore, the expected emergency shipping costs
for type 2 demand are relative low, compared to the total expected costs for both types of stock.
Hence, while the holding costs are reduced for test instances with parameter (B) category low in
combination with parameter (A) category low or mid, the total expected costs are not greatly
affected by the reduced θ2. Almost all test instanced with a cost reduction from design scenario 0,
have slightly increased expected holding costs but greatly decreased expected emergency shipping
costs. Hence, design scenario 1 only provides good results for test instances where the emergency
shipment costs relatively high and the holding costs are relatively low.

The 10 tri-category combinations that provide the worst results for designs scenario 1, mostly
contain the combination of parameter (B) category high with parameter (D) category high. This
result is explained by parameter (B) category high resulting in a relatively high number of sub-
stitution requests, which negative effects are amplified by parameter (D) category high (resulting
in increased holding costs and high substitution penalty costs). Moreover, parameter (F) category
high and parameter (E) category low and mid are also predominant in the 10 worst results. Param-
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eter (F) category high directly increases the penalty costs per applied substitution. Parameter (E)
category low (and mid) reduce the positive effects from the greatly reduced amount of emergency
shipments.

10 combinations with best results
parameters categories avg. diff. costs
(A), (D), (E) l, l, h -7.3%
(A), (D), (E) m, l, h -6.6%
(A), (D), (F) m, l, l -1.6%
(A), (E), (F) m, h, l -0.3%
(B), (D), (E) h, l, h -12.5%
(C), (D), (E) l, l, h -4.2%
(C), (D), (E) m, l, h -2.6%
(C), (D), (E) h, l, h -2.0%
(D), (E), (F) l, h, l -9.0%
(D), (E), (F) l, h, m -2.3%

total average -4.8%

10 combinations with worst results
parameters categories avg. diff. costs
(A), (B), (D) l, h, h 46.7%
(A), (B), (D) m, h, h 44.2%
(A), (B), (F) m, h, h 43.4%
(B), (C), (D) h, m, h 43.0%
(B), (C), (D) h, h, h 44.2%
(B), (D), (E) h, h, l 44.2%
(B), (D), (E) h, h, m 43.8%
(B), (D), (F) h, h, h 53.1%
(B), (E), (F) h, l, h 46.5%
(B), (E), (F) h, m, h 42.9%

total average 45.2%

Table 12: Best and worst results for specific combinations of three parameters (design scenario 1)

It is concluded that design scenario 1 does not provide good performance for Philips’ spare
part service network. Especially SKUs with a high type 2 demand rate and a high SKU value
provide very bad results in design scenario 1. Positive results are only found when the total scope
of 729 test instances is reduced greatly. Even when this scope is reduced to subsets of 27 instances
with specific combinations of three different parameters categories, there is only one subset that
results in an average cost decrease of more than 10% per test instance: SKUs with a high type 2
demand rate, low SKU value, and high emergency shipment costs provide an average cost decrease
of 12.5%. Moreover, evaluating each specific test instance that provides a cost decrease of at least
10%, results in only 24 remaining test instances. From these instances it is concluded that the best
results for design scenario 1 are provided for SKUs with the following characteristics: low type 1
demand rate, high type 2 demand rate, low SKU value, high emergency shipment costs, and low
difference in price between the SKU’s new and repaired parts. However, specifying four or five
different parameter categories leaves only a very small subset of SKUs, and even for this very small
subset of SKUs the cost reductions are only small. As shown in Tables 9, 11, and 12, the expected
costs in design scenario 1 are increased greatly for most type of SKUs.

5.3 Design scenario 2: Cross-replenishment policy and demand substitution
policy

Applying the replenishment policy and demand allocation policy of design scenario 2 to the total
set of test instances, results in average costs of e180.66 per test instance per month. This is a 34.3%
decrease from the as-is policies, as evaluated in design scenario 0. Out of all 729 instances, 500 test
instance result in a decrease in costs and 229 test instances result in an increase in costs. While the
average holding costs are increased by e47.33 (17.7%) and the average substitution penalty costs
are increased from e0 to e151.84, applying cross-replenishments results in an average cost savings
of =e288.49 per month. The number of applied cross-replenishments is almost double the number
of applied substitutions. This results in 23.4% less required replenishment shipments for type 1
stock. The overall results for the expected costs are given in Table 13.
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Another interesting result, is that for 78 instances the optimal basestock level for type 1 stock is
equal to 0. Thus, for these instance type 1 stock is completely replenished by cross-replenishments.
This means that for certain SKUs we can increase the utilization of repaired parts to such extend,
that the replenishment side of NPSC becomes obsolete.

The average basestock levels in design scenario 2 are decreased for type 1 stock and increased for
type 2 stock. The fill-rate of both types of demand slightly decreases, but the demand satisfaction
level γ2 is greatly increased. The amount of emergency shipments required for part 2 demand
are reduced from 0.0469 to 0.0035, a reduction of 92.5%. As explained in the evaluation of design
scenario 1, the extremely low value for θ2 is the result of always applying substitution when X1 > 0,
while at the same time maintaining a penalty cost on each applied substitution. The overall results
for the service levels are given in Table 14.

average of all instances: Des. Sc. 0 Des. Sc. 2 difference diff. (%)
holding costs e267.64 e314.96 e47.33 17.7%
emergency shipping costs e7.33 e2.35 =e4.98 −67.9%
substitution pen. costs e0.00 e151.84 e151.84 n/a
cross-rep. cost savings e0.00 =e288.49 =e288.49 n/a
total costs e274.97 e180.66 =e94.31 −34.3%
ω1 1.283 0.983 =0.300 =23.4%

Table 13: Average costs per instance (design scenario 2)

Design scenario 0 Design scenario 2
average: i = 1 i = 2 i = 1 i = 2
Si 2.37 4.78 1.86 5.25
βi 0.9561 0.9531 0.9440 0.9348
αi 0 0 0 0.0616
γi 0.9561 0.9531 0.9440 0.9965
θi 0.0439 0.0469 0.0560 0.0035

Table 14: Average basestock and demand service levels (design scenario 2)

The results of all test instances per parameter category are given in Figure 15, which shows the
difference in costs per instance compared to design scenario 0. The box plots show many outliers
on both the bottom side, indicating that the majority of test instances have a low variance but
there are certain test instances, hence certain combinations of parameter categories, that result in
great cost reductions. Moreover, many of the outliers and bottom whiskers show a cost reduction
of more than 100%. This means that for these instances the expected costs are below e0 per
month. The fact that we can achieve a negative value for the expected costs of a test instance, is
explained by the cost function. As explained in Section 5.1, the total costs per instance consists
of all variable costs. Fixed costs are excluded. Acquisition costs are seen as fixed costs, because
in the as-is situation the acquisition costs correspond only with the demand rates: the expected
acquisition costs are always equal for a given demand rate, the basestock levels have no influence
on the expected acquisition costs. Since we focus on variable costs, we determine a penalty cost
for each applied substitution and a cost saving for each applied cross-replenishment to account for
the difference in acquisition costs. Now in design scenario 2, we find test instances with a negative
value for the expected variable costs per month. This means that for these instances, the expected
savings in acquisition costs as result of cross-replenishments, are greater than the expected holding
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costs, emergency shipment costs, and substitution penalty costs combined.

While parameter (D) shows to have a large effect on test instances’ expected costs, this param-
eter shows to have very little effect on the instances’ cost reduction relative to design scenario 0.
This is explained by the fact that this parameter also has a great effect on the average costs for
design scenario 0.

Evaluating the influence of each single parameter’s categories on the performance of design sce-
nario 2, shows that the entire IQR lays below 0% for 8 out of 18 parameter’s categories. This means
that at least 75% (IQR plus bottom whisker) of test instances with the corresponding parameter
category result in reduced expected costs, for the following parameter categories: parameter (A)
categories mid and high, parameter (B) category mid, parameter (C) categories low and mid (25th
percentile at =0.87%), parameter (D) category low, parameter (E) category high (25th percentile
at =0.68%), and parameter (F) category high. Especially parameter (A) category high, param-
eter (B) category high, parameter (C) category low, and parameter (F) category high indicate a
great reductions on costs. There is no single parameter category that results in a cost decrease
for all of its 243 test instances. These greatly reduced costs for test instances with parameters
(A) category high, parameter (B) category high, parameter (C) category low, and parameter (F)
category, are explained by these four parameter categories directly increasing the effects of the
cross-replenishment policy: the rate of cross-replenishments arriving at the warehouse (parameter
(B) category high and parameter (C) category low), the utilization of these cross-replenishments
and therefore the reduction of type 1 replenishment shipments (parameter (A) category high), and
the cost savings per applied cross-replenishment (parameter (F) category high).

Figure 15: Difference in costs, per parameter category (design scenario 2)

There are two parameter categories for which the average difference in costs are an increase
from design scenario 0. The 243 instances with parameter (A) category low result in an average
cost increase per instance of 5.46%. The 243 instances with parameter (C) category high result in
an average cost increase of per instance of 0.83%. Given in figure 16, the results of applying the
inventory control policy of design scenario 2 to all test instances except those with parameter (A)
category low, all instances except those with parameter (C) category high, and all instances except
those with either one of these two parameter categories.
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Figure 16: Difference in costs, without two worst categories (design scenario 2)

Applying design scenario 2 to all instances except those with parameter (A) category low,
results in an average monthly cost of e143.85 for the remaining 486 instances. The corresponding
instances in design scenario 0 account for an average of e301.05. This means that by omitting just
a single category of a single parameter, we can already achieve an average cost decrease of 52.2%
from design scenario 0 while reducing the scope of test instances only slightly. Omitting parameter
(C) category high results in average expected costs of e89.27 for the remaining 486 instances, a
decrease decreasing the average costs of the corresponding instances in design scenario 0 of e274.97
by 67.5%. When omitting both parameter (A) category low and parameter (C) category high, the
average costs of the remaining 324 instances decreases from e301.34 in design scenario 0 to e76.63
in design scenario 2, a decrease of 74.5%. This tremendous reduction in expected costs is the direct
result of our proposed cross-replenishment policy: by utilizing the new parts that arrive in type
2 replenishment shipments, the amount brand-new parts flowing into the network in the form of
type 1 replenishment shipments is decreased by 23.5%, 32.1%, and 32.2%, respectively. This means
that while we allow new parts in type 1 stock to be used as substitute for type 2 stock, we manage
to greatly reduce the total amount of specific new-part replenishments (type 1 replenishments)
that are required in the network. Therefore, achieving great cost savings from the reduction in
acquisition costs.

Further reducing the scope of instances to which design scenario 2 is applied, we focus test
instance groups for each possible category pair of two different parameters. Filtering the total
set of test instances on specific categories for two different parameters leaves a subset of 81 out
of 729 instances for each category pair. The average results, for the difference in costs per test
instance, are given in Table 15. Besides showing which pairs of parameter categories result in the
greatest cost reduction, the table also shows which pairs provide the worst results. Out of 135
possible parameter category pairs, 66 pairs result in an average cost decrease of more than 25%
per instance. Three different category pairs even result in an average decrease of more than 100%.
Each of these three pairs include parameter (A) category high. Only two different pairs result in
an average increase of more than 10% per instance, both have category low on parameter (A).

The results of different parameter category pairs provides much more insight than the results of
single parameters, as has been shown in Figure 15. The most interesting behavior is the relation-
ship between parameters (A) and (B). The best performing instances of design scenario 2 contain
the combination of parameter (A) category high and parameter (B) category high. The worst
performing instances contain parameter (A) category low, but also parameter (B) parameter high.
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category pairs for corresponding parameters, with l=low, m=mid, h=high
parameters l, l l, m l, h m, l m, m m, h h, l h, m h, h

(A), (B) -0.3% -1.2% 14.3%** -20.9% -37.2% -19.0% -13.7% -49.7% -117.5%*

(A), (C) -0.8% 4.3% 9.4%** -46.8% -24.5% -5.7% -123.4%* -47.3% -10.2%
(A), (D) -4.4% 6.3% 10.9%** -30.1% -24.7% -22.3% -56.3% -61.4% -63.3%*

(A), (E) 8.4%** 7.0% -2.7% -23.6% -24.3% -29.1% -62.3%* -61.7% -56.9%
(A), (F) 8.4%** 5.2% -0.9% -9.0% -24.4% -43.8% -20.5% -59.1% -101.3%*

(B), (C) -31.0% -7.0% 3.1%** -58.6% -26.4% -3.1% -81.5%* -34.1% -6.6%
(B), (D) -12.9% -11.4% -10.6%** -30.7% -29.0% -28.5% -47.3%* -39.5% -35.5%
(B), (E) -11.0%** -11.3% -12.6% -28.7% -28.9% -30.5% -37.7% -38.9% -45.6%*

(B), (F) -2.3%** -11.5% -21.0% -10.4% -27.0% -50.8% -8.4% -39.7% -74.2%*

(C), (D) -56.3% -57.2% -57.7%* -26.2% -21.8% -19.7% -8.3% -0.9% 2.7%**

(C), (E) -57.4%* -57.2% -56.4% -20.8% -21.5% -25.3% 0.7%** -0.4% -7.0%
(C), (F) -18.5% -55.9% -96.7%* -5.2% -21.0% -41.5% 2.6%** -1.4% -7.8%
(D), (E) -27.6% -28.7% -34.4%* -25.3% -25.7% -28.9% -24.6%** -24.7% -25.4%
(D), (F) -12.1% -29.2% -49.5%* -6.0% -25.4% -48.4% -3.0%** -23.7% -48.0%
(E), (F) -4.6%- -24.6% -48.3% -5.5% -25.1% -48.4% -10.9% -28.5% -49.3%*

*: category combination with best results, per given pair of parameters
**: category combination with worst results, per given pair of parameters

Table 15: Average difference in expected costs, per specific category pair (design scenario 2)

This means that parameter (B) category high provides both the best and the worst results, with
parameter (A) indicating the direction. This effect is explained by parameter (B) category high
resulting in a high rate of cross-replenishments that arrive at the warehouse. A high rate of cross-
replenishment comes with a great opportunity for saving acquisition costs for type 1 stock. When
parameter (A) has category high, these cross-replenishments can be largely utilized for type 1 de-
mand, resulting in great reductions of type 1 replenishment shipments and therefore highly reduced
total expected costs. However, when there is a high rate of cross-replenishments but parameter (A)
has category low, these cross-replenishments cannot be utilized enough. The cross-replenishments
result in increased holding costs for type 1 stock. Moreover, when the rate of cross-replenishments
is higher than the type 1 demand rate, the chance of having a full type 1 stock (X1 = Xub

1 )
increases. An increased chance of the warehouse not being able to apply cross-replenishments,
directly results in decreased the expected cost savings from the cross-replenishments. Thus, with
parameter (B) category high the opportunities to save costs are high, but cannot be utilized when
parameter (A) has category low. Resulting in increased holding costs and not providing enough
cost savings to compensate. Moreover, both these positive and negative effects are strengthened
by parameter (C) category low, because this category corresponds with a high cross-replenishment
rate. However, while parameter (C) directly determines the amount of cross-replenishments per
type 2 replenishment order, from results it is concluded that parameter (B) is more important
for the cross-replenishment rate. This is because the cross-replenishment rate mostly depends on
parameters (B) and (C), and the variance of parameter (B) is much greater than the variance
of parameter (C). Moreover, both positive and negative effects of the cross-replenishment policy
are increased by parameters (D) and (F) category high, explained by these parameters directly
determining the cost savings per utilized cross-replenishment.

Furthermore, it is concluded that the cross-replenishment policy provides better results when
both types of demand rate are higher. The combination of parameters (A) and (B) result in an
average cost difference of -0.3%, -37.2%, and -117.5%, for categories low, mid, and high, respectively.
This effect is explained by a combination of factors. First, for test instances with a low category
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for parameters (A) and (B) we need relatively high basestock levels, while for test instances with
category high for parameters (A) and (B) we can achieve the target service levels with relatively
low basestock levels. This results from a decreased level of uncertainty as the average demand
rate increases, which is a property of the Poisson distribution (to illustrate with an example: a
demand rate with mean 1 has a standard deviation of 1, while a demand rate with mean 16 has
a standard deviation of 4). To confirm these statements: for test instances with category low for
both parameters (A) and (B), the average basestock level of both stock types combined equals 1.5.
This average 1.5 basestock is required for the average demand rate of 0.15 + 0.8 = 0.95. Hence, the
average total basestock level is roughly 1.5 times higher than the average total demand rate. For
test instances with category mid for both parameters (A) and (B), an average total basestock of
2.66 is required for the average total demand rate of 0.4+2.8 = 3.2. Hence, the average basestock is
slightly lower than the average demand. For test instances with category high for both parameters
(A) and (B), we only need an average total basestock of 7.12, to satisfy the average total demand
rate of 3.5 + 11 = 14.5. Hence, for these test instances the basestock is roughly half the size of the
average demand. Thus, we can conclude that we for higher demand we need relatively less stock.
Consequently, the holding costs are relatively high when the demand rates are low. At the same
time, the cross-replenishment rate directly depends on the type 2 demand rate while the leadtime
for one type 1 replenishment is constant. For high type 2 demand rate, the cross-replenishment
rate is relatively high compared to the type 1 replenishment leadtime, while for low type 2 demand
rate, the cross-replenishment rate is relatively low compared to the type 1 replenishment leadtime.
Hence, the chance of a cross-replenishment arriving before an actual type 1 replenishment shipment
is higher when the demand rate is higher. Thus, when the demand rates are low, the holding costs
are relatively high and the cross-replenishment cost savings are relatively low. When the demand
rates are high, the holding costs are relatively low and the cross-replenishment cost savings are
relatively high. Therefore, compared to design scenario 0, we can achieve greater cost savings
(percentage cost reduction) for test instances with higher demand rates.

The parameter category pairs of Table 15 already provide very good results. To evaluate the
results for more specific type of SKUs, we evaluate the groups of test instances for each possible
tri-category combination. The average difference in costs for each tri-category combination are
given in Appendix E.3, Tables 48, 49, 50, and 51. We will analyze the test instances for the 10 best
and 10 worst performing tri-category combinations, given in Table 16.

10 combinations with best results
parameters categories avg. diff. costs
(A), (B), (C) h, h, l -229.4%
(A), (B), (D) h, h, h -123.4%
(A), (B), (F) h, h, h -198.3%
(A), (C), (D) h, l, m -126.0%
(A), (C), (D) h, l, h -133.0%
(A), (C), (E) h, l, l -129.3%
(A), (C), (E) h, l, m -127.1%
(A), (C), (F) h, l, m -122.1%
(A), (C), (F) h, l, h -204.8%
(B), (C), (F) h, l, h -139.3%

total average -153.5%

10 combinations with worst results
parameters categories avg. diff. costs
(A), (B), (C) l, h, m 16.0%
(A), (B), (C) l, h, h 17.8%
(A), (B), (D) l, h, m 17.5%
(A), (B), (D) l, h, h 27.6%
(A), (B), (E) l, h, l 22.0%
(A), (B), (E) l, h, m 19.0%
(A), (B), (F) l, h, m 14.4%
(A), (B), (F) l, h, h 14.5%
(A), (C), (D) l, h, h 16.5%
(A), (D), (F) l, h, l 14.9%

total average 18.0%

Table 16: Best and worst results for specific combinations of three parameters (design scenario 2)

The results in Table 16 provide insight on the performance of more specified groups of test
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instances as in Table 15. The results furthermore confirm what has been concluded before. 7
out of 10 tri-category combinations with the best results contain the combination of parameter
(A) category high with parameter (C) category low, clearly indicating that the combination of
these two categories provides the best results for design scenario 2. Parameter (B) category high
is also represented 4 times, each time in combination with either parameter (A) category high or
parameter (C) category low. Consequently, the greatest average reduction in costs are provided
by the tri-category combination of parameter (A) category high, parameter (B) category high, and
parameter (C) category low, with an average cost reduction of 229.4% per instance. As explained
before, the combination of parameter (B) category high and parameter (C) category low result in a
high rate of cross-replenishment shipments. In combination with parameter (A) category high, the
spare part service network can greatly benefit from these cross-replenishment shipments. For this
tri-category combination, the acquisition costs for type 1 stock are reduced to such extend, that
the average cost savings are more than twice the average total costs for these instances in design
scenario 0. These positive results are furthermore increased by parameter (F) category high, which
directly increased the cost savings per applied cross-replenishment.

Regarding the 10 combinations of 3 different categories that have the worst results, 8 out of 10
contain the combination of parameter (A) category low with parameter (B) category high, each with
a different category as third. The remaining 2 contain the combination of parameter (A) category
low with parameter (D) category high. Both combinations have been explained before: the high rate
of cross-replenishments result in great opportunity to reduce the service network costs, but when
these cross-replenishments cannot be utilized by type 1 demand (parameter (A)), then they will
result in increased holding costs, increased substitution penalty costs, and reduced cost savings from
cross-replenishments. Moreover, it is concluded that parameter (B) is dominant over parameter
(C) with regards to cross-replenishments. Even though parameter (C) directly determined the
number of cross-replenishments per type 2 replenishment order, the variance of parameter (B) is
much higher than the variance of parameter (C). Hence, parameter (B) has more influence on the
cross-replenishment rate than parameter (C), but the combination is most important.

As mentioned in the beginning of this section, there are 78 test instances for which the optimal
policy is found at zero basestock for type 1 stock (S1 = 0). These test instances predominantly
contain parameter (A) category low, parameter (B) category high, parameter (C) category low,
and parameter (E) category high. This means that the instances that result in S1 = 0, are
characterized by the same parameter categories as the instances that provide the worst results
regarding costs. This is furthermore a result of parameter (B) category high and parameter (C)
category low resulting in a high cross-replenishment rate, and parameter (A) category low resulting
the warehouse being unable to utilize these cross-replenishments. The average on-hand of type
1 stock increases and compensates for S1. While test instances with these parameter categories
do not provide good reductions in expected costs, they do provide interesting results for type 1
basestock and type 1 replenishment shipments. There is no combination of one, two, or three
different parameter categories for which all remaining test instances result in an optimal basestock
level of S1 = 0. The representation of each parameter’s categories in the instances with S1 = 0 is
given in Table 17.

It is concluded that the inventory policies of design scenario 2 perform well for all type of SKUs,
except SKUs that have a low type 1 demand rate. Even when the replenishment and demand allo-
cation policies of design scenario 2 are applied to all 729 test instances, the average expected costs
per instance are 34.4% lower than in design scenario 0. The average service level for type 1 demand
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no. of instances with:
parameter low mid high
(A) 50 16 12
(B) 0 19 59
(C) 55 19 4
(D) 33 24 21
(E) 2 31 45
(F) 24 24 30

Table 17: Representation of each category in instances with S1 = 0 (design scenario 2)

decreases slightly, while the average service level for type 2 demand increases greatly. Especially
SKUs that utilize the most out of cross-replenishments provide very large reductions in costs: over
all 129 test instances that provide at least 50% cost reduction, the expected cross-replenishment
rate divided by the type 1 demand rate equals 0.841 (thus, on average 0.841 cross-replenishment
arrives per type 1 demand). For the 10 best performing instances, this factor equals 1.02. On
the contrary, over all 229 test instances that result in increased costs from design scenario 0, this
factor equals 3.480 and over the 10 worst performing instances this factor equals 4.678. The design
scenario therefore provides especially good results for SKUs that have a high type 1 demand rate,
in combination with one or more of following characteristics: high type 2 demand rate, low replen-
ishment accuracy, and/or high difference in costs between a new and repaired part. The results
even indicate 51 unique type of SKUs, for which the cost savings as result of cross-replenishments
exceed the total holding costs, emergency shipment costs, and substitution penalty costs combined.
Furthermore, for 78 unique type of SKUs the replenishment inaccuracy can be utilized to com-
pletely solve the need for type 1 replenishment shipments.

5.4 Design scenario 3a: As-is replenishment policy and demand substitution
policy with hold-back levels

In this design scenario we search for the optimal balance in blocking and allowing demand substitu-
tion, extending the replenishment and demand allocation policies of design scenario 1. The goal of
this extension is to minimize the negative effects of substitution while still being able to utilize the
positive effects. Hold-back levels only apply to type 1 stock, because type 2 stock cannot be used
as substitute. As 0 ≤ h1 ≤ S1, we evaluate each possibility from complete substitution (h1 = 0) up
to no substitution (h1 = S1).

The average costs over all test instances are given in Table 18 and the service levels per type
of demand are given in Table 19. The average results from design scenario 0 are improved slightly
in design scenario 3a. Average expected holding costs are decreased by e5.65 (2.1%) and average
expected emergency shipping costs are reduced by e0.72 (9.8%). With an average expected sub-
stitution penalty cost of e4.30, the average total costs are reduced by e2.07 (0.8%). The average
amount of type 1 replenishment shipments needed is slightly increased by 0.02 shipments (1.5%).
The average basestock level S1 is equal as in design scenario 0, and S2 is decreased slightly from
4.78 to 4.72. The demand satisfaction levels γ1 and γ2 are both decreased, but only slightly (0.1%
for both).

A total of 152 out of 729 test instances result in a decrease in expected costs. The average
decrease of these 152 test instances is 6.3%. While there are 577 test instances that do not provide
decreased expected costs, none of these instances actually results in an increase of expected costs.
This result is explained by allowing the hold-back level h1 to be any value from 0 up to S1. In
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design scenario 0 we never apply demand substitution, which in design scenario 3a is equal to setting
h1 = S1 for every test instance. In design scenario 3a we can set any h1 value, and we choose the
S1, S2, h1 combination with that provides the lowest expected costs. For any test instance, the
solution of design scenario 0 is one of the feasible solutions for design scenario 3a: S1 and S2 equal
to the optimal levels for design scenario 0, and h1 = S1. Therefore, in design scenario 3a, for any
test instance we will choose a feasible solution with lower expected costs than the solution of design
scenario 0, or we will select the solution equal to design scenario 0. To confirm these statements,
we denote the following result: the expected costs of each of the remaining 577 test instances is
equal in design scenarios 3a and 0. Moreover, for all these test instances the optimal hold-back
level to the optimal type 1 basestock level.

average of all instances: Des. Sc. 0 Des. Sc. 3a difference diff. (%)
holding costs e267.64 e261.99 =e5.65 =2.1%
emergency shipping costs e7.33 e6.61 =e0.72 =9.8%
substitution pen. costs e0.00 e4.30 e4.30 n/a
cross-rep. cost savings e0.00 e0.00 e0.00 n/a
total costs e274.97 e272.90 =e2.07 =0.8%
ω1 1.283 1.303 0.02 1.5%

Table 18: Average costs per instance (design scenario 3a)

Design scenario 0 Design scenario 3a
average: i = 1 i = 2 i = 1 i = 2
Si 2.37 4.78 2.37 4.72
βi 0.9561 0.9531 0.9550 0.9361
αi 0 0.0000 0 0.0164
γi 0.9561 0.9531 0.9550 0.9525
θi 0.0439 0.0469 0.0450 0.0475

Table 19: Average basestock and demand service levels (design scenario 3a)

The cost difference per test instance in comparison design scenario 0 are given in Figure17, for
the total set and for each test instance subsets for each separate parameter category. As explained
before, the hold-back levels result in a (slight) decrease in expected costs for 152 test instances
and result in equal expected costs for 577 test instances. This effect is clearly shown in Figure 17.
Almost all test instances have no difference in expected costs from design scenario 0, and the test
instances that do have a difference almost all result in a decrease between 0% and 5%. Only a
small portion of the test instances result in a cost decrease of more than 5%. Moreover, it is clearly
shown that no test instance has a higher expected cost than in design scenario 0: all test instances
are on the 0% line or below.

The mean values and outliers of the parameter categories, show a positive correlation between
decreasing expected costs and increasing parameter (A) and parameter (E). Parameters (D) and (F)
show a negative correlation with reducing costs. Parameter (C) shows no correlation to decreasing
expected costs. Parameter (B) shows a positive correlation for the mean values, but it shows that
almost all values with category high are on the 0% line. All the outliers below =11.9% contain
category high, while all outliers ≥=11.9% contain category low and mid. This means that for the
majority test instances with parameter (B) category high the results are equal to design scenario 0,
while for a subset of these instances we find the greatest cost decrease of design scenario 3a. This
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Figure 17: Difference in costs, per parameter category (design scenario 3a)

indicates that the results of test instances with parameter (B) category high heavily depend and the
other parameter categories. Hence, we will evaluate combinations of different pairs of parameter
categories to analyze the effects between parameters.

The average difference in expected costs per specific pair of parameter categories is given in
Table 20. There are many category pairs for which average difference in expected costs equals 0.0%.
This means that for these category pairs applying substitution has negative effects on the network
performance for each possible hold-back level, hence the hold-back level is set equal to the type
1 basestock level (h1 = S1) for most test instances. There is no category pair for which h1 = S1
holds true for every single instance. Hence, for the category pairs with an average cost difference of
0.0%, the actual difference is not equal to zero but is so small that rounding it to one decimal gives
a value of 0.0%. Of all 135 possible parameter category pairs, 89 pairs result in an average cost
decrease between 0 and 1%. The remainder 46 pairs result in an average cost decrease of more than
1%. However, only 3 different category pairs result in an average cost decrease of more than 5%:
parameter (B) category high with parameter (D) category low, parameter (B) category high with
parameter (E) category high, and parameter (D) category low with parameter (E) category high.
Hence, all 3 category pairs with an average cost decrease of more than 5% contain a combination of
two out of three of the following parameter categories: parameter (B) category high, parameter (D)
category low, and parameter (E) category high. This is explained by parameter (B) category high
increasing the rate of substitution requests, thus increasing both the negative and positive effects
from substitution. Combining this with parameter (D) category high (resulting in a relatively low
penalty costs for applying substitution), and parameter (E) category high (resulting in a large cost
reduction for emergency shipments), gives the greatest best results for design scenario 3a.

As Table 20 indicates, for combinations of two parameter categories the best results are found for
category pairs that contain containing two of the following characteristics: parameter (B) category
high, parameter (D) category low, and parameter (E) category high. This is furthermore confirmed
when we evaluate each possible combination of three different parameter categories. The average
difference in costs of the test instances in design scenario 3a, for each possible combination of three
different parameter categories, is given in Appendix E.4, in Tables 52, 53, 54, and 55. The 10
tri-category combinations that provide the best average difference in expected costs are given in
Table 21. The 10 tri-category combinations with the worst results are not provided, because there
are 148 different tri-category combinations that result in an average difference in costs of 0.0%. No
tri-category combination results in a 0.0% for each test instance. The 10 tri-category combinations
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category pairs for corresponding parameters, with l=low, m=mid, h=high
parameters l, l l, m l, h m, l m, m m, h h, l h, m h, h

(A), (B) -0.3% -0.4% -2.1% -0.3% -0.4% -2.1% -0.1%** -2.2%* -1.7%
(A), (C) -0.3% -0.4% -2.1% -0.3% -0.4% -2.1% -0.1%** -2.2%* -1.7%
(A), (D) -2.7% 0.0%** 0.0%** -2.8%* 0.0%** 0.0% -2.3% -0.7% -1.1%
(A), (E) 0.0%** 0.0%** -2.7% 0.0%** 0.0%** -2.8%* -0.9% -0.7% -2.5%
(A), (F) -1.4% -0.7% -0.7% -1.5% -0.6% -0.6% -2.7%* -0.8% -0.5%**

(B), (C) -0.2%** -0.2%** -0.2%** -1.0% -1.0% -1.0% -2.0%* -2.0%* -2.0%*

(B), (D) -0.7% 0.0%** 0.0%** -1.2% -0.7% -1.1% -5.9%* 0.0%** 0.0%**

(B), (E) 0.0%** 0.0%** -0.7% -0.9% -0.7% -1.4% 0.0%** 0.0%** -5.9%*

(B), (F) -0.7% 0.0%** 0.0%** -2.7%* -0.3% 0.0%** -2.2% -1.8% -1.8%
(C), (D) -2.6%* -0.2%** -0.4% -2.6%* -0.2%** -0.4% -2.6%* -0.2%** -0.4%
(C), (E) -0.3%** -0.3%** -2.6%* -0.3%** -0.3%** -2.6%* -0.3%** -0.3%** -2.6%*

(C), (F) -1.9%* -0.7% -0.6%** -1.9%* -0.7% -0.6%** -1.9%* -0.7% -0.6%**

(D), (E) -0.2% -0.1%** -7.5%* -0.3% -0.3% -0.1%** -0.4% -0.4% -0.3%
(D), (F) -4.1%* -1.8% -1.8% -0.6% -0.1% 0.0%** -0.9% -0.2% 0.0%**

(E), (F) -0.7% -0.1% 0.0%** -0.7% -0.1% 0.0%** -4.2%* -1.9% -1.8%
*: category combination with best results, per given pair of parameters
**: category combination with worst results, per given pair of parameters

Table 20: Average difference in expected costs, per specific category pair (design scenario 3a)

with the best results all provide an average cost decrease of over 5%, with the total average cost
decrease equal to 9.3%. There are two different tri-category combinations with an average cost
decrease of over 10%: parameters (B), (D), (E) with categories high, low, high, respectively (average
cost decrease of 18.1%), and parameters (D), (E), (F) with categories low, high, low, respectively
(average cost decrease of 12.4%). The first was already indicated by the analysis of category
pairs in Table 20, where it was clearly concluded that these three parameters and corresponding
categories provide the best results. The second is explained by these three parameters directly
resulting in relatively low penalty costs per applied substitution (parameter (D) low and (F) low)
and a relatively large cost reduction from the reduced amount of emergency shipments (parameter
(E) high). A total of 8 out of 10 best tri-category combinations contain parameter (D) category
low with parameter (E) category high, clearly confirming that these two parameters provide the
the most important SKU characteristics for design scenario 3a. Furthermore, it is concluded that
parameters (A) and (C) are the least important parameters for design scenario 3a. In combination
with parameter (D) category low with parameter (E) category high, any category for parameters
(A) and (C) will result in an average cost decrease between 5% and 10%.

It is concluded that design scenario 3a provides interesting opportunities for Philips to improve
their spare part service network performance. While the design scenario provides a decrease in
expected costs for only 140 out of 729 test instances, it never results in an increase of the expected
costs. For most test instances, the service network of design scenario 3a behaves exactly equal
as the as-is network of design scenario 0. The effect of each individual parameter’s categories,
each combination of two parameter categories, and each combination of three parameter categories
has been analyzed and evaluated to find SKU characteristics for which design scenario 3a does
provide better performance than design scenario 0. It is concluded that design scenario 3a provides
a reduction in service network costs for SKUs with a low SKU value in combination with high
emergency shipping costs. The results are furthermore improved when these two characteristics
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10 combinations with best results
parameters categories avg. diff. in costs
(A), (D), (E) low, low, high -8.6%
(A), (D), (E) mid, low, high -9.0%
(A), (D), (E) high, low, high -6.7%
(B), (D), (E) high, low, high -18.1%
(B), (D), (F) high, low, low -6.9%
(B), (E), (F) high, high, low -6.9%
(C), (D), (E) low, low, high -8.7%
(C), (D), (E) mid, low, high -7.9%
(C), (D), (E) high, low, high -7.7%
(D), (E), (F) low, high, low -12.4%

total average -9.3%

Table 21: Best results for specific combinations of three parameters (design scenario 3a)

are combined with a high demand rate for type 2 stock and/or a low difference in costs between
the SKU’s new and repaired parts. Type 1 demand rate and replenishment (in)accuracy are least
important.

5.5 Design scenario 3b: Cross-replenishment policy and demand substitution
policy with hold-back levels

In design scenario 2 we introduced the cross-replenishment policy. This design scenario provides
greatly improved results, compared to design scenario 0. However, the negative effects of demand
substitution are still noticeable. The substitution penalty costs are a big portion of the total costs,
and the basestock levels of type 2 stock are increased to reduce the penalty costs and safeguard the
service levels for type 1 demand. In design scenario 3b we furthermore improve the inventory policies
of design scenario 2, by evaluating the effect of hold-back levels. As the hold-back level h1 can range
between 0 and the maximum level of on-hand stock (Xub

1 ), this design scenario also indicates for
which type of SKUs the optimal inventory policy would be to apply a cross-replenishment policy
while not allowing demand substitution at all.

The overall results of design scenario 3b are given in Tables 13 and 23. When the inventory
polices of design scenario 3b are applied to the complete set of test instances, hence every possible
type of SKU, the average monthly costs per instance is equal to e129.87. This is a very high
reduction from the expected costs in the as-is situation analyzed in design scenario 0, a reduction
of 52.8%. The average basestock level of type 1 stock is also reduced greatly, from 2.37 to 1.65.
The average basestock level of type 2 stock is also reduced, but only slightly; from 4.78 to 4.74.
This is a decrease of 30.4% and 0.8%, respectively. While the average basestock levels are reduced,
the cross-replenishment policy has the result that on-hand stock levels can exceed the basestock
levels. Thus, for the holding costs we do not only look at the basestock levels. The average on-hand
stock level plus the average stock in transit in the pipeline increases from design scenario 0, but
only by 7.2%. The holding costs increase correspondingly, from e267.64 to e286.78. While using
hold-back levels, the average substitution penalty costs account for e104.19. For comparison, in
design scenario 2 the average substitution penalty costs accounted for e151.84. Besides reducing
the average substitution penalty costs per month, the hold-back levels also allow to increase the
utilization cross-replenishments by type 1 demand. Consequently, reducing the amount of brand-
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new parts allocated to type 2 demand through type 2 stock. On average the cross-replenishments
result in a 27.8% reduction of type 1 replenishment shipments, accounting for average acquisition
cost savings of e267.78.

A total of 617 instances result in negative expected costs. This means that for roughly 85%
of all test instances, the cost savings as result of cross-replenishments are greater than the total
of holding costs, emergency shipment costs, and substitution penalty costs combined. Moreover,
there are a total of 213 test instances for which the optimal solution is not maintaining basestock
for type 1 stock at all (S1 = 0). Thus, for these 213 instances the policies of design scenario 3
completely solves the need for the inefficient type 1 replenishment orders. These will be evaluated
later.

average of all instances: Des. Sc. 0 Des. Sc. 3b difference diff. (%)
holding costs e267.64 e286.78 e19.15 7.2%
emergency shipping costs e7.33 e6.68 =e0.66 =8.9%
substitution pen. costs e0.00 e104.19 e104.19 n/a
cross-rep. cost savings e0.00 =e267.78 =e267.78 n/a
total costs e274.97 e129.87 =e145.10 =52.8%
ω1 1.283 0.927 =0.356 =27.8%

Table 22: Average costs per instance (design scenario 3b)

In the evaluation of design scenario 1 and 2 we explained that the extremely low value for θ2
(0.0023 and 0.0035, respectively) was the result the substitution policy: substitution requests are
always satisfied when X1 > 0. This low value for θ2 is the result of a very high S2 (5.57 and 5.25
respectively), which is needed to reduce expected penalty costs for substitutions and needed to
maintain the target service level for type 1 demand. This indicates that these high S2 values are
not needed in design scenario 3b, because we can reduce these negative effects of substitution by
the hold-back levels instead of by increasing S2. This is confirmed by the results of design scenario
3b. The average value for θ2 equals 0.0507, roughly 20 times higher than in design scenario 1 and
2. This factor 20 increase is not a problem because the target service levels are still well achieved
(γobj2 = 0.90, average γ2 = 0.9493).

Design scenario 0 Design scenario 3b
average: i = 1 i = 2 i = 1 i = 2
Si 2.37 4.78 1.65 4.74
βi 0.9561 0.9531 0.9557 0.9207
αi 0 0.0000 0 0.0286
γi 0.9561 0.9531 0.9557 0.9493
θi 0.0439 0.0469 0.0443 0.0507

Table 23: Average basestock and demand service levels (design scenario 3b)

While the average results of the complete set of test instances already provide excellent results,
we will zoom in on the effect of different parameters to conclude which SKU characteristics provide
the greatest positive effects and to indicate which characteristics provide negative effects. The
difference in expected costs from designs scenario 0, for each test instance per parameter category,
are given in Figure 15. The box plots clearly show that parameters (A), (B), (C) and (F) greatly
affect the difference in expected costs of design scenario 3b compared to design scenario 0. Not
only the mean and the IQR show a correlation with reducing expected costs (respectively: positive,
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positive, negative, positive), but also the outliers show a predominant representation in the same
directions. On the contrary, the box plots for parameters (D) and (E) show almost negligible
effect on difference in expected costs per test instance. The values for the mean, 25th percentile,
median, and 75th percentile of each category of parameters (D) and (E) are almost equal. The
outliers are distributed evenly among all three categories as well. The box plots of Figure 18
clearly indicate that the greatest cost reductions can be realized for test instances with the following
characteristics: parameter (A) category high, parameter (B) category high, parameter (C) category
low, and parameter (F) category high.

Figure 18: Difference in costs, per parameter category (design scenario 3b)

Reducing the scope of instances further, we analyze the results for each possible combination
of categories between two different parameters (reducing the scope to groups of 81 test instances).
The average difference in costs for each possible combination are given in Table 24. For each pair of
parameters, the combination of categories that provides the best results and the combination that
provides the worst results are marked in the table. A very large average reduction in expected costs
does not imply that each separate test instance provides reduced expected costs. There are a total
of 14 pairs of parameter categories, for with every single test instance results in lower expected
costs than in design scenario 0. These are marked in Table 24 as well.

There are only two category pairs for which the average difference in expected costs per is
greater than zero: the combination of parameter (A) category low with parameter (F) category
low results in an average increase of 1.5% per test instance, and the combination of parameter
(A) category low with parameter (B) category high results in an average increase of 5.6% per test
instance. Especially the latter is an interesting result, also indicated in design scenario 2: looking at
parameter (B) alone, one would expect that instances with category high result in a large decrease
of the average costs. However, as also indicated by the upper whisker of parameter (B) category
high, a small portion of test instances result in increased expected costs. These are explained by
the combination of this parameter (B) category high, with parameter (A) category low because the
type 1 demand rate is too low gain sufficient cost savings from the cross-replenishments, while it
also results in increased holding costs. There are four different pairs that result in an average cost
decrease per instance of more than 100%. Three of these contain parameter (A) category high with
either parameter (B) category high or parameter (C) category low, explained by these parameter
combinations resulting in a high utilization of cross-replenishments.

The biggest decrease in costs are expected for test instances with parameter (A) category
high, and an increase in costs is only expected for instances with parameter (A) category low in
combination with either parameter (B) category high or parameter (C) category low. However,
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category pairs for corresponding parameters, with l=low, m=mid, h=high
parameters l, l l, m l, h m, l m, m m, h h, l h, m h, h

(A), (B) -18.8% -29.3% 5.6%** -25.8% -46.4% -39.2%� -21.1% -60.7%� -133.7%*,�

(A), (C) -26.4% -15.7% -0.3%** -59.7%� -37.4% -14.3% -132.8%*,� -59.2% -23.5%

(A), (D) -16.9% -12.8% -12.8%** -35.5% -37.1% -38.9% -62.5% -73.6%� -79.3%*,�

(A), (E) -12.7%** -12.9% -16.8% -37.9% -37.4% -36.1% -76.3%*,� -74.6% -64.6%�

(A), (F) 1.5%** -14.0% -30.0% -14.3% -36.6% -60.5%� -28.8% -71.1% -115.6%*

(B), (C) -48.2% -15.8% -1.7%** -80.1%� -43.9% -12.4% -90.6%* -52.7% -24.0%

(B), (D) -20.0%** -22.5% -23.2% -41.3% -46.0% -49.0% -53.5% -55.0% -58.8%*

(B), (E) -22.8% -22.6% -20.3%** -47.5% -46.5% -42.4% -56.6%* -55.7% -54.9%

(B), (F) -5.3%** -21.7% -38.6% -18.6% -44.8%� -73.0%� -17.6% -55.3% -94.4%*

(C), (D) -68.1% -73.6% -77.2%* -34.8% -37.5% -39.9% -11.9%** -12.4% -13.8%

(C), (E) -75.4%* -74.2% -69.3% -38.5% -38.0% -35.8% -13.0% -12.6% -12.5%**

(C), (F) -28.5% -72.7% -117.8%* -12.4% -36.9% -63.0%� -0.7%** -12.1% -25.3%

(D), (E) -39.7% -38.4% -36.7%** -43.0% -42.4% -38.1% -44.2%* -44.1% -42.8%

(D), (F) -14.2% -37.7% -63.0% -13.1%** -40.8% -69.6% -14.3% -43.3% -73.4%*

(E), (F) -13.6% -41.9% -71.4% -13.3%** -41.3% -70.2%* -14.6% -38.5% -64.4%

*: category combination with best results, per given pair of parameters
**: category combination with worst results, per given pair of parameters
�: cost decrease for every single instance

Table 24: Average difference in expected costs, per specific category pair (design scenario 3b)

there are other very interesting results for these latter two combinations. Every single test instance
that has the combination of parameter (A) category low with either parameter (B) category high
or parameter (C) category low, results in an optimal solution at S1 = 0. While the cost-wise results
of these type of SKUs in design scenario 3b are the least interesting, the opposite is true for the
practical results. We do not even need to narrow the scope of test instances to combinations of
three different parameter categories, even when looking at only two parameter categories there are
already two different combinations for which every single test instances no longer requires type 1
replenishment shipments. Notice that the optimization problems do not search for a good solution
with S1 = 0, the optimization problems search for any feasible level of S1 (in combination with S2
and h1) that results in the lowest expected costs while achieving the target service level. Thus, for
all test instances with these two pairs of parameter categories, setting S1 = 0 is not just a good
solution but is the optimal solution in the whole set of feasible solutions.

As explained in the beginning of this chapter, the case values for each parameter’s categories
are based on data analysis and on input by subject experts. However, looking at the results in a
conservative way, it could be argued that in practice it is not likely that many SKUs have a low
replenishment accuracy (parameter (C)) while at the same time a high difference in acquisition
costs between a brand-new and repaired part (corresponding with parameter (F)). However, even
when all instances with the combination parameter (C) category low and parameter (F) category
high are omitted from the total set of test instances, the remaining test instances still provide
excellent results. The average difference in expected costs is a 13.2% reduction. The difference
in costs for 75% of the test instances lie between =126.8% and +1.2%. The results of applying
the inventory policies of design scenario 3b to all instances except those with the combination
parameter (C) category low and parameter (F) category high, are given in Figure 19. Furthermore,
besides looking at a conservative subset of instances, in 19 we also give the results for applying
design scenario 3b to the subsets of instances that have provided the best results in Table 15. For
each of these four category pairs that provide the best results, the average reduction in costs is
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more than 100% and all four median values are between -50% and -100%.

Figure 19: Difference in costs, with and without specific parameter categories (design scenario 3b)

The analysis of overall results, single parameter categories, and parameter category pairs, clearly
indicate which SKU characteristics provide the greatest cost reductions in design scenario 3b.
Evaluating subsets of test instances with two specific parameter categories, already results in many
test instance groups with an average cost reduction over 100%. While Table 24 indicates 2 different
category pairs for which design scenario 3 results in an average increase of the costs, this increase is
very small. To further specify the type of SKUs for which design scenario 3b provides the best and
the worst results, we zoom in at combinations of 3 different parameter categories (each combination
containing 27 out of the total 729 test instances). The average difference in costs, for each possible
tri-category combination, is given in Appendix E.5, Tables 56, 57, 58, and 59. The 10 tri-category
combinations with the best results and the 10 tri-category combinations with the worst results are
given in Table 25.

10 combinations with best results
parameters categories avg. diff. costs
(A), (B), (C) h, h, l -241.2%
(A), (B), (D) h, h, h -148.0%
(A), (B), (E) h, h, l -141.3%
(A), (B), (E) h, h, m -137.8%
(A), (B), (F) h, h, h -215.7%
(A), (C), (D) h, l, h -146.4%
(A), (C), (E) h, l, l -140.8%
(A), (C), (E) h, l, m -137.6%
(A), (C), (F) h, l, h -215.5%
(B), (C), (F) h, l, h -151.8%

total average -167.6%

10 combinations with worst results
parameters categories avg. diff. costs
(A), (B), (C) l, h, h 10.9%
(A), (B), (D) l, h, m 9.2%
(A), (B), (D) l, h, h 11.9%
(A), (B), (E) l, h, l 10.6%
(A), (B), (E) l, h, m 9.3%
(A), (B), (F) l, h, l 16.9%
(A), (B), (F) l, h, m 5.7%
(A), (C), (F) l, h, l 10.4%
(A), (D), (F) l, h, l 4.1%
(B), (C), (F) l, h, l 4.3%

total average 9.3%

Table 25: Best and worst results for specific combinations of three parameters (design scenario 3b)

Several conclusions follow from Table 25. Regarding the 10 tri-category combinations that
provide the worst results, 7 out of 10 contain the combination of parameter (A) category low with
parameter (B) category high. Parameter (C) category high, parameter (D) category high, and
parameter (F) category low are all represented 3 times in the 10 tri-category combinations with
the worst results. These three are always in combination with either parameter (A) category low
or parameter (B) category high, or both. It is clear that design scenario 3b provides bad results
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for SKUs for which there is a high rate of cross-replenishments and a low utilization of these cross-
replenishments by type 1 demand. These negative effects are furthermore increased by high holding
costs and low difference in costs between the SKU’s new and repaired parts. However, even when
we reduce the scope to subsets of 27 test instances with specific tri-category combinations that
provide the worst results, the 10 worst results provide an average increase in costs per test instance
of only 9.3%.

Regarding the 10 tri-category combinations that provide the best results, 9 out of 10 contain
parameter (A) category high in combination with either parameter (B) category high or param-
eter (C) category low. Moreover, the tri-category combination of these three specific parameter
categories, results in the greatest cost reduction: an average reduction of 241.2% per instance. It
is clear that the greatest cost reduction is achieved for test SKUs with a high cross-replenishment
rate (parameter (B) category high and parameter (C) category low), and a high utilization of these
cross-replenishment for type 1 demand (parameter (A) category high). The positive effect of these
utilized cross-replenishments are furthermore increased by a high difference in costs between the
SKU’s new and repaired parts (parameter (F) category high). All 10 best tri-category combinations
provide an average cost reduction well above 100%.

It is concluded that the inventory policies of design scenario 3b provide excellent performance
improvement to the as-is policies. While we have identified SKU characteristics for which design
scenario 3b provides the best results, even when it is applied to our complete set of test instances
the results provide in an incredible 52.8% reduction of the average costs per test instance per
month. This cost reduction is the direct result of making a distinction between new and repaired
parts that arrive in type 2 replenishment shipments. With this distinction the need for type 1
replenishment shipments is decreased by an average of 27.8%. Furthermore, by allowing substitution
in combination with hold-back levels, we can find the perfect balance between the negative effects
of substitution (penalty costs) and the positive effects (increased service for type 2 demand).

The most important SKU characteristics to determine the effectiveness of design scenario 3b
are the type 1 demand rate and the type 2 demand rate. A high type 2 demand rate results in a
high cross-replenishments rate, which is furthermore amplified by a low replenishment inaccuracy.
A high cross-replenishment rate can result in extraordinary costs reductions, but can also result
in increased costs. This depends on the combination with the type 1 demand rate. With a low
type 1 demand rate, these cross-replenished parts cannot be utilized enough by type 1 demand.
Hence, the holding costs of type 1 stock rise, while the cost savings are very low. These cost
savings are low because not all cross-replenishment shipments can be put on type 1 stock, since
there is not sufficient type 1 demand to utilize all cross-replenishments. The chance of a full type
1 stock X1 = Xub

1 increases, and with it the number of could-have-been cross-replenishments that
end up on type 2 stock. On the contrary, when not only type 2 demand rate is high, but type 1
demand rate is high as well, the result is a high rate of cross-replenishments and a high utilization
of these cross-replenishments. The average reduction in expected costs, for all test instances with
a high type 1 demand rate and a high type 2 demand rate, is even higher than the total average
costs of these instances in the as-is situation: an average reduction of 133.7%. To confirm these
statements, we analyze the cross-replenishment rate relative to the type 1 demand rate. There
are 199 test instances that provide a cost reduction of at least 50%. For these test instances, the
cross-replenishment rate is on average a factor 1.433 higher than the type 1 demand rate. For the
10 test instances with the best results, this factor is on average 1.003. On the contrary, for the 199
test instances with the worst results and the 10 test instances with the worst results, this factor is
on average 3.538 and 7.597, respectively.

An average cost reduction of over 100% is provided for test instances with the following char-
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acteristics: a high type 1 demand rate and a high type 2 demand rate, high type 1 demand rate
and low replenishment accuracy, high type 1 demand rate and high difference in costs between
new and repaired parts, or a low replenishment accuracy and high difference in costs between new
and repaired parts. Moreover it is concluded that the type 2 demand rate has a greater influence
on the cross-replenishment rate than the replenishment accuracy of type 2 replenishment orders.
However, the combination of a high type 2 demand rate and a low replenishment accuracy has the
greatest effect. Whether this effect is positive or negative depends on the type 1 demand rate.

Moreover, while a low type 1 demand rate in combination with a high type 2 demand rate
provides the worst results regarding costs, this does not strictly mean that design scenario 3 should
never be applied to these type of SKUs. In matter of fact, for all SKUs with these characteristics
it is found that the optimal solution is not keeping any type 1 basestock at all. The utilization of
cross-replenishments for satisfying type 1 demand from stock is 100%, type 1 replenishment orders
are no longer needed.

5.6 Overall results

In the case study we created a set of test instances that represents each possible type of SKU. By
categorizing each of the six parameters into three categories, and creating a test instance for each
unique combination of parameter categories, a total set of 729 unique test instances are defined.
In the case study of each design scenario, we evaluated the average results of the total set of test
instances, the effect of each separate parameter category, the effect of each possible combination of
two different parameter categories, and the best and worst results for each possible combination of
three different parameter categories. This allows us to evaluate the design scenario’s behavior for
different type of SKUs. The conclusions of each design scenario’s case study have been provided in
the corresponding subsections. Here we will provide overall case study results.

Design scenario 3b provides the best results of all design scenarios, including the as-is situation
evaluated in design scenario 0. This is a clear conclusion from separate design scenario’s case study,
in Chapter 5. However, this does not mean that design scenario 3b is best for all test instances.
The number of test instances for which each given design scenario provides the best results, are
given in Table 26. While design scenario 3b provides the best results for 586 test instances, design
scenario 0, 1, 2, and 3a provide the best results for 13, 1, 40, and 89 test instances, respectively.
Notice that the test instance for which design scenario 1 performs best, give the same exact same
results in design scenario 3a (with h1 = 0). Similarly, the 40 test instances for which design scenario
2 performs best, give the exact same results in design scenario 3b (with h1 = 0). Hence, with these
test instances included, design scenario 3a and 3b provide the best results for 90 and 626 test
instances respectively.

The number of test instances for which a certain design scenario provides the best results, does
not indicate the magnitude of the reduction in expected costs. Therefore, the average reduction
in expected costs per test instance is also provided in Table 26. These values clearly show that
even though test scenario 3a performs best for 89 test instances, the difference in expected costs
with design scenario 0 are almost negligible (average reduction of 0.4%). On the contrary, the test
instances for which design scenario 3b performs best are reduced in costs by an average of 51.8%.

In order to make overall conclusion for different type of SKUs, we group test instances to each
combination of two different parameter categories (similar as done in the evaluation of each separate
design scenario). The design scenario that provides the best performance, for each possible pair of
parameter categories, is given in Table 24. When evaluating performance for subset of test instances
for each combination of two specific parameter categories, design scenario 3b is the best performing
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Design scenario no. instances avg. diff. costs
0 13 0.0%
1 1 -2.8%
2 40 -17.7%
3a 89 -0.4%
3b 586 -51.8%

Table 26: Number of test instances for which each design scenario provides the best results

design scenario for 131 out of 135 possible pairs. It is concluded that design scenario 3b provides
the best results for all test instances except test instances with parameter (A) category low in
combination with either parameter (B) category high, parameter (C) category high, or parameter
(F) category low, and for the combination of parameter (C) category high with parameter (F)
category low. As explained before, these parameters and corresponding categories result in a high
rate of cross-replenishments, a low utilization of cross-replenishments by type 1 demand, and a low
cost saving for each applied substitution.

l, l l, m l, h m, l m, m m, h h, l h, m h, h

(A), (B) 3b 3b 3a 3b 3b 3b 3b 3b 3b
(A), (C) 3b 3b 3a 3b 3b 3b 3b 3b 3b
(A), (D) 3b 3b 3b 3b 3b 3b 3b 3b 3b
(A), (E) 3b 3b 3b 3b 3b 3b 3b 3b 3b
(A), (F) 3a 3b 3b 3b 3b 3b 3b 3b 3b
(B), (C) 3b 3b 3b 3b 3b 3b 3b 3b 3b
(B), (D) 3b 3b 3b 3b 3b 3b 3b 3b 3b
(B), (E) 3b 3b 3b 3b 3b 3b 3b 3b 3b
(B), (F) 3b 3b 3b 3b 3b 3b 3b 3b 3b
(C), (D) 3b 3b 3b 3b 3b 3b 3b 3b 3b
(C), (E) 3b 3b 3b 3b 3b 3b 3b 3b 3b
(C), (F) 3b 3b 3b 3b 3b 3b 3a 3b 3b
(D), (E) 3b 3b 3b 3b 3b 3b 3b 3b 3b
(D), (F) 3b 3b 3b 3b 3b 3b 3b 3b 3b
(E), (F) 3b 3b 3b 3b 3b 3b 3b 3b 3b

Table 27: Best performing design scenario, per specific category pair

Reducing the scope further, to groups of test instances defined by specific combinations of three
different parameter categories, results in the same conclusions. Design scenario 3b provides the
best results for 499 out of 540 possible tri-category combinations. Design scenarios 0, 1, 2, and 3a
provide the best results for 0, 0, 4, and 37 tri-category combinations, respectively. Moreover, the
four different tri-category combinations for which design scenario 2 provides the best results, are
equal for design scenario 3b (with h1 = 0). The tri-category combinations for which design scenario
3b does not provide the best results, are characterized by combinations of parameter (A) category
low in combination with either parameter (B) category high, parameter (C) category high, and/or
parameter (F) category low. This is again explained by these parameter categories reducing the
positive effects of cross-replenishments and increasing the negative effects of cross-replenishments,
hence for these test instances with these parameter combinations design scenario 3a performs best.
The best performing design scenario, per specific tri-category combination, is given in Appendix
E.6, Tables 60, 61, 62, and 63.
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6 Conclusions and Recommendations

6.1 Conclusions

In the current inventory policies there is a total separation of the NPSC (type 1 stock and type
1 demand) and the regular service parts supply chain (type 2 stock and type 2 demand). Type 1
stock can only be used for type 1 customers, and is specifically replenished with brand-new spare
parts only. Type 2 stock is used for all other customers, and is mainly replenished by repaired
parts but also by brand-new parts. Several changes to the inventory policies are proposed. In
design scenario 1 we extend the current demand allocation policy by allowing one-way demand
substitution, where type 1 stock can be used as substitute for type 2 demand when type 2 stock
is empty. In design scenario 2 we extend the current replenishment policies, by introducing the
cross-replenishment policy. In the cross-replenishment policy, each brand-new spare part arriving
in a type 2 replenishment order is allocated to type 1 stock instead of type 2 stock. In this design
scenario we furthermore allow demand substitution. In design scenario 3a and 3b we extend design
scenario 1 and 2 respectively, by extending the substitution policy with hold-back levels.

In the case study described in Chapter 5 we have evaluated the performance (service levels and
costs) of the as-is inventory policies, and the performance of the four alternative design scenarios.
In the case study we applied the design scenarios to 729 test instances, with each test instance
consisting of a unique combination of a SKU parameter values. This allows us to determine which
specific SKU characteristics, and especially which combinations of SKU characteristics, provide
positive and negative effects to the performance of each design scenario.

It is concluded that applying demand substitution has the opportunity to improve the service
network’s service levels and costs. However, as shown in the evaluation of design scenario 1, demand
substitution should not be applied directly. The expected costs of design scenario 1 are much higher
than in design scenario 0 for almost all test instances in the case study. Each applied substitution
results in a extra brand-new part flowing into the network, hence a penalty cost is accounted to
each applied substitution to compensate for the extra costs. The goal of the substitution extension
of design scenario 1, was to increase type 2 demand service levels by utilizing an increased pooling
effect on type 1 stock. This could allow us to achieve the target service levels with lower basestock
levels. Thus, reducing not only the expected emergency shipping costs but also the expected
holding costs. However, for almost all type of SKUs the holding costs do not decrease as result
of the substitution policy, the holding costs actually increase. This is due to constraints on the
type 1 basestock levels. While we evaluate the effects of using type 1 stock as substitute for type 2
demand, it is not allowed to increase the type 1 basestock levels based on type 2 demand (the type
1 basestock level, of each test instance in the case study, is constrained to a maximum level equal
to the test instance’s basestock level in design scenario 0). The type 2 demand rate is typically
higher than the type 1 demand rate. Moreover, the substitution policy does not indicate that type
1 stock can be used as substitute for type 2 demand when type 2 stock is empty, it indicates that
type 1 stock will be used as substitute. The demand overflow from (empty) type 2 stock to type 1
stock results in an increased total demand experience for type 1 stock. When it is not possible to
increase type 1 basestock to compensate for the extra demand, then the only possibility to achieve
the type 1 demand service level is to increase type 2 basestock. When the type 2 demand rate is
higher than the type 1 demand rate, the demand overflow will have an increased negative impact
on the type 1 demand service levels. Additionally, increasing type 2 basestock is also the only
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possibility to reduce the expected substitution penalty costs. Hence, for most type of SKUs the
holding costs increase instead of decrease as result of the substitution policy and the reduction in
emergency shipping costs is not enough to compensate for the increase in holding costs and the
expected substitution penalty costs. Only for a few type of SKUs, is it expected that the total costs
in design scenario 1 are lower than in design scenario 0. These SKUs are characterized by low SKU
value (reducing negative results when basestock levels are higher), high emergency shipment costs
(increasing the cost savings from the highly reduced amount of emergency shipments), and low
difference in price between the SKU’s new and repaired parts (reducing the substitution penalty
costs). However, even for this small group of specific SKUs, the expected reduction in total costs
is only small. Therefore it is concluded design scenario 1 does not provide a good performance
for Philips’ spare parts service network. Demand substitution should not be applied as exclusive
extension to the as-is inventory policies.

The proposed cross-replenishment policy provides a great level of improvement to the as-is
inventory policies of the spare parts service network. Even when we do not consider hold-back levels
and apply the cross-replenishment policy to the case study’s complete set of 729 test instances, as
done in design scenario 2, the average costs per test instance are reduced by 23.4%. The effects
of the cross-replenishment policy are greatest for SKUs with a high cross-replenishment rate (high
type 2 replenishment rate and low replenishment accuracy). However, there is a great difference
in performance for different type of SKUs when this cross-replenishment rate is high. It can
result in extraordinary cost savings, but can also result in increased costs. It all depends on the
utilization of these cross-replenishments by type 1 demand. When type 1 demand rate is high, the
cross-replenishments can be used for type 1 demand and therefore result in a reduction of type
1 replenishment shipments. Hence, we increase the utilization of repaired parts and decrease the
inflow of brand-new parts. In the evaluation of design scenario 2 we find many different groups
of test instances (characterized by a combination of two or three specific parameter categories)
for which the costs of design scenario 0 are decreased by more than 100% (notice that we only
consider the variable costs, not the fixed costs). Thus, for many different types of SKUs, the
savings in acquisition costs can even exceed the total of holding costs, emergency shipping costs,
and substitution penalty costs combined. However, when the type 1 demand rate is low, these
cross-replenishments cannot be utilized enough. This results in increased holding costs, while the
cost savings are too low to compensate. It is concluded that the cross-replenishment policy allows
to improve the spare parts service network performance for all type of SKUs, except SKUs that
have a high cross-replenishment rate and at the same time a low type 1 demand rate. Moreover,
it is concluded that the cross-replenishment policy can result in extraordinary cost reductions for
SKUs that have a high cross-replenishment rate and at the same time a high type 1 demand rate.
These effects are furthermore amplified by a high difference in price between the SKU’s new and
repaired parts.

It has been concluded that design scenario 1 does not provide good performance for the spare
parts service network. The substitution policy has many different negative effects, while the positive
effects are small. In design scenario 3a we apply hold-back levels to reduce the negative effects of
demand substitution while still being able to utilize the positive effects. The results of design
scenario 3a indicate that hold-back levels greatly reduce the negative effects of substitution. While
the average costs per test instance in design scenario 1 are 25.6% higher than in design scenario 0,
in design scenario 3a the average costs are 0.8% lower. This average reduction is very small, but
by analyzing the effects of different parameter value combinations, we have identified several SKU
characteristics for which design scenario 3a provides good results. For SKUs with a combination of
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high type 2 demand rate, low SKU value, and/or high emergency shipment costs, design scenario
3a is able to reduce the costs by an average of more than 5% per SKU. The positive effects are
furthermore increased for SKUs with a low difference in price between new and repaired parts,
but it is concluded that SKU value has a bigger influence on the expected cost reduction than the
price difference between the new and repaired parts. Moreover, 10 different combinations of three
specific parameter categories have been identified that result in an average cost reduction between
of 6.9% and 18.1% (Table 21)). The demand substitution policy with hold-back levels does not
provide as high cost reductions as design scenario 2 and 3b, but an interesting result is the variation
of each test instance’s difference in costs with design scenario 0. Not even a single test instance
has higher expected costs in design scenario 3a than in design scenario 0. This is the result of the
optimization model setting the hold-back level equal to the type 1 basestock level, when any other
hold-back level results in higher expected costs. This results in completely blocking substitution
requests and the inventory policies of design scenario 3a reduce to the inventory policies of design
scenario 0. In the case study, 577 out of 729 test instances resulted in a an optimal hold-back
level equal to the type 1 basestock level. It is concluded that applying demand substitution with
hold-back levels, as evaluated in design scenario 3a, further proves that demand substitution does
increases the expected service network costs for most type of SKUs. However, for a subset of SKUs,
it does prove to be a good opportunity to reduce the expected costs and improve the service levels
of the spare parts service network. These SKUs are characterized by a combination of at least two
out of three of the following characteristics: low SKU value, high type 2 demand rate, and/or high
emergency shipment costs.

While design scenario 2 already provides an excellent reduction of expected costs and increase
of service levels, in design scenario 3b we furthermore improve these results by applying hold-back
levels. In the case study of design scenario 3b, we even identified three type of SKUs, characterized
by a combination of three different parameter categories, for which the average cost decrease per
test instance is more than 200%. This is the direct result of greatly reducing the amount of brand-
new parts flowing into the network, simply by allocating brand-new parts that arrive in type 2 stock
replenishments to type 1 stock instead. The average number of type 1 replenishment shipments
are even reduced by 27.8%. The hold-back level extension greatly reduces the negative effects of
substitution, while still being able to utilize the positive effects. This is clearly shown in the average
type 2 basestock level. In design scenario 0 the average type 2 basestock level equals 4.78. In design
scenario 2, this is increased to 5.25, in order to reduce the negative effects of demand substitution.
In design scenario 3b however, we do not need to increase the type 2 basestock to reduce these
negative effects. Hence, the average type 2 basestock level is actually reduced, to 4.74. The best
performance and the worst performance in design scenario 3b is provided for the same type of SKUs
as in design scenario 2. A high cross-replenishment rate provides the greatest opportunity to save
costs, further amplified by a high difference in price between the SKU’s new and repaired parts.
When the type 1 demand rate is high, these cross-replenishment can be utilized by type 1 demand
and result in very cost savings. When the type 1 demand rate is low, these cross-replenishments
cannot be utilized by type 1 demand enough and result in increased holding costs and do not
provide enough cost savings to compensate.

By extending the inventory policies of design scenario 2 with hold-back levels, as done in design
scenario 3b, the average costs are reduced even more: 27.8%. The cross-replenishment policy does
not perform equally well for all type of SKUs.
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6.2 Recommendations

The case study has provided excellent results. Especially the combination of a cross-replenishment
policy and demand substitution with hold-back levels, as evaluated in design scenario 3b, offers an
amazing improvement of the spare part service network’s performance and corresponding costs. It
must be noted that several assumption have been made for the evaluation of the design scenarios,
as listed in sections 4.1.3, 4.2.3, and 4.3.3. Some of these assumptions are important for the
implementation of the proposed policies, for either the physical handling in the warehouse or the
planning tool.

The first to note, is that the warehouse can identify whether received spare parts in type 2
replenishment shipments are new or repaired. Currently, the warehouse does not see a difference.
Therefore we recommend the following: spare parts that arrive in type 2 replenishment shipments
are ordered either through repair orders or through buy orders. The warehouse can scan the order
number, and the system can then automatically allocate the part to U-stock if it is a repaired part
or to N-stock if it is a new part. Spare parts coming from repair orders are always repaired, so
are always allocated to U-stock. Spare parts coming from buy orders are different. The problem
is that there are many different suppliers, with many different replenishment processes. It does
not hold true that for every supplier, a spare part ordered with a buy order is always new. So we
recommend Philips identify the suppliers for which spare parts in buy orders are always new.

The second assumption to note, is that we assumed a constant chance for type 2 replenishment
shipments to contain a new part. Currently, there is no real data available. In the case study
we determined three different categories for this chance, based on knowledge provided by subject
experts at Philips. We therefore recommend to gather this data. After identifying the suppliers for
which repair orders always consist of repaired parts and buy orders always consist of new parts,
this data can be gathered directly for any SKU from the number of repair orders and number of
buy orders. It must be noted that we assume this proportion to be constant in time.

In the case study we identified SKU characteristics for which the proposed design scenarios
offer the greatest cost reductions. We therefore recommend Philips to implement a pilot study, in
which the proposed policies can be tested in practice. By testing on SKUs for which the warehouse
can distinguish new from repaired parts simply by the order numbers, this pilot study can be
implemented without disruptive changes to either the system or physical product handling in the
warehouse. When the received part is new, allocate it to type 1 stock instead of the type 2 stock.
When there is demand for type 2 stock but it is empty, allocate the demand to type 1 stock (if
it has more on-hand than the hold-back level), similar to currently done in the form of lateral
transshipments between LDCs.

Thus, by implementing a pilot study on design scenario 3b, to a set of SKUs for which the
expected cost reductions are very high while the required changes are very small, the performance
can be tested in practice. After a successful pilot study, the design scenario can be applied the to
all SKUs for which it is expected to increase the as-is performance.
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7 Further research

In this chapter we propose several directions for further research. The first is based on Assump-
tion 10 (Section 4.2.3). In our proposed cross-replenishment policy, a cross-replenishment arriving
while there is a type 1 replenishment shipment in the pipeline, results in the type 1 replenishment
shipment being canceled. This reduces the number of brand-new parts flowing into the network,
therefore reducing the total costs. The first proposed direction for further research, is a cross-
replenishment policy where this pipeline shipment is not canceled. For the approximate evaluation
model, this will require an extra approximated term based on the stationary probability distri-
butions. For exact evaluation, this will result in an extra state. Instead of having a single state
denoting the on-hand stock level of type 1 stock, another state is required to denote the number of
item in the type 1 stock replenishment pipeline.

The second direction for further research is also based on the cross-replenishment policy. In
our proposed policy, both stock types are replenished up to their basestock level. When a cross-
replenishment occurs, another replenishment order for type 2 stock is initiated. Hence, the replen-
ishment process of type 2 stock is based on the number of items on-hand on type 2 stock plus
the number of items in the replenishment pipeline of type 2 stock. A different approach that is
proposed for further research, is to make the replenishment process of type 2 stock depended on
the stock levels of type 1 and type 2 stock combined, instead of only on type 2 stock. It is expected
that this can reduce the average stock levels compared to our proposed policy, but also increase
the number of substitution requests.

Third, in our approximate evaluation model we determine the average cross-replenishment rate
without considering the chance of X1 = Xub

1 . This chance is assumed to be small, with the chance
of a cross-replenishment occurring when X1 = Xub

1 being even smaller. Moreover, excluding this
term allows to perform the approximate evaluation in the three steps as proposed in Algorithms 3
and 4. This limitation to our approximate evaluation can be covered in further research.

The last proposed direction for further research, is to extend our two-item model to a multi-item
model.
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Appendix A List of abbreviations

Abbreviation Definition
AMEC North, Central and South America,
APAC Asia and Pacific,
ASAP As soon as possible
BIU Business innovation unit,
BR Blue room,
D-part Defective variant of a given SKU,
D-stock Stocking location of defective parts of a given SKU,
EMEA Europe, Middle-East and Africa,
FCO Field change order,
FSE Field service engineer,
FSL Forward stocking location,
KPI Key performance indicator,
KM Key market warehouse
LDC Local distribution center,
LVL Louisville (USA),
MA Material availability,
N-customer Customer that requires spare parts to be brand-new (type 1 customer),
N-part Brand-new variant of a given SKU,
N-stock Stocking location only for brand-new parts of a given SKU (type 1 stock),
OEM Original equipment manufacturer,
NPSC New parts supply chain,
RDC Regional distribution center,
RMD Roermond (Netherlands),
SGP Singapore (Singapore),
SKU Stock keeping unit,
SPS Service-parts Supply Chain department,
Type 1 customer Customer that requires spare parts to be brand-new (N-customer)
Type 2 customer Customer that does not require spare parts to be brand-new (U-customer),
Type 1 demand Demand coming from type 1 customers,
Type 2 demand Demand coming from type 2 customers,
Type 1 stock Stocking location only for brand-new parts of a given SKU (N-stock),
Type 2 stock Stocking location intended for repaired/used parts but also consisting of brand-new

parts (U-stock),
U-customer Customer that does not require spare parts to be brand-new (type 2 customer),
U-part Repaired or used variant of a given SKU,
U-stock Stocking location intended for repaired/used parts but also consisting of brand-new

parts (type 2 stock).

Table 29: List of abbreviations
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Appendix B List of notation

Term Description
αi Proportion of type i demand satisfied by using a part from the other stock type as substitute,
βi fill-rate of type i demand, proportion of i demand satisfied from i stock,
γi Demand satisfaction level for i demand,

γobji Target demand satisfaction level for i demand,
ζi(Xi) Total state-dependent demand rate for i stock, per time unit t,
ηi(Xi) Total state-dependent replenishment rate for i stock, per time unit t,
θi Proportion of i demand satisfied by emergency shipment from the external supplier,
Λi Total average demand rate for i stock from all customers combined, per time unit t,
λi Average demand rate from type i customers for type i stock, per time unit t,

λ̂i Average demand overflow rate from stock type i to the other stock type, per time unit t,
µi Average replenishment rate for one part for stock i, per time unit t,
µ̂i Average cross-replenishment rate from stock type i to the other stock type, per time unit t,
ρi Offered load at stock type i,
ϕ Set of feasible solutions,
ωi Average number of replenishment orders for stock type i, per time unit t,
Ccr

i Cost savings for ordering a stock i replenishment but using the received part to replenish the
other stock type,

Cem
i Emergency shipment costs for stock type i,

Ch
i Holding costs incurred per time unit for each part in i on-hand stock and in the replenishment

pipeline for i stock,
Csub

i Penalty costs of satisfying demand for stock i by using a part from the other stock type as
substitute,

hi Hold-back level i stock,
h∗i Optimal hold-back i stock,
I Set of both stock types,
i Indicator for a specific type of stock, element of I,
ri Replenishment accuracy i stock,
r̂i Replenishment inaccuracy i stock,
Si basestock level of i stock,
S∗
i Optimal basestock level of i stock,
trepi Average replenishment lead time for one part for i stock,
Xi Number of parts on-hand in i stock,
Xub

i Upper-bound constraint for the number of parts in i stock.

Table 31: List of notation used in in the mathematical models
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Appendix C Literature review

In this section we provide review on available literature, focused on the problem context as described
in Chapter 3. In the as-is inventory policies, there is a complete separation between the flow os a
SKU’s spare parts in the NPSC branch and the SKU’s spare parts in the regular service network.
The setting of this research therefore regards a single-location two-item inventory control model, but
the as-is inventory policies can be evaluated as two separate single-location single-item inventory
control models.

Besides evaluating the as-is inventory policies, the goal of this research is finding improvements
to the current policies. Based on literature review and analysis of the problem context, we have
identified several different type of model extensions that directly or indirectly focus on problems
similar to our problem context. These inventory model extensions are reviewed in the remainder
of this chapter.

Demand substitution
Most inventory control models consider either backorders or lost sales for demand that cannot be
satisfied from stock. This differs from many real-life cases where customers will substitute unavail-
able products for another product that is similar in functionality and/or looks. This substitution
effect is very common in consumer goods. A typical example is people shopping for clothing or
doing groceries in a supermarket; if a certain product is not available, most customers will sat-
isfy their demand by buying a similar product as substitute. In capital goods this effect works
differently. Substitution in capital goods typically only works one-way (Ahiska & Kurtul (2014),
Li et al. (2006)). The performance and quality of products in capital goods are often the most
important factor, so products of low grade can be substituted by products of high grade, but not
vice versa. An industrial example can be given for the semi-conductor industry, where they can
substitute a lower grade chip with a higher grade chip, with the higher grade chip being able to
perform equal and/or better. This phenomenon is called downward demand substitution or one-
way demand substitution. The idea behind demand substitution seems similar to our business case;
use a brand-new part as substitute for a repaired part when demand for a repaired part cannot be
satisfied from stock. Deflem & Van Nieuwenhuyse (2011), provide a overview of different substi-
tution methodologies used in literature. They refer to manufacturer-driven one-way substitution,
for companies that use a flexible stock as substitute when the regular stock is empty. They denote
a new challenge: the trade-off between decreasing expected holding costs and increasing expected
flexibility costs. In their paper, Deflem & Van Nieuwenhuyse (2011) divide methods for periodic
review versus continuous review. In the periodic review methods, stock levels are reviewed ev-
ery given time period, and replenished to the order-up-to level. This latter is the main inventory
control parameter that needs to be decided. Two different methodologies are used to solve the
periodic review inventory systems: newsvendor models and discrete-event simulation. In continu-
ous review inventory systems, the stock levels are check continuously. Replenishments are ordered
when the stock falls below the given reorder level. Mostly policies consider a (S − 1, S) policy,
where a replenishment is ordered each time the stock levels falls below the basestock level. Deflem
& Van Nieuwenhuyse (2011) furthermore state that allowing substitution does not always improve
optimal expected costs. This is explained by the possibility of the replenishment rate of the sub-
stitute part being lower than the demand rate for the substitute part. A lower profit margin is
considered for each ‘regular demand satisfied by the substitute part. Hence, it is possible that more
profit is lost by reducing the average profit margin, than costs are saved by increasing flexibility.
In their overview, Deflem & Van Nieuwenhuyse (2011) review several papers on continuous review
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inventory systems with one-way substitution, but all papers only consider complete pooling. In
complete pooling, all items on the stock of the flexible part can be used as substitute in case of
stock of the regular part. No items on the flexible parts stock are reserved for the direct demand
for these type of parts. The goal throughout the different reviewed papers, is finding the optimal
order parameters (or basestock levels) which minimize the expected costs. These expected costs
consist of different elements in the different papers, but the overall conclusion is that the expected
costs consist of holding costs, shortage or backorder costs, and a lost profit margin for the applied
substitutions.

A combination of demand substitution with production planning is studied Li et al. (2006).
Their research focuses on using substitution to optimize a production planning problem. The
model determines when and how many new products must be manufactured and returned prod-
ucts must be remanufactured, while minimizing the manufacturing cost, remanufacturing cost,
holding cost and substitution cost. The paper distinguishes manufacturing of new products and
remanufacturing of returned products, but it assumes that new and remanufactured products are
indistinguishable. Substitution is not applied to the difference between new and remanufactured
products, but to difference in product grades. Substitution works only one way; remanufactured
items can be substituted by manufactured items, but not vice versa. Remanufacturing and substi-
tution are two different components of the model. The model optimizes the production planning
for a given period. The optimal batch size per product is determined based on many parameters;
setup cost, manufacturing cost, demand, number of returned products, product grade, and many
other variables. The paper has interesting applications that Philips could make use of, however
not for this thesis. This thesis aims to optimize inventory control by evaluating different inventory
control policies, but optimizing production planning is not within the scope of this thesis.

Another multi-item model including one-way substitution, distinguishing between manufactured
and remanufactured products, is studied by Ahiska & Kurtul (2014). Their model assumes that
when remanufactured item inventory is out of stock, manufactured items can be sold instead. In
that case the manufactured items will be sold for remanufactured price. In this research Ahiska
& Kurtul (2014) focus on avoiding losing customers of remanufactured items, by substituting re-
manufactured items by manufactured items when the remanufactured item is out of stock. This
is achieved by deciding how many units to manufacture and how many units to remanufactured.
Important variables for this decision are (re)manufactured part demand, (re)manufacturing pro-
duction capacity, (re)manufactured part inventory storage capacity and (re)manufactured part
production cost. The paper has many interesting properties, however it does not include basestock
levels. When the number of items (re)manufactured exceeds demand the items are kept on stock
to a given holding cost to be used next period, but no basestock level is maintained. The model
aims to optimize production planning of manufacturing and remanufacturing quantities, optimizing
basestock levels is not within the scope of the paper.

Literature on optimizing basestock levels by integrating substitution effects are widely available
for consumer goods settings. Consumer goods substitution cases have been studied for a long time.
Examples go as early as the year 1978, where Mcgillivray & Silver (1978) integrate two substitutable
products in their inventory control model. Continuing on that research are Ernst & Kouvelis (1999),
who model three products and partial substitution, and Noonan (1995) who research an n-product
model. These models take substitutable demand into account to determine the optimal basestock
level or reorder level for each SKU. Unmet demand will result in demand for another product or
another retailer. This has as result that when the basestock levels for a product are lowered, the
average demand rate for the other similar product or retailer will be higher, accounting for the
unsatisfied demand. Demand for one product therefore dependents on the basestock level of the
other product.
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Mahajan & Van Ryzin (2001) continue where Noonan (1995) started. They also evaluate
a multi-item model, but furthermore obtain necessary optimality conditions for the centralized
inventory control model. They also analyze a decentralized inventory control model, for which they
were not able to provide optimality conditions. The difference in centralized and decentralized is
that in centralized inventory control there is a single decision maker on the total inventory with the
goal to maximize profit and minimize cost, comparable to the system approach. In decentralized
inventory control each product is managed by an independent decision maker, comparable to the
item-approach. The model assumes that in case of a stockout of given product i, a deterministic
fraction of that demand will buy product j. The model is limited to single-location and the paper
does not consider different customer classes. Furthermore, if a customer wants to substitute a
product for another product he can do so without restrictions, there is no portion of stock of
reserved for certain important customers.

Other specified substitution settings are researched by Smith & Agrawal (2000), who dynam-
ically substitute between products, and Anupindi, Dada, & Gupta (1998) who apply the concept
to vending machines. A comprehensive literature review on demand substitution is conducted by
Smith & Agrawal (2017). The paper analyzes may different papers and business cases.

While literature on substitution is widely available, with many different specific research set-
tings, all substitution models are based on the following principle: when product i is not available
the customer will buy product j as substitute. Therefore the extra demand for product j is de-
pendent on the (base)stock level of product i and the demand for product i. For a given basestock
level for product i and a given average demand rate (with any probability distribution), the extra
demand for product j as substitute for product i can be calculated. With that extra demand stream
for product j coming from unsatisfied demand for product i, the total demand for product j can
be determined. Based on the total demand for product j the stock level can be optimized, which
is the goal of the product substitution model.

Service differentiation
In many real-life cases a company has a group of customers which are more important than other
customers. In service supply chains, the service contract often differ from customer to customer.
One customer might pay a high price to conclude a contract with a high service grade, while another
customer might pay a low price if a low service grade is sufficient. Inventory control models with
service differentiation use different customer priority classes to optimize the inventory control.

A problem where a system contains multiple retailers that serve multiple customers, with each
customer being either a high priority customer or a low priority customer, is studied by Atan et al.
(2018). In their inventory control model, Atan et al. (2018) ‘discriminate’ among customers. This
discrimination can be beneficial when high-priority customers are more valuable than low-priority
customers. The high-priority customers typically pay a higher price and therefore expect a higher
service grade. To prevent losing customers due to this discrimination, Atan et al. (2018) use lateral
transshipments to satisfy their demand with products from other locations. In their model, Atan et
al. (2018) distinguish two different transshipment categories: proactive transshipments and reactive
transshipments. Proactive transshipments are performed to actively balance inventory levels of
different locations, when there is a (high) difference between location’s inventory levels. Reactive
transshipments are performed by satisfying demand from an alternative location when the original
location does not have (enough) inventory available. In their research, Atan et al. (2018) state that
reactive transshipments are most important when implementing customer priority differentiation.
When a low priority customer has demand for a certain SKU, of which there is only one or few left
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on stock, it might be beneficial to save that last part for a possible demand from a high priority
customer. The demand from the low priority customer then needs to be satisfied by a lateral
transshipment from another location or even by an emergency shipment from an external supplier.
Determining which location to transship from, can be a problem on its own. This problem is the
main subject of many other papers, but Atan et al. (2018) simplify this problem. They assume
that the sequence of which location to transship from is solely based on minimum transshipment
cost. In the paper they also assume that each transshipment request is for a single part only. It
could be possible that transshipping multiple parts is more cost efficient when anticipating future
shortages, but then both transshipment categories (proactive and reactive) must be combined and
consequently solving the problem will become very complex.

The simplest policy of saving special stock for certain customers, for a single location network
with multiple customer classes, is to hold separate inventory for each customer class. However, this
does not take advantage of pooling effect. Thus, it does not reduce holding costs. Opposite is the
policy of using a single inventory pool for all customers of all customer classes combined. This will
however lead to increased holding costs when different customer classes have different target service
levels, because the highest target service target must be reached. Thus, the basestock level would
depend on the target service level of the highest priority customer, while all demand streams are
considered equal and the lower priority customers might not need a high basestock level to achieve
their required service level. Between keeping separate stock for all customer classes and holding a
total combined stock for all customers together, lies the concept of rationing policy (also known
as critical-level policy). In rationing policy a single stock is used, but within this stock a certain
portion is reserved for certain customer classes. The easiest rationing policy example is for two
demand classes, but it can also be extended to multiple demand classes.

Atan et al. (2018) study a static rationing policy. They state that a dynamic rationing policy,
which takes into account the time to arrival of the next replenishment, is closer to optimal but
very difficult to implement. Atan et al. (2018) furthermore state that there is only one other paper
that combines rationing policy with lateral transshipments, but there only lateral transshipments
for high-priority customers are assumed. Atan et al. (2018) fill the research gap by combining
rationing policy with lateral transshipments for all customers. The paper addresses both a single-
retailer problem and a multi-retailer problem, but only addresses single-item problems.

A single-location spare part inventory control model with service differentiation between cus-
tomers is studied in chapter 4 of the book ‘Spare Parts Inventory Control under System Availability
Constraints’, by Van Houtum & Kranenburg (2015). Their model concerns a single location that
supports the spare part demand from multiple machines. All machines are of the same type but
belong to different machine groups. The difference in these machine groups is their importance,
indicated by different target service levels. The higher the target service level, the higher the price
is paid by the company taking the service contract. Opposite of Atan et al. (2018) who model
multiple locations but only a single item, Van Houtum & Kranenburg (2015) model a single loca-
tion but do address a heuristic solution for multi-item problems. Cost reductions are realized by
modeling difference in service level and implementing critical stock levels. For each SKU, a critical
level is defined for each machine group. Demand from a given machine group is only satisfied from
stock if the on-hand stock level is above the corresponding critical level. High service targets is
linked to low critical levels, with the highest possible service level associated with a critical level
of zero. The inventory control model states that the fillrate for a machine group, i.e. the chance
demand can be satisfied directly from stock, equals the chance that there are less parts in the
pipeline than the basestock level minus the critical level. An example to clarify that statement;
suppose a basestock level equal to 10. For a low-priority customer the critical level is 6. Then
the fillrate equals the chances that there are 0 to 3 parts in the pipeline, because basestock policy
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indicates that the number of parts on-hand plus in the pipeline are always equal to the basestock
level. The model uses a basestock level per SKU and a critical level per SKU per customer as
parameters. The higher the critical level for a customer, the lower the fillrate for that specific
customer. However, the fillrate for all higher level customers goes up, because the average demand
for that part is reduced.

To conclude on inventory control models with service differentiation; implementing service dif-
ferentiation can effectively improve performance of inventory control networks where certain cus-
tomers are more important than other customers. The models determine the required critical level
per part per customer, to create a safety stock (ration) for the most important customers. This can
improve the inventory networks service levels and/or reduce the costs, when there is a difference
in service requirements between the customers or when there is a difference in the price that the
customers pay. When the critical level for a part for a certain customer is reached the, demand
must be satisfied from elsewhere, either with lateral transshipment or emergency shipment.

(Uni)lateral transshipments and hold-back levels
Inventory control networks that include lateral transshipments allow to use alternative locations to
satisfy demand when the original location is out of stock. The concept of a lateral transshipments
is equal to the concept of demand substitution: demand for product/location A that cannot be
satisfied from stock, results in demand for product/location B.

In literature on mathematical inventory models with lateral transshipments, the distinction is
made between complete pooling and partial pooling (Reijnen et al., 2009). In complete pooling
policy, all locations act together as one total location. A demand is only lost if the part is not
available in all locations. When any restriction is applied to lateral transshipments, for example
when lateral transshipments can only come from a subset of alternative locations, when lateral
transshipments can only be conducted one-way, or when lateral transshipments are only applied
above certain critical stock levels, then the system regards partial pooling instead of complete
pooling.

An inventory networks where lateral transshipments between two locations are only allowed
one-way, is referred to as unilateral transshipments. Unilateral transshipments can positively in-
fluence the total network performance when both locations have very different cost parameters
(Huang et al., 2007). As explained earlier, lateral transshipments are directly comparable to de-
mand substitution. The concepts of lateral transshipments can furthermore be combined with the
concepts of service differentiation, studied in the previous subsection. Van Wijk et al. (2012) study
such a model, where a lateral transshipment is only allowed only when the on-hand stock level is
higher than a the so-called hold-back level. The hold-back levels are used to safeguard a portion
of a location’s stock for that location’s own direct demand. Van Wijk et al. (2012) continues on
Van Wijk et al. (2009), where they use dynamic programming to prove the optimal structure of
lateral transshipment policies for several numerical studies. It is concluded that a hold-back policy
is the optimal lateral transshipment policy structure under two conditions. The first condition is
that the transshipment costs must be non-negligible. The second condition is that the emergency
shipment costs at both locations should not be too different from each other. Implementing hold-
back levels would change a completely pooled system to a partially pooled system. Maintaining
hold-back levels for inventory regarding lateral transshipments is mainly considered in decentralized
inventory models (Van Wijk et al., 2012). In these decentralized models each warehouse is inde-
pendently operated. Hold-back policies have a positive effect on the total inventory network costs,
as explained by Van Wijk et al. (2012) in the following way; when location A gives its last part
away with a lateral transshipment to out of stock location B, then location A becomes out of stock
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as well. When demand for location A occurs shortly after the lateral transshipment, the demand
must be satisfied by an expensive emergency shipment from the external supplier (assuming two
locations). The result is a lateral transshipment and an emergency shipment, instead of only the
emergency shipment. In their model, Van Wijk et al. (2012) use a one-for-one replenishment policy
with continuous review setting under central control. The model furthermore allows the following
pooling restrictions; restrictions on which locations are allowed to use lateral transshipments, re-
strictions on which direction between two locations it is allowed to use lateral transshipments, and
restrictions on-hand stock levels for which stock can or cannot be shared. Van Wijk et al. (2012)
state that an exact evaluation and optimization is theoretically possible via Markov Chain analy-
sis, but infeasible for large instances because of dimensionality. The calculation times will explode
when trying to optimize the hold-back and basestock levels of large data sets. Therefore, a fast
(and accurate) approximation is needed, for which two algorithms are presented. The model and
algorithms are based on the model by Reijnen et al. (2009), whose work is extended by addressing
hold-back levels. When all hold-back levels are set to zero, the algorithms proposed by Van Wijk
et al. (2012) boil down to the algorithm of Reijnen et al. (2009). The two algorithms proposed by
Van Wijk et al. (2012) evaluate the performance characteristics when the hold-back and basestock
levels are given, which in turn can be used for a heuristic optimization procedure to determine the
optimal basestock levels and optimal hold-back levels. The first algorithm uses an ordinary Poisson
overflow process, to model demand overflow from one location to another location in the form as
a lateral transshipment request. The second algorithm approximates the overflow demand streams
with Poisson processes that can be turned on and off, known as interrupted Poisson processes. The
overflow demand is turned off when a warehouse has enough parts on stock. When a warehouse
experiences stockout the overflow demand stream is turned on and follows a Poisson process. The
durations of these on and off time are approximated with exponential distributions. The approxi-
mation by interrupted Poisson processes proved to be more accurate than the traditional Poisson
overflow process approximation.

Other notable literature on lateral transshipments with hold-back levels are Zhao et al. (2006),
who use game theory to solve a decentralized system where each dealer (warehouse) is independent
from each other, and Xu et al. (2003), who consider a two-location model that combines hold-back
levels with a (Q, R) replenishment policy.

It is concluded hold-back policies can provide several improvements over regular transship-
ment policies. Hold-back policies can be actively used to balance lateral transshipment costs and
emergency shipment costs, optimize network costs when different locations have different cost pa-
rameters, and reduce holding costs when there are different customers or customer groups.
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Appendix D Validation of the mathematical models

D.1 Validation of base model

The base model discussed in Section 4.1 is based on a proven model taken from Reijnen et al.
(2009). The application of the algorithm has been changed to make it appropriate to our problem
statement, but no mathematical changes have been made. Hence, Algorithm 1 is validated by
comparing results with results from literature. In Reijnen et al. (2009) there are no numerical
results available that can be used for our validation. Therefore, results from literature are taken
from Van Houtum & Kranenburg (2015) (table 5.4, instance 1 to 10), which are based on the same
model and evaluation algorithm. In these ten instances, described in Table 32, Van Houtum &
Kranenburg (2015) compare different parameter settings of a single-item two-location system with
one-way lateral transshipments. This setting is equivalent to our two-item one-location network
with one-way demand substitution.

Instance S1 S2 λ1 λ2
1 1 1 0.5 0.5
2 1 1 1 1
3 1 1 5 5
4 1 1 10 10
5 1 1 50 50
6 1 1 5 10
7 1 1 10 5
8 1 2 5 10
9 2 1 5 10
10 2 1 10 5

Table 32: Input parameters validation of Algorithm 1, with trep = 0.04

The results of each instance from Table 32 are given in Table 33, with the results obtained with
Algorithm 1 on the left-hand side and results obtained by Van Houtum & Kranenburg (2015) on
the right-hand side. The results obtained with Algorithm 1 are exactly equal to results obtained
from literature, hereby we validate Algorithm 1.

Inst. β1 β2 α2 θ1 θ2
1 0.980 0.980 0.019 0.0200 0.0004
2 0.960 0.962 0.037 0.0399 0.0015
3 0.811 0.833 0.135 0.1892 0.0315
4 0.660 0.714 0.189 0.3396 0.0970
5 0.231 0.333 0.154 0.7692 0.5128
6 0.761 0.714 0.217 0.2391 0.0683
7 0.698 0.833 0.116 0.3023 0.0504
8 0.819 0.946 0.044 0.1814 0.0098
9 0.964 0.714 0.275 0.0362 0.0103
10 0.939 0.833 0.156 0.0615 0.0102

Inst. β1 β2 α2 θ1 θ2
1 0.980 0.980 0.019 0.0200 0.0004
2 0.960 0.962 0.037 0.0399 0.0015
3 0.811 0.833 0.135 0.1892 0.0315
4 0.660 0.714 0.189 0.3396 0.0970
5 0.231 0.333 0.154 0.7692 0.5128
6 0.761 0.714 0.217 0.2391 0.0683
7 0.698 0.833 0.116 0.3023 0.0504
8 0.819 0.946 0.044 0.1814 0.0098
9 0.964 0.714 0.275 0.0362 0.0103
10 0.939 0.833 0.156 0.0615 0.0102

Table 33: Results for instances of Table 32, as obtained by Algorithm 1 (left-hand side) and from
Van Houtum & Kranenburg (2015) (right-hand side)
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D.2 Validation of cross-replenishment model extension

The evaluation model proposed in Section 4.2 is a newly developed model. The evaluation model
must therefore be validated by comparing results obtained by approximate evaluation Algorithm 3
with results obtained by exact evaluation. Exact results are obtained by Markov chain analysis.

For the exact evaluation of our two-item single-location network we define a 2-dimensional
Markov process, where state X = (X1, X2) represents the current on-hand stock levels of type 1
stock and type 2 stock, respectively. When the system is in a given state X, there are two types
of events that can take place; a replenishment shipment arrives at stock i ∈ I, or a demand is gen-
erated for stock i ∈ I. The demand rate is independent of the on-hand stock level, while the total
replenishment rate for a given stock level is equal to 1/trep multiplied by Si−Xi. A replenishment
shipment for stock type 2 has a chance of r2 that actually contains a type 2 part, and a chance of
r̂2 = 1− r2 that it contains a type 1 part. A replenishment shipment for stock type 1 has a r1 = 1
chance that it contains a type 1 part. Demand for stock 1 occurring when X1 = 0 results in an
emergency shipment. Demand occurring for stock 2 when X2 = 0 results in demand overflow to
stock 1 when X1 > 0 and in an emergency shipment when X = (0, 0). By considering all possible
events for each state of X the complete Markov chain model with all corresponding transition rates
can be identified. A given system of S1 = 2 and S2 = 3 is illustrated in Figure 20. In this figure
the dotted box shows the states of the Markov chain for which each on-hand stock level is equal
to or lower than its basestock. The system can leave a state within the dotted box only when a
cross-replenishment occurs. Hence, when r2 = 1 and therefore r̂2 = 0, the system reduces to a
normal basestock-policy system without cross-replenishments, as indicated by the dotted box. By
solving the Markov chains, the steady state probability of the system being in state X is known
for every feasible state. The fill-rate of type i ∈ I demand can be determined by summing the
steady state probabilities of every state with Xi > 0. The proportion of type 2 demand satisfied by
using a part from stock 1 as substitute, is determined by summing the steady state probabilities of
every state with X = (X1 > 0, X2 = 0). The proportion of type 1 demand satisfied by emergency
shipment is determined by summing the steady state probabilities of every state with X1 = 0
and the proportion of part 2 demand satisfied by emergency shipment is equal to the steady state
probability of state X = (0, 0).

The behavior of the system depends on the following input parameters; S1, S2, λ1, λ2, t
rep,

and r2. To validate approximate evaluation Algorithm 3 we have defined 27 numerical experiments
to compare the influence of each system parameter. While keeping all other input parameters
constant, in the first 11 instances we test the influence of replenishment accuracy r2, in instance
12 to 15 we change the basestock values S1 and S2, in instance 16 to 23 we change the demand
rates λ1 and λ2, and in instance 24 to 27 we change the replenishment leadtime trep. The exact
description of the instances is listed in Table 34.

The results are given in Table 35. The table contains both the exact results, obtained by Markov
chain analysis, and the approximate results, obtained by approximate evaluation Algorithm 3. The
real errors, the percentage errors, and the mean absolute error (MAE) of each instance are given
in Table 39.

The errors are very low for all instances of the numerical experiment. In instance 11, the re-
plenishment accuracy r2 is equal to 1. Therefore, in this instance the system reduces to a ‘normal’
S1 = 1, S2 = 2 basestock policy, and approximate evaluation algorithm 3 reduces to the well-known
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Figure 20: Example of the Markov chain model for given part i = 1 and i = 2, with S1 = 1 and
S2 = 3

and widely used Poisson overflow algorithm (which is also used in Algorithm 1). This has been
tested and confirmed, by applying Algorithm 3 to the instances of Table 32 while setting r2 = 1; the
results are exactly equal to Table 33). The MAEs for instance 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, 20,
21, 24, and 25 are even lower than the MAE of this proven instance 11. In the remaining instances,
the errors are still below 0.02 for every instance except 1 and 2. The MAE for instance 1 and 2,
which have very low input values for the replenishment accuracy r2 (0.50, 0.55 respectively), are
slightly above 0.02. While the differences are very low, the MAE decreases when r2 or λ1 increases
and the MAE increases when λ2 or trep increases.

The absolute percentage error of β1 is below 2% for every instance except instance 12, while
for most instances it is even lower than 0.50%. In instance 12 the basestock level 1 equal to zero,
therefore β1 fully depends on the approximated replenishment overflow µ̂2. Even though the fill-
rate of type 1 demand fully depends on cross-replenishments, the β1 error is only 0.0199 and the
MAE is only 0.006. The absolute percentage error of β2 is even below 0.50% for all instances except
instance 1 to 6, where the replenishment accuracy r2 is very low. The error of β2 is explained by
Equation 4.19. In this equation we determine the state-dependent replenishment rate of stock 2,
η̃2, as being dependent on its own on-hand stock level (X2) but independent of the on-hand stock
level X1. The total replenishment rate is multiplied by the replenishment accuracy r2. However,
when stock level X1 is equal to its maximum level Xub

1 , each replenishment shipment for stock
2 is put on stock 2, even when the shipment actually contains a type 1 part. This is illustrated
in Figure 20; the replenishment (in)accuracy for stock 2 replenishment shipments is ignored when
X1 = Xub

1 = 4. Since by definition the chance that X1 = Xub
1 is very small, and the stock level

X1 is not known when evaluating the behavior of stock 2, this is not taken into account in the
approximate evaluation model. Hence, explaining the small error in β2. It is tested and confirmed,
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Instance S1 S2 λ1 λ2 trep r2 Instance S1 S2 λ1 λ2 trep r2
1 1 2 6 15 0.04 0.50 15 1 3 6 15 0.04 0.85
2 1 2 6 15 0.04 0.55 16 1 2 3 15 0.04 0.85
3 1 2 6 15 0.04 0.60 17 1 2 5 15 0.04 0.85
4 1 2 6 15 0.04 0.65 18 1 2 7 15 0.04 0.85
5 1 2 6 15 0.04 0.70 19 1 2 9 15 0.04 0.85
6 1 2 6 15 0.04 0.75 20 1 2 6 5 0.04 0.85
7 1 2 6 15 0.04 0.80 21 1 2 6 12 0.04 0.85
8 1 2 6 15 0.04 0.85 22 1 2 6 18 0.04 0.85
9 1 2 6 15 0.04 0.90 23 1 2 6 24 0.04 0.85
10 1 2 6 15 0.04 0.95 24 1 2 6 15 0.01 0.85
11 1 2 6 15 0.04 1.00 25 1 2 6 15 0.03 0.85
12 0 2 6 15 0.04 0.85 26 1 2 6 15 0.05 0.85
13 2 2 6 15 0.04 0.85 27 1 2 6 15 0.07 0.85
14 1 1 6 15 0.04 0.85

Table 34: Input parameters for validation of Algorithm 3

that when including the replenishment accuracy r2 for replenishment shipments of stock 2 when
X1 = Xub

1 , the approximate evaluation model gives exact results for β2.

The absolute percentage errors of θ1 and θ2 appear high, compared to the errors of other perfor-
mance indicators. However, that is explained by the very low values for θ1 and θ2. The θ2 absolute
error is only 0.0038 which results in an absolute percentage error of 53.48%, as is the indicated by
instance 16. For the majority of instances, the absolute percentage errors of θ1 and θ2 are lower
than they are for instance 11, while as mentioned before the results of instance 11 are equal to
results obtained by the well-known and widely used Poisson overflow algorithm.

The results obtained by approximate evaluation Algorithm 3 are very accurate for all instances
of the numerical experiment, the differences with exact results are small.
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β1 β1 β2 β2 α2 α2 θ1 θ1 θ2 θ2
Instance exact approx. exact approx. exact approx. exact approx. exact approx.
1 0.9314 0.9295 0.8200 0.7534 0.1606 0.2292 0.0686 0.0705 0.0194 0.0174
2 0.9212 0.9193 0.8266 0.7785 0.1527 0.2037 0.0788 0.0807 0.0207 0.0179
3 0.9095 0.9076 0.8336 0.8000 0.1443 0.1815 0.0905 0.0924 0.0221 0.0185
4 0.8963 0.8943 0.8410 0.8186 0.1353 0.1622 0.1037 0.1057 0.0236 0.0192
5 0.8817 0.8793 0.8489 0.8349 0.1259 0.1452 0.1183 0.1207 0.0252 0.0199
6 0.8656 0.8628 0.8571 0.8491 0.1160 0.1302 0.1344 0.1372 0.0269 0.0207
7 0.8483 0.8450 0.8656 0.8615 0.1058 0.1170 0.1517 0.1550 0.0286 0.0215
8 0.8300 0.8262 0.8743 0.8726 0.0956 0.1053 0.1700 0.1738 0.0302 0.0221
9 0.8111 0.8068 0.8828 0.8824 0.0855 0.0949 0.1889 0.1932 0.0317 0.0227
10 0.7923 0.7875 0.8911 0.8911 0.0758 0.0858 0.2077 0.2125 0.0330 0.0231
11 0.7740 0.7688 0.8989 0.8989 0.0670 0.0777 0.2260 0.2312 0.0341 0.0234
12 0.2620 0.2739 0.8747 0.8726 0.0371 0.0349 0.7380 0.7261 0.0883 0.0925
13 0.9737 0.9744 0.8742 0.8726 0.1188 0.1242 0.0263 0.0256 0.0070 0.0033
14 0.7219 0.7103 0.5895 0.5862 0.2695 0.2939 0.2781 0.2897 0.1410 0.1199
15 0.8787 0.8742 0.9682 0.9709 0.0290 0.0254 0.1213 0.1258 0.0028 0.0037
16 0.9090 0.9039 0.8761 0.8726 0.1033 0.1152 0.0910 0.0961 0.0206 0.0122
17 0.8552 0.8510 0.8747 0.8726 0.0980 0.1085 0.1448 0.1490 0.0273 0.0190
18 0.8060 0.8026 0.8740 0.8726 0.0932 0.1023 0.1940 0.1974 0.0329 0.0252
19 0.7615 0.7587 0.8736 0.8726 0.0887 0.0967 0.2385 0.2413 0.0377 0.0307
20 0.8303 0.8310 0.9784 0.9781 0.0178 0.0182 0.1697 0.1690 0.0038 0.0037
21 0.8370 0.8357 0.9088 0.9075 0.0712 0.0773 0.1630 0.1643 0.0199 0.0152
22 0.8183 0.8112 0.8393 0.8374 0.1184 0.1319 0.1817 0.1888 0.0423 0.0307
23 0.7845 0.7695 0.7715 0.7695 0.1572 0.1774 0.2155 0.2305 0.0712 0.0531
24 0.9626 0.9636 0.9875 0.9869 0.0118 0.0126 0.0374 0.0364 0.0007 0.0005
25 0.8780 0.8769 0.9177 0.9161 0.0676 0.0736 0.1220 0.1231 0.0147 0.0103
26 0.7809 0.7739 0.8302 0.8286 0.1192 0.1326 0.2191 0.2261 0.0506 0.0388
27 0.6864 0.6728 0.7466 0.7455 0.1524 0.1712 0.3136 0.3272 0.1010 0.0833

Table 35: Exact and approximate results for numerical experiment instances listed Table 34

85



β1 β1 β2 β2 α2 α2 θ1 θ1 θ2 θ2
Inst. real % real % real % real % real % MAE

1 -0.0019 -0.21% -0.0666 -8.12% 0.0686 42.69% 0.0019 2.81% -0.0020 -10.22% 0.028
2 -0.0018 -0.20% -0.0481 -5.82% 0.0509 33.34% 0.0018 2.33% -0.0028 -13.60% 0.021
3 -0.0019 -0.21% -0.0336 -4.03% 0.0372 25.79% 0.0019 2.08% -0.0036 -16.44% 0.016
4 -0.0021 -0.23% -0.0224 -2.66% 0.0268 19.83% 0.0021 2.00% -0.0045 -18.90% 0.012
5 -0.0024 -0.27% -0.0140 -1.65% 0.0193 15.36% 0.0024 2.01% -0.0053 -21.07% 0.009
6 -0.0028 -0.32% -0.0081 -0.94% 0.0143 12.29% 0.0028 2.08% -0.0062 -23.04% 0.007
7 -0.0033 -0.39% -0.0041 -0.47% 0.0112 10.58% 0.0033 2.16% -0.0071 -24.88% 0.006
8 -0.0038 -0.46% -0.0017 -0.19% 0.0097 10.19% 0.0038 2.23% -0.0080 -26.62% 0.005
9 -0.0043 -0.53% -0.0005 -0.06% 0.0095 11.07% 0.0043 2.28% -0.0090 -28.30% 0.006
10 -0.0048 -0.60% -0.0001 -0.01% 0.0099 13.11% 0.0048 2.30% -0.0099 -29.92% 0.006
11 -0.0052 -0.67% 0.0000 0.00% 0.0107 16.04% 0.0052 2.30% -0.0107 -31.49% 0.006
12 0.0119 4.53% -0.0021 -0.24% -0.0022 -5.84% -0.0119 -1.61% 0.0043 4.85% 0.006
13 0.0007 0.07% -0.0016 -0.19% 0.0054 4.55% -0.0007 -2.54% -0.0038 -53.48% 0.002
14 -0.0116 -1.61% -0.0033 -0.56% 0.0244 9.06% 0.0116 4.17% -0.0211 -14.99% 0.014
15 -0.0045 -0.51% 0.0027 0.28% -0.0036 -12.32% 0.0045 3.72% 0.0009 31.98% 0.003
16 -0.0051 -0.56% -0.0035 -0.40% 0.0119 11.51% 0.0051 5.61% -0.0084 -40.66% 0.007
17 -0.0042 -0.49% -0.0021 -0.24% 0.0104 10.61% 0.0042 2.91% -0.0083 -30.45% 0.006
18 -0.0034 -0.42% -0.0014 -0.16% 0.0091 9.77% 0.0034 1.76% -0.0077 -23.41% 0.005
19 -0.0028 -0.37% -0.0010 -0.12% 0.0080 8.96% 0.0028 1.17% -0.0069 -18.37% 0.004
20 0.0007 0.08% -0.0003 -0.03% 0.0004 2.14% -0.0007 -0.40% -0.0001 -2.92% 0.000
21 -0.0013 -0.15% -0.0013 -0.15% 0.0061 8.51% 0.0013 0.79% -0.0047 -23.79% 0.003
22 -0.0071 -0.86% -0.0019 -0.23% 0.0135 11.40% 0.0071 3.89% -0.0116 -27.35% 0.008
23 -0.0150 -1.91% -0.0020 -0.26% 0.0201 12.80% 0.0150 6.94% -0.0181 -25.41% 0.014
24 0.0010 0.11% -0.0006 -0.06% 0.0008 6.62% -0.0010 -2.71% -0.0002 -31.61% 0.001
25 -0.0011 -0.12% -0.0017 -0.18% 0.0060 8.93% 0.0011 0.89% -0.0044 -29.63% 0.003
26 -0.0071 -0.90% -0.0015 -0.18% 0.0134 11.21% 0.0071 3.22% -0.0118 -23.39% 0.008
27 -0.0136 -1.98% -0.0011 -0.14% 0.0188 12.35% 0.0136 4.33% -0.0177 -17.57% 0.013

Table 36: Errors of results listed in Table 35
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D.3 Validation of hold-back level model extension

The evaluation model proposed in Section 4.3 combines the cross-replenishment model extension
proposed in Section 4.2 with a hold-back level extension, as proposed in the Poisson overflow algo-
rithm by Van Wijk et al. (2012). Since this combination is unknown to literature, the model must
be validated by comparing its results with exact results obtained through Markov chain analysis.

To validate the model we have defined 3 test cases with different combinations of S1, S2, λ1, λ2.
We assume that that a stock’s replenishment accuracy is at least 70%. Therefore, for these three
cases, we test every combination of h1 ∈ S1 and r2 ∈ {0.7, 0.8, 0.9, 1.0}, resulting in a total of 32
instances. The description of instances is given in Table 37.

Instance S1 S2 λ1 λ2 h1 trep r2 Instance S1 S2 λ1 λ2 trep h1 r2
1 1 2 6 15 0.04 0 0.7 17 2 2 10 15 0.04 2 0.9
2 1 2 6 15 0.04 1 0.7 18 2 2 10 15 0.04 0 1.0
3 1 2 6 15 0.04 0 0.8 19 2 2 10 15 0.04 1 1.0
4 1 2 6 15 0.04 1 0.8 20 2 2 10 15 0.04 2 1.0
5 1 2 6 15 0.04 0 0.9 21 2 2 15 15 0.04 0 0.7
6 1 2 6 15 0.04 1 0.9 22 2 2 15 15 0.04 1 0.7
7 1 2 6 15 0.04 0 1.0 23 2 2 15 15 0.04 2 0.7
8 1 2 6 15 0.04 1 1.0 24 2 2 15 15 0.04 0 0.8
9 2 2 10 15 0.04 0 0.7 25 2 2 15 15 0.04 1 0.8
10 2 2 10 15 0.04 1 0.7 26 2 2 15 15 0.04 2 0.8
11 2 2 10 15 0.04 2 0.7 27 2 2 15 15 0.04 0 0.9
12 2 2 10 15 0.04 0 0.8 28 2 2 15 15 0.04 1 0.9
13 2 2 10 15 0.04 1 0.8 29 2 2 15 15 0.04 2 0.9
14 2 2 10 15 0.04 2 0.8 30 2 2 15 15 0.04 0 1.0
15 2 2 10 15 0.04 0 0.9 31 2 2 15 15 0.04 1 1.0
16 2 2 10 15 0.04 1 0.9 32 2 2 15 15 0.04 2 1.0

Table 37: Input parameters for validation of Algorithm 4

The Markov chain models with corresponding transition rates are made by following the logic
as explained in Appendix D.2. Furthermore, implementing hold-back levels result in the following
change for any Markov chain model; demand rate for any state X = (X1, 0) is equal to λ1 + λ2
when X1 > h1 and equal to λ1 when X1 ≤ h1. Without hold-back levels the demand rate for any
state X = (X1, 0) is always equal to λ1 + λ2.

After obtaining the steady-state probabilities of the Markov chain, the fill-rate of any demand
type i ∈ I can be determined by summing the steady-state probabilities of every state with Xi > 0.
The proportion of type 2 demand satisfied by using a part from stock type 1 as substitute now
depends on the hold-back level, and is determined by summing the steady state probabilities of
every state with X = (X1 > h1, X2 = 0). The proportion of type 1 demand satisfied by emergency
shipment is determined by summing the steady state probabilities of every state with X1 = 0 and
the proportion of type 2 demand satisfied by emergency shipment is equal to the sum of every state
with X = (X1 ≤ h1, X2 = 0).

The results are given in Table 38. The table contains both the exact results, obtained by Markov
chain analysis, and the approximation results, obtained by approximate evaluation Algorithm 4.
The real errors, percentage errors, and the mean absolute error (MAE) of each instance are given
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in Table 36. The MAE is below 0.01 for every instance of the numerical experiment. It is clearly
shown that applying hold-back levels increases the accuracy of the approximate evaluation, this
statement holds for every instance. This is explained by the hold-back level blocking a portion of
the demand overflow. The demand overflow is one of the approximated terms, hence blocking a
portion of the demand overflow reduces the influence of this approximated term on the total system
behavior. This is also true for having a replenishment accuracy of r2 = 1; the approximated value
for the cross-replenishment rate µ̂2 reduces to zero. Hence, this approximated term has no influence
on system behavior. Furthermore, the results and errors clearly show that when the replenishment
accuracy r2 is euqal to 1, while the hold-back level h1 is equal to S1, the results obtained by the ap-
proximate evaluation method are exact. This is explained by the replenishment accuracy of r2 = 1
resulting on no cross-replenishments, and therefore the chance that part 1 stock exceeds basestock
is equal to zero. Since in these instances the hold-back level is set at S1, type 1 stock can never
be used as substitute to satisfy type 2 demand. Hence, type 1 stock can only be used for type 1
demand and type 2 stock can only be used for type 2 demand. There is no demand overflow and
no cross-replenishments, so the approximate evaluation Algorithm evaluates the behavior of both
parts exactly.

The results obtained by approximate evaluation Algorithm 4 are very accurate for all instances
of the numerical experiment, the differences with exact results are small.
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β1 β1 β2 β2 α2 α2 θ1 θ1 θ2 θ2
Instance exact approx. exact approx. exact approx. exact approx. exact approx.
1 0.8817 0.8793 0.8489 0.8349 0.1259 0.1452 0.1183 0.1207 0.0252 0.0199
2 0.9071 0.9115 0.8497 0.8349 0.0692 0.0765 0.0929 0.0885 0.0811 0.0886
3 0.8483 0.8450 0.8656 0.8615 0.1058 0.1170 0.1517 0.1550 0.0286 0.0215
4 0.8771 0.8801 0.8659 0.8615 0.0446 0.0437 0.1229 0.1199 0.0894 0.0947
5 0.8111 0.8068 0.8828 0.8824 0.0855 0.0949 0.1889 0.1932 0.0317 0.0227
6 0.8425 0.8439 0.8829 0.8824 0.0205 0.0183 0.1575 0.1561 0.0966 0.0994
7 0.7740 0.7688 0.8989 0.8989 0.0670 0.0777 0.2260 0.2312 0.0341 0.0234
8 0.8065 0.8065 0.8989 0.8989 0.0000 0.0000 0.1935 0.1935 0.1011 0.1011
9 0.9564 0.9563 0.8430 0.8349 0.1464 0.1579 0.0436 0.0437 0.0106 0.0072
10 0.9644 0.9647 0.8431 0.8349 0.1154 0.1270 0.0356 0.0353 0.0415 0.0381
11 0.9688 0.9703 0.8437 0.8349 0.0529 0.0507 0.0312 0.0297 0.1034 0.1144
12 0.9481 0.9479 0.8637 0.8615 0.1250 0.1313 0.0519 0.0521 0.0113 0.0072
13 0.9568 0.9565 0.8637 0.8615 0.0929 0.1004 0.0432 0.0435 0.0434 0.0381
14 0.9613 0.9622 0.8639 0.8615 0.0314 0.0267 0.0387 0.0378 0.1047 0.1118
15 0.9397 0.9398 0.8826 0.8824 0.1056 0.1106 0.0603 0.0602 0.0118 0.0071
16 0.9489 0.9483 0.8826 0.8824 0.0729 0.0803 0.0511 0.0517 0.0445 0.0374
17 0.9536 0.9539 0.8826 0.8824 0.0134 0.0104 0.0464 0.0461 0.1039 0.1073
18 0.9317 0.9323 0.8989 0.8989 0.0890 0.0943 0.0683 0.0677 0.0121 0.0068
19 0.9414 0.9407 0.8989 0.8989 0.0563 0.0651 0.0586 0.0593 0.0448 0.0360
20 0.9459 0.9459 0.8989 0.8989 0.0000 0.0000 0.0541 0.0541 0.1011 0.1011
21 0.9162 0.9158 0.8397 0.8349 0.1430 0.1512 0.0838 0.0842 0.0173 0.0139
22 0.9261 0.9269 0.8398 0.8349 0.1029 0.1085 0.0739 0.0731 0.0572 0.0566
23 0.9317 0.9341 0.8403 0.8349 0.0398 0.0327 0.0683 0.0659 0.1200 0.1325
24 0.9047 0.9041 0.8627 0.8615 0.1198 0.1252 0.0953 0.0959 0.0175 0.0133
25 0.9148 0.9148 0.8628 0.8615 0.0806 0.0848 0.0852 0.0852 0.0567 0.0537
26 0.9203 0.9214 0.8629 0.8615 0.0223 0.0163 0.0797 0.0786 0.1148 0.1221
27 0.8938 0.8934 0.8825 0.8824 0.1000 0.1051 0.1062 0.1066 0.0175 0.0125
28 0.9040 0.9035 0.8825 0.8824 0.0620 0.0674 0.0960 0.0965 0.0555 0.0503
29 0.9092 0.9096 0.8825 0.8824 0.0091 0.0061 0.0908 0.0904 0.1084 0.1115
30 0.8840 0.8838 0.8989 0.8989 0.0838 0.0894 0.1160 0.1162 0.0173 0.0117
31 0.8941 0.8934 0.8989 0.8989 0.0473 0.0544 0.1059 0.1066 0.0538 0.0467
32 0.8989 0.8989 0.8989 0.8989 0.0000 0.0000 0.1011 0.1011 0.1011 0.1011

Table 38: Exact and approximation results for numerical experiment instances listed Table 37
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β1 β1 β2 β2 α2 α2 θ1 θ1 θ2 θ2
Inst. real % real % real % real % real % MAE

1 -0.0024 -0.27% -0.0140 -1.65% 0.0193 15.36% 0.0024 2.01% -0.0053 -21.07% 0.009
2 0.0044 0.49% -0.0148 -1.74% 0.0073 10.54% -0.0044 -4.74% 0.0075 9.27% 0.008
3 -0.0033 -0.39% -0.0041 -0.47% 0.0112 10.58% 0.0033 2.16% -0.0071 -24.88% 0.006
4 0.0030 0.34% -0.0044 -0.51% -0.0009 -2.01% -0.0030 -2.43% 0.0053 5.91% 0.003
5 -0.0043 -0.53% -0.0005 -0.06% 0.0095 11.07% 0.0043 2.28% -0.0090 -28.30% 0.006
6 0.0014 0.17% -0.0005 -0.06% -0.0022 -10.81% -0.0014 -0.90% 0.0028 2.85% 0.002
7 -0.0052 -0.67% 0.0000 0.00% 0.0107 16.04% 0.0052 2.30% -0.0107 -31.49% 0.006
8 0.0000 0.00% 0.0000 0.00% 0.0000 0.00% 0.0000 0.00% 0.0000 0.00% 0.000
9 -0.0001 -0.01% -0.0081 -0.96% 0.0115 7.88% 0.0001 0.31% -0.0034 -32.11% 0.005
10 0.0002 0.02% -0.0082 -0.98% 0.0116 10.08% -0.0002 -0.61% -0.0034 -8.16% 0.005
11 0.0016 0.16% -0.0089 -1.05% -0.0022 -4.14% -0.0016 -4.99% 0.0111 10.70% 0.005
12 -0.0001 -0.01% -0.0021 -0.25% 0.0062 4.96% 0.0001 0.24% -0.0041 -36.13% 0.003
13 -0.0003 -0.03% -0.0022 -0.25% 0.0075 8.02% 0.0003 0.59% -0.0053 -12.18% 0.003
14 0.0009 0.09% -0.0024 -0.27% -0.0048 -15.13% -0.0009 -2.24% 0.0071 6.80% 0.003
15 0.0001 0.01% -0.0002 -0.03% 0.0049 4.67% -0.0001 -0.18% -0.0047 -39.88% 0.002
16 -0.0006 -0.06% -0.0002 -0.03% 0.0074 10.14% 0.0006 1.12% -0.0072 -16.07% 0.003
17 0.0003 0.03% -0.0003 -0.03% -0.0030 -22.65% -0.0003 -0.71% 0.0033 3.18% 0.001
18 0.0005 0.06% 0.0000 0.00% 0.0052 5.89% -0.0005 -0.78% -0.0052 -43.35% 0.002
19 -0.0007 -0.08% 0.0000 0.00% 0.0088 15.72% 0.0007 1.22% -0.0088 -19.73% 0.004
20 0.0000 0.00% 0.0000 0.00% 0.0000 0.00% 0.0000 0.00% 0.0000 0.00% 0.000
21 -0.0003 -0.03% -0.0049 -0.58% 0.0083 5.77% 0.0003 0.38% -0.0034 -19.64% 0.003
22 0.0008 0.08% -0.0050 -0.59% 0.0056 5.40% -0.0008 -1.06% -0.0006 -1.04% 0.003
23 0.0023 0.25% -0.0054 -0.64% -0.0071 -17.83% -0.0023 -3.39% 0.0125 10.40% 0.006
24 -0.0005 -0.06% -0.0012 -0.14% 0.0054 4.51% 0.0005 0.57% -0.0042 -24.08% 0.002
25 0.0000 0.00% -0.0012 -0.14% 0.0042 5.26% 0.0000 0.02% -0.0030 -5.32% 0.002
26 0.0012 0.13% -0.0013 -0.15% -0.0060 -26.87% -0.0012 -1.45% 0.0073 6.39% 0.003
27 -0.0004 -0.05% -0.0001 -0.01% 0.0051 5.07% 0.0004 0.42% -0.0050 -28.30% 0.002
28 -0.0005 -0.06% -0.0001 -0.01% 0.0054 8.63% 0.0005 0.52% -0.0052 -9.41% 0.002
29 0.0004 0.04% -0.0001 -0.02% -0.0030 -32.78% -0.0004 -0.44% 0.0031 2.89% 0.001
30 -0.0001 -0.01% 0.0000 0.00% 0.0056 6.67% 0.0001 0.11% -0.0056 -32.24% 0.002
31 -0.0007 -0.08% 0.0000 0.00% 0.0071 15.02% 0.0007 0.68% -0.0071 -13.20% 0.003
32 0.0000 0.00% 0.0000 0.00% 0.0000 0.00% 0.0000 0.00% 0.0000 0.00% 0.000

Table 39: Errors of results listed in Table 37
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Appendix E Case study long tables

E.1 Design scenario 0

categories parameters
(A), (B), (C) (A), (B), (D) (A), (B), (E) (A), (B), (F) (A), (C), (D)

low, low, low 115.43 11.86 114.64 115.43 26.09
low, low, mid 115.43 47.57 114.83 115.43 94.94
low, low, high 115.43 286.86 116.83 115.43 547.40
low, mid, low 192.87 20.25 191.22 192.87 26.09
low, mid, mid 192.87 79.78 191.61 192.87 94.94
low, mid, high 192.87 478.59 195.79 192.87 547.40
low, high, low 360.12 46.14 348.94 360.12 26.09
low, high, mid 360.12 157.47 351.92 360.12 94.94
low, high, high 360.12 876.75 379.51 360.12 547.40
mid, low, low 153.43 15.33 152.71 153.43 29.56
mid, low, mid 153.43 62.95 152.88 153.43 110.32
mid, low, high 153.43 382.00 154.70 153.43 642.54
mid, mid, low 230.87 23.73 229.28 230.87 29.56
mid, mid, mid 230.87 95.16 229.66 230.87 110.32
mid, mid, high 230.87 573.73 233.67 230.87 642.54
mid, high, low 398.12 49.62 387.01 398.12 29.56
mid, high, mid 398.12 172.85 389.97 398.12 110.32
mid, high, high 398.12 971.89 417.39 398.12 642.54
high, low, low 233.91 25.93 230.36 233.91 40.16
high, low, mid 233.91 98.62 231.30 233.91 145.99
high, low, high 233.91 577.19 240.09 233.91 837.73
high, mid, low 311.35 34.32 306.94 311.35 40.16
high, mid, mid 311.35 130.82 308.08 311.35 145.99
high, mid, high 311.35 768.92 319.05 311.35 837.73
high, high, low 478.60 60.21 464.66 478.60 40.16
high, high, mid 478.60 208.51 468.39 478.60 145.99
high, high, high 478.60 1167.08 502.77 478.60 837.73

Table 40: Average expected costs per in e per month, per specific combination of three parameter
categories (design scenario 0, part 1 of 4)
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categories parameters
(A), (C), (E) (A), (C), (F) (A), (D), (E) (A), (D), (F) (A), (E), (F)

low, low, low 218.27 222.81 22.63 26.09 218.27
low, low, mid 219.45 222.81 23.67 26.09 218.27
low, low, high 230.71 222.81 31.95 26.09 218.27
low, mid, low 218.27 222.81 90.09 94.94 219.45
low, mid, mid 219.45 222.81 91.35 94.94 219.45
low, mid, high 230.71 222.81 103.38 94.94 219.45
low, high, low 218.27 222.81 542.08 547.40 230.71
low, high, mid 219.45 222.81 543.33 547.40 230.71
low, high, high 230.71 222.81 556.79 547.40 230.71
mid, low, low 256.33 260.81 26.17 29.56 256.33
mid, low, mid 257.50 260.81 27.20 29.56 256.33
mid, low, high 268.59 260.81 35.31 29.56 256.33
mid, mid, low 256.33 260.81 105.54 110.32 257.50
mid, mid, mid 257.50 260.81 106.78 110.32 257.50
mid, mid, high 268.59 260.81 118.64 110.32 257.50
mid, high, low 256.33 260.81 637.29 642.54 268.59
mid, high, mid 257.50 260.81 638.52 642.54 268.59
mid, high, high 268.59 260.81 651.81 642.54 268.59
high, low, low 333.99 341.29 34.78 40.16 333.99
high, low, mid 335.92 341.29 36.57 40.16 333.99
high, low, high 353.97 341.29 49.12 40.16 333.99
high, mid, low 333.99 341.29 137.95 145.99 335.92
high, mid, mid 335.92 341.29 139.96 145.99 335.92
high, mid, high 353.97 341.29 160.04 145.99 335.92
high, high, low 333.99 341.29 829.22 837.73 353.97
high, high, mid 335.92 341.29 831.23 837.73 353.97
high, high, high 353.97 341.29 852.74 837.73 353.97

Table 41: Average expected costs per in e per month, per specific combination of three parameter
categories (design scenario 0, part 2 of 4)
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categories parameters
(B), (C), (D) (B), (C), (E) (B), (C), (F) (B), (D), (E) (B), (D), (F)

low, low, low 17.71 165.90 167.59 16.30 17.71
low, low, mid 69.72 166.33 167.59 16.73 17.71
low, low, high 415.35 170.54 167.59 20.09 17.71
low, mid, low 17.71 165.90 167.59 67.89 69.72
low, mid, mid 69.72 166.33 167.59 68.32 69.72
low, mid, high 415.35 170.54 167.59 72.94 69.72
low, high, low 17.71 165.90 167.59 413.52 415.35
low, high, mid 69.72 166.33 167.59 413.95 415.35
low, high, high 415.35 170.54 167.59 418.58 415.35
mid, low, low 26.10 242.48 245.03 23.83 26.10
mid, low, mid 101.92 243.12 245.03 24.46 26.10
mid, low, high 607.08 249.50 245.03 30.01 26.10
mid, mid, low 26.10 242.48 245.03 99.23 101.92
mid, mid, mid 101.92 243.12 245.03 99.86 101.92
mid, mid, high 607.08 249.50 245.03 106.67 101.92
mid, high, low 26.10 242.48 245.03 604.39 607.08
mid, high, mid 101.92 243.12 245.03 605.02 607.08
mid, high, high 607.08 249.50 245.03 611.83 607.08
high, low, low 51.99 400.20 412.28 43.46 51.99
high, low, mid 179.61 403.42 412.28 46.25 51.99
high, low, high 1005.24 433.22 412.28 66.27 51.99
high, mid, low 51.99 400.20 412.28 166.47 179.61
high, mid, mid 179.61 403.42 412.28 169.91 179.61
high, mid, high 1005.24 433.22 412.28 202.45 179.61
high, high, low 51.99 400.20 412.28 990.68 1005.24
high, high, mid 179.61 403.42 412.28 994.11 1005.24
high, high, high 1005.24 433.22 412.28 1030.94 1005.24

Table 42: Average expected costs per in e per month, per specific combination of three parameter
categories (design scenario 0, part 3 of 4)
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categories parameters
(B), (E), (F) (C), (D), (E) (C), (D), (F) (C), (E), (F) (D), (E), (F)

low, low, low 165.90 27.86 31.93 269.53 27.86
low, low, mid 165.90 29.15 31.93 269.53 27.86
low, low, high 165.90 38.79 31.93 269.53 27.86
low, mid, low 166.33 111.20 117.08 270.96 29.15
low, mid, mid 166.33 112.70 117.08 270.96 29.15
low, mid, high 166.33 127.35 117.08 270.96 29.15
low, high, low 170.54 669.53 675.89 284.42 38.79
low, high, mid 170.54 671.03 675.89 284.42 38.79
low, high, high 170.54 687.11 675.89 284.42 38.79
mid, low, low 242.48 27.86 31.93 269.53 111.20
mid, low, mid 242.48 29.15 31.93 269.53 111.20
mid, low, high 242.48 38.79 31.93 269.53 111.20
mid, mid, low 243.12 111.20 117.08 270.96 112.70
mid, mid, mid 243.12 112.70 117.08 270.96 112.70
mid, mid, high 243.12 127.35 117.08 270.96 112.70
mid, high, low 249.50 669.53 675.89 284.42 127.35
mid, high, mid 249.50 671.03 675.89 284.42 127.35
mid, high, high 249.50 687.11 675.89 284.42 127.35
high, low, low 400.20 27.86 31.93 269.53 669.53
high, low, mid 400.20 29.15 31.93 269.53 669.53
high, low, high 400.20 38.79 31.93 269.53 669.53
high, mid, low 403.42 111.20 117.08 270.96 671.03
high, mid, mid 403.42 112.70 117.08 270.96 671.03
high, mid, high 403.42 127.35 117.08 270.96 671.03
high, high, low 433.22 669.53 675.89 284.42 687.11
high, high, mid 433.22 671.03 675.89 284.42 687.11
high, high, high 433.22 687.11 675.89 284.42 687.11

Table 43: Average expected costs per in e per month, per specific combination of three parameter
categories (design scenario 0, part 4 of 4)
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E.2 Design scenario 1

categories parameters
(A), (B), (C) (A), (B), (D) (A), (B), (E) (A), (B), (F) (A), (C), (D)

low, low, low 9.8% 7.5% 14.0% 3.1% 7.2%
low, low, mid 12.3% 13.1% 13.4% 11.8% 19.7%
low, low, high 13.3% 14.8% 8.1% 20.5% 25.3%
low, mid, low 13.1% 8.5% 17.7% 4.4% 8.7%
low, mid, mid 15.0% 16.5% 16.9% 16.4% 21.6%
low, mid, high 15.9% 18.9% 9.4% 23.3% 27.2%
low, high, low 29.3% 9.2% 39.7% 27.1% 9.4%
low, high, mid 30.1% 34.0% 35.9% 29.9% 22.3%
low, high, high 30.4% 46.7% 14.2% 32.8% 27.9%
mid, low, low 6.4% 5.5% 10.5% 0.4% 5.9%
mid, low, mid 9.2% 9.8% 10.0% 9.4% 16.3%
mid, low, high 10.6% 11.0% 5.8% 16.5% 21.0%
mid, mid, low 10.9% 7.3% 15.5% 3.3% 8.0%
mid, mid, mid 13.1% 14.3% 14.6% 14.8% 19.7%
mid, mid, high 13.9% 16.4% 7.8% 19.9% 24.6%
mid, high, low 25.9% 10.4% 38.2% 14.9% 9.2%
mid, high, mid 30.0% 32.9% 34.6% 29.2% 21.0%
mid, high, high 31.6% 44.2% 14.7% 43.4% 26.0%
high, low, low 5.6% 7.9% 6.5% 1.8% 7.9%
high, low, mid 7.2% 6.1% 6.2% 7.4% 12.5%
high, low, high 8.0% 6.8% 8.1% 11.7% 16.1%
high, mid, low 9.1% 8.8% 11.2% 3.8% 9.3%
high, mid, mid 10.6% 10.3% 10.5% 11.7% 15.0%
high, mid, high 11.2% 11.9% 9.2% 15.4% 18.8%
high, high, low 21.9% 10.7% 31.0% 13.1% 10.1%
high, high, mid 25.3% 26.9% 28.3% 24.6% 15.8%
high, high, high 26.6% 36.1% 14.3% 36.0% 19.8%

Table 44: Average difference in costs per combination of three parameter categories (design scenario
1, part 1 of 4)
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categories parameters
(A), (C), (E) (A), (C), (F) (A), (D), (E) (A), (D), (F) (A), (E), (F)

low, low, low 22.4% 10.9% 18.1% 1.7% 16.2%
low, low, mid 20.6% 17.6% 14.4% 9.0% 24.3%
low, low, high 9.2% 23.7% -7.3% 14.5% 30.8%
low, mid, low 24.1% 11.6% 25.6% 13.7% 14.6%
low, mid, mid 22.4% 19.8% 24.3% 21.8% 22.6%
low, mid, high 10.9% 26.0% 13.8% 28.1% 29.0%
low, high, low 24.9% 12.0% 27.7% 19.1% 3.8%
low, high, mid 23.2% 20.7% 27.5% 27.3% 11.2%
low, high, high 11.6% 26.9% 25.2% 34.0% 16.7%
mid, low, low 19.1% 4.2% 16.6% -1.6% 10.3%
mid, low, mid 17.0% 15.3% 13.0% 8.4% 22.3%
mid, low, high 7.1% 23.6% -6.6% 16.3% 31.5%
mid, mid, low 21.8% 6.6% 22.8% 8.0% 8.6%
mid, mid, mid 20.5% 18.4% 21.7% 20.0% 20.7%
mid, mid, high 10.1% 27.3% 12.5% 29.0% 29.8%
mid, high, low 23.3% 7.7% 24.7% 12.2% -0.3%
mid, high, mid 21.7% 19.6% 24.5% 24.9% 10.3%
mid, high, high 11.2% 28.8% 22.5% 34.5% 18.4%
high, low, low 14.5% 4.9% 12.4% 2.7% 8.0%
high, low, mid 13.1% 12.8% 9.8% 9.6% 16.9%
high, low, high 9.0% 18.9% 5.1% 15.1% 23.8%
high, mid, low 16.6% 6.5% 17.4% 6.5% 6.9%
high, mid, mid 15.6% 15.0% 16.5% 15.1% 15.7%
high, mid, high 11.0% 21.6% 9.4% 21.8% 22.5%
high, high, low 17.6% 7.2% 18.9% 9.5% 3.7%
high, high, mid 16.4% 15.9% 18.7% 19.0% 11.1%
high, high, high 11.7% 22.7% 17.1% 26.3% 16.8%

Table 45: Average difference in costs per combination of three parameter categories (design scenario
1, part 2 of 4)
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categories parameters
(B), (C), (D) (B), (C), (E) (B), (C), (F) (B), (D), (E) (B), (D), (F)

low, low, low 5.5% 8.5% 0.1% 9.2% 0.3%
low, low, mid 7.6% 7.8% 8.0% 8.2% 7.2%
low, low, high 8.7% 5.5% 13.8% 3.4% 13.5%
low, mid, low 7.2% 10.6% 2.0% 10.7% 2.1%
low, mid, mid 10.2% 10.4% 9.9% 10.4% 10.1%
low, mid, high 11.4% 7.8% 16.8% 8.0% 16.9%
low, high, low 8.2% 11.8% 3.2% 11.0% 2.9%
low, high, mid 11.2% 11.4% 10.7% 11.0% 11.4%
low, high, high 12.5% 8.7% 18.1% 10.6% 18.3%
mid, low, low 7.1% 13.4% 2.5% 13.1% 0.4%
mid, low, mid 12.0% 12.3% 11.9% 11.2% 9.8%
mid, low, high 13.9% 7.3% 18.5% 0.3% 14.3%
mid, mid, low 8.4% 15.1% 4.2% 15.3% 4.7%
mid, mid, mid 14.2% 14.5% 14.9% 14.9% 15.5%
mid, mid, high 16.3% 9.2% 19.8% 10.8% 20.9%
mid, high, low 9.1% 15.9% 4.7% 16.0% 6.3%
mid, high, mid 14.9% 15.2% 16.0% 15.9% 17.5%
mid, high, high 17.0% 9.8% 20.3% 15.2% 23.3%
high, low, low 8.3% 34.0% 17.4% 24.8% 2.1%
high, low, mid 28.9% 30.6% 25.7% 17.9% 10.0%
high, low, high 39.8% 12.5% 33.9% -12.5% 18.1%
high, mid, low 10.5% 36.8% 18.6% 39.8% 21.4%
high, mid, mid 31.9% 33.5% 28.4% 37.2% 31.3%
high, mid, high 43.0% 14.9% 38.3% 16.8% 41.1%
high, high, low 11.4% 38.0% 19.0% 44.2% 31.5%
high, high, mid 33.0% 34.7% 29.5% 43.8% 42.4%
high, high, high 44.2% 15.9% 40.0% 39.0% 53.1%

Table 46: Average difference in costs per combination of three parameter categories (design scenario
1, part 3 of 4)
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categories parameters
(B), (E), (F) (C), (D), (E) (C), (D), (F) (C), (E), (F) (D), (E), (F)

low, low, low 2.6% 14.6% 0.5% 10.5% 7.5%
low, low, mid 10.7% 10.6% 7.2% 19.1% 16.3%
low, low, high 17.6% -4.2% 13.2% 26.3% 23.4%
low, mid, low 2.2% 19.8% 7.7% 8.3% 4.3%
low, mid, mid 10.3% 18.7% 16.9% 17.6% 13.1%
low, mid, high 17.1% 10.1% 23.9% 24.7% 19.9%
low, high, low 0.4% 21.6% 11.7% 1.1% -9.0%
low, high, mid 7.6% 21.4% 21.6% 9.0% -2.3%
low, high, high 13.9% 19.4% 29.1% 15.2% 2.6%
mid, low, low 5.8% 15.7% 0.7% 11.4% 12.7%
mid, low, mid 16.5% 12.9% 9.5% 21.7% 22.7%
mid, low, high 22.1% -2.6% 15.8% 29.3% 30.4%
mid, mid, low 4.9% 22.5% 9.9% 10.6% 11.7%
mid, mid, mid 15.8% 21.4% 19.5% 20.2% 21.6%
mid, mid, high 21.3% 12.4% 26.9% 27.7% 29.2%
mid, high, low 0.7% 24.3% 14.2% 2.8% 3.8%
mid, high, mid 10.5% 24.2% 24.3% 11.3% 12.5%
mid, high, high 15.1% 22.2% 32.2% 17.8% 19.3%
high, low, low 26.1% 16.9% 1.5% 12.4% 14.3%
high, low, mid 36.3% 13.8% 10.3% 22.8% 24.6%
high, low, high 46.5% -2.0% 16.8% 30.6% 32.4%
high, mid, low 22.9% 23.5% 10.5% 11.2% 14.1%
high, mid, mid 33.0% 22.4% 20.5% 21.2% 24.4%
high, mid, high 42.9% 13.2% 28.1% 28.9% 32.2%
high, high, low 6.0% 25.4% 14.9% 3.3% 12.4%
high, high, mid 14.5% 25.2% 25.4% 12.2% 22.4%
high, high, high 22.8% 23.2% 33.4% 18.9% 30.0%

Table 47: Average difference in costs per combination of three parameter categories (design scenario
1, part 4 of 4)
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E.3 Design scenario 2

categories parameters
(A), (B), (C) (A), (B), (D) (A), (B), (E) (A), (B), (F) (A), (C), (D)

low, low, low -4.4% -4.5% 1.9% 8.7% -8.9%
low, low, mid -2.1% 1.0% 1.3% -0.3% 1.1%
low, low, high 5.7% 2.7% -4.0% -9.3% 5.3%
low, mid, low -7.1% -6.5% 1.4% 2.6% -4.4%
low, mid, mid -1.1% 0.4% 0.7% 1.6% 6.3%
low, mid, high 4.5% 2.4% -5.8% -7.8% 10.9%
low, high, low 9.0% -2.3% 22.0% 13.9% 0.0%
low, high, mid 16.0% 17.5% 19.0% 14.4% 11.5%
low, high, high 17.8% 27.6% 1.9% 14.5% 16.5%
mid, low, low -54.4% -22.3% -20.2% -10.4% -48.7%
mid, low, mid -10.4% -20.5% -20.4% -20.9% -46.5%
mid, low, high 2.0% -20.0% -22.2% -31.5% -45.3%
mid, mid, low -62.0% -38.7% -36.4% -15.9% -29.2%
mid, mid, mid -42.9% -36.7% -36.6% -34.5% -23.4%
mid, mid, high -6.6% -36.1% -38.5% -61.0% -20.9%
mid, high, low -24.1% -29.3% -14.2% -0.6% -12.4%
mid, high, mid -20.2% -17.0% -16.1% -17.7% -4.1%
mid, high, high -12.7% -10.8% -26.8% -38.8% -0.7%
high, low, low -34.1% -11.7% -14.7% -5.4% -111.2%
high, low, mid -8.6% -14.8% -14.8% -13.4% -126.0%
high, low, high 1.6% -14.7% -11.6% -22.4% -133.0%
high, mid, low -106.7% -46.9% -51.2% -17.7% -44.9%
high, mid, mid -35.3% -50.6% -50.8% -48.1% -48.1%
high, mid, high -7.2% -51.8% -47.3% -83.4% -49.0%
high, high, low -229.4% -110.2% -121.0% -38.4% -12.6%
high, high, mid -98.1% -118.9% -119.6% -115.8% -10.1%
high, high, high -24.9% -123.4% -111.9% -198.3% -7.8%

Table 48: Average difference in costs per combination of three parameter categories (design scenario
2, part 1 of 4)
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categories parameters
(A), (C), (E) (A), (C), (F) (A), (D), (E) (A), (D), (F) (A), (E), (F)

low, low, low 3.0% 9.6% 3.7% -0.1% 12.5%
low, low, mid 1.7% -0.8% 0.7% -3.5% 9.4%
low, low, high -7.3% -11.4% -17.7% -9.7% 3.4%
low, mid, low 8.4% 6.9% 9.9% 10.4% 11.1%
low, mid, mid 7.0% 7.0% 8.8% 7.3% 8.0%
low, mid, high -2.6% -1.2% 0.1% 1.2% 1.9%
low, high, low 13.8% 8.7% 11.7% 14.9% 1.7%
low, high, mid 12.3% 9.4% 11.5% 11.9% -1.7%
low, high, high 1.9% 10.0% 9.6% 5.9% -7.9%
mid, low, low -46.0% -21.8% -26.1% -14.5% -6.4%
mid, low, mid -46.4% -44.8% -27.7% -28.9% -22.2%
mid, low, high -48.2% -73.9% -36.5% -47.0% -42.2%
mid, mid, low -22.3% -5.8% -22.8% -7.7% -7.3%
mid, mid, mid -23.1% -23.7% -23.4% -23.3% -23.0%
mid, mid, high -28.2% -44.1% -27.9% -43.0% -42.8%
mid, high, low -2.5% 0.6% -21.9% -4.7% -13.3%
mid, high, mid -3.6% -4.6% -22.0% -20.9% -27.9%
mid, high, high -11.1% -13.3% -23.0% -41.2% -46.3%
high, low, low -129.3% -43.3% -60.5% -21.7% -20.0%
high, low, mid -127.1% -122.1% -59.2% -55.2% -61.0%
high, low, high -113.9% -204.8% -49.1% -91.9% -105.9%
high, mid, low -48.6% -16.6% -62.9% -20.6% -20.4%
high, mid, mid -48.3% -46.3% -62.5% -60.2% -60.4%
high, mid, high -45.2% -79.1% -58.9% -103.5% -104.3%
high, high, low -9.1% -1.6% -63.6% -19.2% -21.2%
high, high, mid -9.8% -8.9% -63.5% -62.0% -55.8%
high, high, high -11.7% -20.1% -62.8% -108.6% -93.8%

Table 49: Average difference in costs per combination of three parameter categories (design scenario
2, part 2 of 4)
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categories parameters
(B), (C), (D) (B), (C), (E) (B), (C), (F) (B), (D), (E) (B), (D), (F)

low, low, low -30.7% -31.1% -8.6% -11.7% -4.1%
low, low, mid -31.1% -31.1% -30.6% -12.3% -12.7%
low, low, high -31.0% -30.7% -53.7% -14.5% -21.8%
low, mid, low -8.8% -6.2% -0.1% -10.8% -2.0%
low, mid, mid -6.7% -6.5% -7.0% -10.9% -11.3%
low, mid, high -5.7% -8.5% -14.0% -12.5% -20.9%
low, high, low 1.0% 4.2% 1.6% -10.5% -1.0%
low, high, mid 3.6% 3.8% 3.1% -10.6% -10.5%
low, high, high 4.8% 1.4% 4.6% -10.8% -20.4%
mid, low, low -57.2% -59.3% -21.4% -29.1% -12.8%
mid, low, mid -58.8% -59.0% -57.3% -29.6% -28.5%
mid, low, high -59.9% -57.6% -97.2% -33.3% -50.7%
mid, mid, low -28.0% -25.6% -10.9% -28.6% -9.7%
mid, mid, mid -26.0% -25.9% -22.5% -28.7% -26.5%
mid, mid, high -25.2% -27.7% -45.7% -29.7% -50.6%
mid, high, low -6.8% -1.2% 1.2% -28.4% -8.5%
mid, high, mid -2.1% -1.8% -1.2% -28.5% -26.0%
mid, high, high -0.4% -6.3% -9.3% -28.6% -50.9%
high, low, low -80.9% -81.9% -25.5% -42.0% -19.4%
high, low, mid -81.5% -81.7% -79.8% -44.3% -46.3%
high, low, high -82.1% -81.0% -139.3% -55.5% -76.0%
high, mid, low -41.7% -30.7% -4.4% -36.5% -6.2%
high, mid, mid -32.6% -32.0% -33.4% -37.4% -38.4%
high, mid, high -28.1% -39.8% -64.6% -44.5% -73.8%
high, high, low -19.1% -0.7% 4.8% -34.8% 0.5%
high, high, mid -4.2% -3.1% -5.9% -35.0% -34.4%
high, high, high 3.6% -16.0% -18.7% -36.8% -72.7%

Table 50: Average difference in costs per combination of three parameter categories (design scenario
2, part 3 of 4)
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categories parameters
(B), (E), (F) (C), (D), (E) (C), (D), (F) (C), (E), (F) (D), (E), (F)

low, low, low -1.5% -56.9% -21.7% -17.0% -7.7%
low, low, mid -10.9% -56.5% -55.2% -56.2% -26.4%
low, low, high -20.7% -55.4% -91.9% -99.0% -48.8%
low, mid, low -1.8% -57.6% -17.9% -17.6% -9.6%
low, mid, mid -11.2% -57.5% -56.0% -56.1% -27.5%
low, mid, high -20.8% -56.4% -97.7% -98.1% -49.0%
low, high, low -3.7% -57.8% -15.9% -20.9% -19.0%
low, high, mid -12.5% -57.7% -56.6% -55.4% -33.6%
low, high, high -21.6% -57.5% -100.5% -93.0% -50.8%
mid, low, low -9.1% -23.0% -10.5% -2.6% -3.7%
mid, low, mid -26.2% -24.3% -24.7% -19.2% -24.0%
mid, low, high -50.8% -31.1% -43.2% -40.6% -48.1%
mid, mid, low -9.6% -20.1% -4.0% -3.6% -4.4%
mid, mid, mid -26.4% -20.6% -20.2% -19.9% -24.4%
mid, mid, high -50.7% -24.6% -41.1% -40.9% -48.2%
mid, high, low -12.4% -19.3% -0.9% -9.3% -10.0%
mid, high, mid -28.4% -19.4% -18.0% -23.9% -27.7%
mid, high, high -50.8% -20.3% -40.1% -42.8% -49.0%
high, low, low -3.3% -2.9% -4.1% 5.7% -2.5%
high, low, mid -36.6% -5.3% -7.6% 1.6% -23.4%
high, low, high -73.4% -16.8% -13.4% -5.1% -47.9%
high, mid, low -5.2% 1.9% 3.9% 4.5% -2.6%
high, mid, mid -37.8% 1.1% -0.1% 0.5% -23.5%
high, mid, high -73.6% -5.7% -6.6% -6.1% -47.9%
high, high, low -16.6% 3.3% 7.8% -2.6% -3.9%
high, high, mid -44.6% 3.1% 3.6% -6.2% -24.2%
high, high, high -75.5% 1.6% -3.4% -12.1% -48.1%

Table 51: Average difference in costs per combination of three parameter categories (design scenario
2, part 4 of 4)
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E.4 Design scenario 3a

categories parameters
(A), (B), (C) (A), (B), (D) (A), (B), (E) (A), (B), (F) (A), (C), (D)

low, low, low -0.4% -1.0% 0.0% -0.9% -3.1%
low, low, mid -0.3% 0.0% 0.0% -0.1% 0.0%
low, low, high -0.3% 0.0% -1.0% 0.0% 0.0%
low, mid, low -0.6% -1.4% 0.0% -1.2% -2.8%
low, mid, mid -0.4% 0.0% 0.0% -0.2% 0.0%
low, mid, high -0.4% 0.0% -1.4% 0.0% 0.0%
low, high, low -2.1% -6.2% 0.0% -2.1% -2.7%
low, high, mid -2.1% 0.0% 0.0% -2.0% 0.0%
low, high, high -2.1% 0.0% -6.2% -2.0% 0.0%
mid, low, low -2.2% -1.6% -1.1% -3.5% -3.8%
mid, low, mid -1.0% -1.0% -1.0% -0.1% -0.8%
mid, low, high -0.5% -1.1% -1.6% 0.0% -0.8%
mid, mid, low -0.9% -1.5% -0.1% -1.5% -3.1%
mid, mid, mid -0.4% -0.1% -0.1% -0.2% -0.2%
mid, mid, high -0.4% -0.1% -1.5% 0.0% -0.3%
mid, high, low -2.3% -6.6% 0.0% -2.7% -2.8%
mid, high, mid -2.2% 0.0% 0.0% -2.0% -0.1%
mid, high, high -2.1% 0.0% -6.6% -1.9% -0.1%
high, low, low -1.2% -0.7% -0.5% -1.7% -2.9%
high, low, mid -0.4% -0.5% -0.5% -0.1% -1.3%
high, low, high -0.2% -0.6% -0.8% 0.0% -1.9%
high, mid, low -3.1% -1.7% -3.1% -6.3% -2.5%
high, mid, mid -2.5% -2.5% -2.7% -1.7% -0.9%
high, mid, high -2.3% -3.8% -2.3% 0.0% -1.4%
high, high, low -1.8% -5.3% 0.0% -2.1% -2.4%
high, high, mid -1.8% 0.0% 0.0% -1.6% -0.7%
high, high, high -1.7% 0.0% -5.3% -1.6% -1.2%

Table 52: Average difference in costs per combination of three parameter categories (design scenario
3a, part 1 of 4)
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categories parameters
(A), (C), (E) (A), (C), (F) (A), (D), (E) (A), (D), (F) (A), (E), (F)

low, low, low 0.0% -1.5% 0.0% -4.3% 0.0%
low, low, mid 0.0% -0.9% 0.0% -2.3% 0.0%
low, low, high -3.1% -0.7% -8.6% -2.0% 0.0%
low, mid, low 0.0% -1.4% 0.0% 0.0% 0.0%
low, mid, mid 0.0% -0.7% 0.0% 0.0% 0.0%
low, mid, high -2.8% -0.7% 0.0% 0.0% 0.0%
low, high, low 0.0% -1.4% 0.0% 0.0% -4.3%
low, high, mid 0.0% -0.7% 0.0% 0.0% -2.3%
low, high, high -2.7% -0.7% 0.0% 0.0% -2.0%
mid, low, low -0.8% -3.7% -0.3% -5.4% -1.2%
mid, low, mid -0.8% -0.9% -0.3% -2.4% 0.0%
mid, low, high -3.8% -0.6% -9.0% -1.9% 0.0%
mid, mid, low -0.3% -2.2% -0.4% -1.1% -1.1%
mid, mid, mid -0.3% -0.7% -0.4% 0.0% 0.0%
mid, mid, high -3.1% -0.6% -0.3% 0.0% 0.0%
mid, high, low -0.1% -1.7% -0.4% -1.2% -5.5%
mid, high, mid -0.1% -0.7% -0.4% 0.0% -2.4%
mid, high, high -2.9% -0.6% -0.4% 0.0% -1.9%
high, low, low -1.6% -4.1% -0.7% -4.4% -2.9%
high, low, mid -1.4% -1.5% -0.4% -1.8% -0.7%
high, low, high -3.1% -0.5% -6.7% -1.6% 0.0%
high, mid, low -1.1% -3.2% -1.4% -2.4% -2.6%
high, mid, mid -1.0% -1.0% -1.2% -0.5% -0.6%
high, mid, high -2.7% -0.5% -0.3% 0.0% 0.0%
high, high, low -0.9% -2.9% -1.6% -3.4% -4.7%
high, high, mid -0.8% -0.9% -1.5% -1.0% -2.1%
high, high, high -2.5% -0.5% -1.3% 0.0% -1.6%

Table 53: Average difference in costs per combination of three parameter categories (design scenario
3a, part 2 of 4)

104



categories parameters
(B), (C), (D) (B), (C), (E) (B), (C), (F) (B), (D), (E) (B), (D), (F)

low, low, low -1.7% -1.1% -3.6% -0.4% -3.0%
low, low, mid -1.0% -1.0% -0.2% -0.3% -0.3%
low, low, high -1.1% -1.7% 0.0% -2.5% 0.0%
low, mid, low -0.9% -0.4% -1.6% -0.6% -1.4%
low, mid, mid -0.3% -0.3% -0.1% -0.5% 0.0%
low, mid, high -0.5% -1.0% 0.0% -0.3% 0.0%
low, high, low -0.7% -0.1% -1.0% -0.6% -1.8%
low, high, mid -0.1% -0.1% 0.0% -0.6% 0.0%
low, high, high -0.2% -0.7% 0.0% -0.6% 0.0%
mid, low, low -1.9% -1.3% -3.4% -0.6% -4.1%
mid, low, mid -1.1% -1.1% -1.1% -0.4% -0.5%
mid, low, high -1.5% -2.1% 0.0% -3.7% 0.0%
mid, mid, low -1.4% -1.0% -2.9% -1.2% -2.1%
mid, mid, mid -0.8% -0.9% -0.5% -1.1% -0.5%
mid, mid, high -1.2% -1.6% 0.0% -0.3% 0.0%
mid, high, low -1.3% -0.9% -2.8% -1.4% -2.9%
mid, high, mid -0.7% -0.8% -0.4% -1.3% -1.0%
mid, high, high -1.1% -1.4% 0.0% -1.2% 0.0%
high, low, low -6.2% 0.0% -2.4% 0.0% -6.9%
high, low, mid 0.0% 0.0% -1.9% 0.0% -5.7%
high, low, high 0.0% -6.2% -1.8% -18.1% -5.5%
high, mid, low -6.0% 0.0% -2.3% 0.0% 0.0%
high, mid, mid 0.0% 0.0% -1.9% 0.0% 0.0%
high, mid, high 0.0% -6.0% -1.8% 0.0% 0.0%
high, high, low -5.9% 0.0% -2.3% 0.0% 0.0%
high, high, mid 0.0% 0.0% -1.8% 0.0% 0.0%
high, high, high 0.0% -5.9% -1.8% 0.0% 0.0%

Table 54: Average difference in costs per combination of three parameter categories (design scenario
3a, part 3 of 4)
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categories parameters
(B), (E), (F) (C), (D), (E) (C), (D), (F) (C), (E), (F) (D), (E), (F)

low, low, low -1.6% -0.6% -5.3% -2.0% -1.0%
low, low, mid 0.0% -0.4% -2.6% -0.3% 0.0%
low, low, high 0.0% -8.7% -1.8% 0.0% 0.0%
low, mid, low -1.5% -0.9% -1.8% -1.9% -0.7%
low, mid, mid 0.0% -0.8% -0.3% -0.3% 0.0%
low, mid, high 0.0% -0.4% 0.0% 0.0% 0.0%
low, high, low -3.1% -0.9% -2.2% -5.5% -12.4%
low, high, mid -0.3% -0.9% -0.5% -2.7% -6.4%
low, high, high 0.0% -0.8% 0.0% -1.8% -5.5%
mid, low, low -2.5% -0.3% -4.5% -1.2% -1.5%
mid, low, mid -0.7% -0.2% -2.0% -0.2% -0.3%
mid, low, high 0.0% -7.9% -1.8% 0.0% 0.0%
mid, mid, low -2.2% -0.5% -1.0% -1.0% -1.4%
mid, mid, mid -0.6% -0.5% -0.2% -0.2% -0.2%
mid, mid, high 0.0% -0.1% 0.0% 0.0% 0.0%
mid, high, low -4.4% -0.6% -1.4% -4.6% -0.6%
mid, high, mid -0.7% -0.6% -0.3% -2.1% 0.0%
mid, high, high 0.0% -0.5% 0.0% -1.8% 0.0%
high, low, low 0.0% -0.2% -4.2% -0.9% -1.6%
high, low, mid 0.0% -0.1% -1.9% -0.2% -0.4%
high, low, high 0.0% -7.7% -1.8% 0.0% 0.0%
high, mid, low 0.0% -0.4% -0.7% -0.8% -1.6%
high, mid, mid 0.0% -0.3% -0.1% -0.1% -0.4%
high, mid, high 0.0% -0.1% 0.0% 0.0% 0.0%
high, high, low -6.9% -0.5% -1.1% -4.3% -1.4%
high, high, mid -5.7% -0.5% -0.2% -1.9% -0.3%
high, high, high -5.5% -0.4% 0.0% -1.8% 0.0%

Table 55: Average difference in costs per combination of three parameter categories (design scenario
3a, part 4 of 4)
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E.5 Design scenario 3b

categories parameters
(A), (B), (C) (A), (B), (D) (A), (B), (E) (A), (B), (F) (A), (C), (D)

low, low, low -37.9% -19.3% -18.5% -0.5% -29.9%
low, low, mid -17.4% -18.5% -18.5% -18.6% -24.9%
low, low, high -1.1% -18.6% -19.3% -37.3% -24.4%
low, mid, low -44.4% -27.2% -30.3% -11.8% -18.3%
low, mid, mid -32.7% -29.0% -29.5% -29.1% -14.4%
low, mid, high -10.8% -31.8% -28.2% -47.1% -14.4%
low, high, low 3.1% -4.2% 10.6% 16.9% -2.4%
low, high, mid 2.9% 9.2% 9.3% 5.7% 1.0%
low, high, high 10.9% 11.9% -3.0% -5.6% 0.4%
mid, low, low -65.2% -24.1% -26.6% -7.6% -58.4%
mid, low, mid -13.8% -26.1% -26.2% -25.4% -59.8%
mid, low, high 1.8% -27.0% -24.4% -44.2% -61.0%
mid, mid, low -80.2% -43.4% -47.9% -18.5% -34.7%
mid, mid, mid -52.1% -46.7% -47.1% -45.5% -37.4%
mid, mid, high -7.1% -49.2% -44.3% -75.3% -40.0%
mid, high, low -33.8% -38.9% -39.2% -17.0% -13.3%
mid, high, mid -46.3% -38.3% -38.7% -38.7% -13.9%
mid, high, high -37.6% -40.5% -39.7% -62.0% -15.7%
high, low, low -41.4% -16.7% -23.3% -8.0% -116.1%
high, low, mid -16.2% -22.8% -22.9% -21.0% -136.0%
high, low, high -5.7% -23.9% -17.1% -34.4% -146.4%
high, mid, low -115.8% -53.4% -64.2% -25.7% -51.5%
high, mid, mid -46.8% -62.3% -62.9% -59.7% -60.7%
high, mid, high -19.4% -66.2% -54.8% -96.6% -65.4%
high, high, low -241.2% -117.3% -141.3% -52.7% -19.9%
high, high, mid -114.6% -135.8% -137.8% -132.7% -24.3%
high, high, high -45.3% -148.0% -122.0% -215.7% -26.2%

Table 56: Average difference in costs per combination of three parameter categories (design scenario
3b, part 1 of 4)
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categories parameters
(A), (C), (E) (A), (C), (F) (A), (D), (E) (A), (D), (F) (A), (E), (F)

low, low, low -24.8% -7.1% -12.7% -2.9% 3.8%
low, low, mid -25.0% -26.4% -13.2% -16.5% -12.7%
low, low, high -29.4% -45.7% -24.7% -31.2% -29.3%
low, mid, low -14.2% 1.3% -12.5% 3.4% 3.4%
low, mid, mid -14.5% -15.6% -12.5% -12.7% -12.8%
low, mid, high -18.5% -32.9% -13.3% -29.1% -29.3%
low, high, low 0.7% 10.4% -13.0% 4.1% -2.6%
low, high, mid 0.9% 0.0% -12.9% -12.8% -16.5%
low, high, high -2.6% -11.3% -12.5% -29.7% -31.4%
mid, low, low -60.5% -27.6% -36.0% -14.7% -14.1%
mid, low, mid -60.1% -59.6% -35.0% -34.6% -37.5%
mid, low, high -58.6% -92.1% -35.4% -57.1% -62.1%
mid, mid, low -38.6% -13.5% -38.4% -13.5% -13.7%
mid, mid, mid -37.9% -36.7% -38.0% -36.7% -37.0%
mid, mid, high -35.7% -62.0% -34.8% -61.0% -61.4%
mid, high, low -14.6% -2.0% -39.2% -14.8% -15.2%
mid, high, mid -14.1% -13.5% -39.2% -38.5% -35.3%
mid, high, high -14.1% -27.4% -38.3% -63.5% -57.9%
high, low, low -140.8% -50.9% -70.5% -24.8% -30.5%
high, low, mid -137.6% -132.0% -67.0% -61.8% -75.6%
high, low, high -120.0% -215.5% -50.0% -100.9% -122.7%
high, mid, low -62.9% -24.9% -78.0% -29.2% -29.7%
high, mid, mid -61.5% -58.5% -76.6% -73.0% -73.9%
high, mid, high -53.2% -94.2% -66.3% -118.7% -120.1%
high, high, low -25.1% -10.6% -80.3% -32.3% -26.1%
high, high, mid -24.6% -22.9% -80.1% -78.5% -63.8%
high, high, high -20.7% -37.0% -77.6% -127.1% -104.0%

Table 57: Average difference in costs per combination of three parameter categories (design scenario
3b, part 2 of 4)
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categories parameters
(B), (C), (D) (B), (C), (E) (B), (C), (F) (B), (D), (E) (B), (D), (F)

low, low, low -44.9% -49.8% -18.9% -22.2% -5.3%
low, low, mid -49.1% -49.3% -48.0% -21.6% -19.4%
low, low, high -50.5% -45.4% -77.6% -16.3% -35.4%
low, mid, low -14.2% -16.6% -1.4% -23.0% -5.3%
low, mid, mid -16.3% -16.4% -15.6% -22.9% -22.5%
low, mid, high -16.8% -14.4% -30.4% -21.5% -39.7%
low, high, low -0.9% -2.1% 4.3% -23.3% -5.5%
low, high, mid -2.0% -2.0% -1.5% -23.2% -23.2%
low, high, high -2.1% -1.0% -7.9% -23.0% -40.8%
mid, low, low -74.3% -82.9% -36.4% -44.5% -16.3%
mid, low, mid -81.0% -81.7% -80.0% -42.5% -40.6%
mid, low, high -85.0% -75.7% -124.0% -37.1% -67.1%
mid, mid, low -40.6% -45.5% -17.2% -48.4% -18.4%
mid, mid, mid -44.4% -44.8% -43.0% -47.7% -45.4%
mid, mid, high -46.5% -41.4% -71.4% -42.1% -74.2%
mid, high, low -9.1% -14.0% -2.4% -49.5% -21.2%
mid, high, mid -12.7% -13.1% -11.3% -49.4% -48.3%
mid, high, high -15.5% -10.2% -23.6% -48.1% -77.6%
high, low, low -85.1% -93.3% -30.2% -52.6% -20.9%
high, low, mid -90.6% -91.7% -90.0% -51.2% -53.0%
high, low, high -96.2% -86.9% -151.8% -56.6% -86.6%
high, mid, low -49.6% -53.6% -18.5% -57.6% -15.6%
high, mid, mid -51.9% -52.8% -52.2% -56.6% -54.5%
high, mid, high -56.5% -51.6% -87.3% -50.8% -94.9%
high, high, low -25.6% -23.0% -4.1% -59.7% -16.3%
high, high, mid -22.5% -22.7% -23.6% -59.5% -58.3%
high, high, high -23.8% -26.2% -44.3% -57.3% -101.9%

Table 58: Average difference in costs per combination of three parameter categories (design scenario
3b, part 3 of 4)
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categories parameters
(B), (E), (F) (C), (D), (E) (C), (D), (F) (C), (E), (F) (D), (E), (F)

low, low, low -5.4% -71.9% -28.6% -28.5% -12.3%
low, low, mid -22.8% -69.5% -67.7% -75.1% -39.4%
low, low, high -40.3% -63.0% -108.1% -122.5% -67.5%
low, mid, low -5.3% -76.3% -27.9% -28.2% -11.9%
low, mid, mid -22.6% -75.4% -73.3% -74.0% -38.2%
low, mid, high -39.9% -69.0% -119.5% -120.6% -65.2%
low, high, low -5.4% -77.9% -29.0% -28.8% -18.3%
low, high, mid -19.6% -77.8% -77.0% -68.9% -35.3%
low, high, high -35.8% -76.0% -125.7% -110.3% -56.4%
mid, low, low -19.8% -35.9% -12.3% -12.1% -13.9%
mid, low, mid -46.8% -35.0% -34.3% -38.1% -42.6%
mid, low, high -75.8% -33.6% -57.8% -65.4% -72.5%
mid, mid, low -18.9% -39.3% -11.6% -11.9% -13.6%
mid, mid, mid -45.9% -38.6% -37.2% -37.6% -42.0%
mid, mid, high -74.8% -34.8% -63.8% -64.5% -71.5%
mid, high, low -17.3% -40.5% -13.1% -13.1% -11.7%
mid, high, mid -41.6% -40.3% -39.3% -35.2% -37.9%
mid, high, high -68.4% -39.0% -67.4% -59.1% -64.7%
high, low, low -15.8% -11.5% -1.6% -0.3% -14.6%
high, low, mid -56.1% -10.7% -11.0% -12.6% -43.8%
high, low, high -98.0% -13.5% -23.1% -26.2% -74.2%
high, mid, low -15.8% -13.4% 0.2% 0.1% -14.5%
high, mid, mid -55.3% -13.1% -12.0% -12.2% -43.6%
high, mid, high -96.1% -10.6% -25.4% -25.7% -74.0%
high, high, low -21.2% -14.1% -0.8% -1.9% -13.8%
high, high, mid -54.3% -14.0% -13.4% -11.6% -42.4%
high, high, high -89.2% -13.3% -27.2% -23.9% -72.2%

Table 59: Average difference in costs per combination of three parameter categories (design scenario
3b, part 4 of 4)
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E.6 Comparison of all design scenarios

categories parameters
(A), (B), (C) (A), (B), (D) (A), (B), (E) (A), (B), (F) (A), (C), (D)

low, low, low 3b 3b 3b 3a 3b
low, low, mid 3b 3b 3b 3b 3b
low, low, high 3b 3b 3b 3b 3b
low, mid, low 3b 3b 3b 3b 3b
low, mid, mid 3b 3b 3b 3b 3b
low, mid, high 3b 3b 3b 3b 3b
low, high, low 3a 3a 3a 3a 3a
low, high, mid 3a 3a 3a 3a 3a
low, high, high 3a 3a 3a 3b 3a
mid, low, low 3b 3b 3b 2 3b
mid, low, mid 3b 3b 3b 3b 3b
mid, low, high 3a 3b 3b 3b 3b
mid, mid, low 3b 3b 3b 3b 3b
mid, mid, mid 3b 3b 3b 3b 3b
mid, mid, high 3b 3b 3b 3b 3b
mid, high, low 3b 3b 3b 3b 3b
mid, high, mid 3b 3b 3b 3b 3b
mid, high, high 3b 3b 3b 3b 3b
high, low, low 3b 3b 3b 3b 3b
high, low, mid 3b 3b 3b 3b 3b
high, low, high 3b 3b 3b 3b 3b
high, mid, low 3b 3b 3b 3b 3b
high, mid, mid 3b 3b 3b 3b 3b
high, mid, high 3b 3b 3b 3b 3b
high, high, low 3b 3b 3b 3b 3b
high, high, mid 3b 3b 3b 3b 3b
high, high, high 3b 3b 3b 3b 3b

Table 60: Best performing design scenario, per combination of three parameter categories (part 1
of 4)
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categories parameters
(A), (C), (E) (A), (C), (F) (A), (D), (E) (A), (D), (F) (A), (E), (F)

low, low, low 3b 3b 3b 3a 3a
low, low, mid 3b 3b 3b 3b 3b
low, low, high 3b 3b 3b 3b 3b
low, mid, low 3b 3a 3b 3a 3a
low, mid, mid 3b 3b 3b 3b 3b
low, mid, high 3b 3b 3b 3b 3b
low, high, low 3a 3a 3b 3a 3a
low, high, mid 3a 3a 3b 3b 3b
low, high, high 3a 3b 3b 3b 3b
mid, low, low 3b 3b 3b 3b 3b
mid, low, mid 3b 3b 3b 3b 3b
mid, low, high 3b 3b 2 3b 3b
mid, mid, low 3b 3b 3b 3b 3b
mid, mid, mid 3b 3b 3b 3b 3b
mid, mid, high 3b 3b 3b 3b 3b
mid, high, low 3b 3b 3b 3b 3b
mid, high, mid 3b 3b 3b 3b 3b
mid, high, high 3b 3b 3b 3b 3b
high, low, low 3b 3b 3b 3b 3b
high, low, mid 3b 3b 3b 3b 3b
high, low, high 3b 3b 3b 3b 3b
high, mid, low 3b 3b 3b 3b 3b
high, mid, mid 3b 3b 3b 3b 3b
high, mid, high 3b 3b 3b 3b 3b
high, high, low 3b 3b 3b 3b 3b
high, high, mid 3b 3b 3b 3b 3b
high, high, high 3b 3b 3b 3b 3b

Table 61: Best performing design scenario, per combination of three parameter categories (part 2
of 4)
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categories parameters
(B), (C), (D) (B), (C), (E) (B), (C), (F) (B), (D), (E) (B), (D), (F)

low, low, low 3b 3b 3b 3b 3b
low, low, mid 3b 3b 3b 3b 3b
low, low, high 3b 3b 3b 3b 3b
low, mid, low 3b 3b 3a 3b 3b
low, mid, mid 3b 3b 3b 3b 3b
low, mid, high 3b 3b 3b 3b 3b
low, high, low 3b 3b 3a 3b 3b
low, high, mid 3b 3b 3b 3b 3b
low, high, high 3b 3b 3b 3b 3b
mid, low, low 3b 3b 3b 3b 3b
mid, low, mid 3b 3b 3b 3b 3b
mid, low, high 3b 3b 3b 3b 3b
mid, mid, low 3b 3b 3b 3b 3b
mid, mid, mid 3b 3b 3b 3b 3b
mid, mid, high 3b 3b 3b 3b 3b
mid, high, low 3b 3b 3a 3b 3b
mid, high, mid 3b 3b 3b 3b 3b
mid, high, high 3b 3b 3b 3b 3b
high, low, low 3b 3b 3b 3b 3b
high, low, mid 3b 3b 3b 3b 3b
high, low, high 3b 3b 3b 3b 3b
high, mid, low 3b 3b 3b 3b 3b
high, mid, mid 3b 3b 3b 3b 3b
high, mid, high 3b 3b 3b 3b 3b
high, high, low 3b 3b 3b 3b 3b
high, high, mid 3b 3b 3b 3b 3b
high, high, high 3b 3b 3b 3b 3b

Table 62: Best performing design scenario, per combination of three parameter categories (part 3
of 4)
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categories parameters
(B), (E), (F) (C), (D), (E) (C), (D), (F) (C), (E), (F) (D), (E), (F)

low, low, low 3b 3b 3b 3b 3b
low, low, mid 3b 3b 3b 3b 3b
low, low, high 3b 3b 3b 3b 3b
low, mid, low 3b 3b 3b 3b 3b
low, mid, mid 3b 3b 3b 3b 3b
low, mid, high 3b 3b 3b 3b 3b
low, high, low 3b 3b 3b 3b 2
low, high, mid 3b 3b 3b 3b 3b
low, high, high 3b 3b 3b 3b 3b
mid, low, low 3b 3b 3b 3b 3b
mid, low, mid 3b 3b 3b 3b 3b
mid, low, high 3b 3b 3b 3b 3b
mid, mid, low 3b 3b 3b 3b 3b
mid, mid, mid 3b 3b 3b 3b 3b
mid, mid, high 3b 3b 3b 3b 3b
mid, high, low 3b 3b 3b 3b 3b
mid, high, mid 3b 3b 3b 3b 3b
mid, high, high 3b 3b 3b 3b 3b
high, low, low 3b 3b 3a 3a 3b
high, low, mid 3b 3b 3b 3b 3b
high, low, high 3b 2 3b 3b 3b
high, mid, low 3b 3b 3a 3a 3b
high, mid, mid 3b 3b 3b 3b 3b
high, mid, high 3b 3b 3b 3b 3b
high, high, low 3b 3b 3a 3a 3b
high, high, mid 3b 3b 3b 3b 3b
high, high, high 3b 3b 3b 3b 3b

Table 63: Best performing design scenario, per combination of three parameter categories (part 4
of 4)
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